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Abstract
In Reinforcement Learning (RL), an agent is
guided by the rewards it receives from the reward
function. Unfortunately, it may take many interac-
tions with the environment to learn from sparse re-
wards, and it can be challenging to specify reward
functions that reflect complex reward-worthy be-
havior. We propose using reward machines (RMs),
which are automata-based representations that ex-
pose reward function structure, as a normal form
representation for reward functions. We show
how specifications of reward in various formal lan-
guages, including LTL and other regular languages,
can be automatically translated into RMs, easing
the burden of complex reward function specifica-
tion. We then show how the exposed structure of
the reward function can be exploited by tailored
q-learning algorithms and automated reward shap-
ing techniques in order to improve the sample effi-
ciency of reinforcement learning methods. Experi-
ments show that these RM-tailored techniques sig-
nificantly outperform state-of-the-art (deep) RL al-
gorithms, solving problems that otherwise cannot
reasonably be solved by existing approaches.

1 Introduction
In Reinforcement Learning (RL), an agent that is unaware
of the dynamics of its environment or its reward model must
act exploratorily and learn from the resulting experience in
order to find effective policies that maximize the expected
cumulative reward. RL is particularly useful in complex en-
vironments that are difficult to model and therefore cannot be
solved using other sequential decision making techniques.

Two challenges that plague many RL systems are: (i) the
difficulty of reward specification, and (ii) sample complexity
– the need for large numbers of training episodes. Design-
ing a high-fidelity reward function requires consideration of
both the task and the environment. As tasks become more
complex, temporally extended, and multi-faceted, it is com-
mon for programmers to struggle with reward function de-
sign and specification. And once specified, many nontrivial
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reward functions deliver reward sparsely, necessitating mil-
lions of exploratory episodes to converge to a quality policy.

Recent work by Toro Icarte et al. [2018a;2018b] made
progress on these two challenges by observing that since the
reward function was typically specified by a programmer, it
need not be treated as a black box, but rather that it could
serve as input to a specialized RL algorithm that was able
to exploit the structure of the reward function. They showed
that doing so could drastically improve sample efficiency, re-
sulting in faster convergence to high-quality policies (opti-
mal in the tabular case), even for problems that were hereto-
fore unsolvable using state-of-the-art tabular and Deep RL
methods. Toro Icarte and colleagues’ early work exploited a
subset of Linear Temporal Logic (LTL) to specify the reward
function [Toro Icarte et al., 2018a], while subsequent work
exploited an automata-inspired structure called a reward ma-
chine [Toro Icarte et al., 2018b]. Both of these specification
languages supported compact propositional or relational rep-
resentation of state properties as well as easy specification of
temporally extended behavior. Each was paired with special-
ized q-learning and Deep q-learning algorithms that exploited
the structure of the specification language.

Unfortunately, when it comes to specification languages
there is no one language that proves compelling for the di-
versity of RL applications and reward structures. One need
only look at the diversity of goal specification languages for
AI automated planning and similarly the diversity of specifi-
cation languages for hardware and software verification and
synthesis to appreciate this point. However, to accommo-
date a diversity of specification languages with the above ap-
proach would require development of specialized q-learning
algorithms for each language.

Inspired by Toro Icarte et al.’s work and informed by this
observation, in this paper we propose to use reward machines
as a lingua franca – a normal form for representing RL re-
ward functions. To this end, we provide a formal charac-
terization of reward machines in terms of Mealy machines
[Mealy, 1955], highlighting the correspondence to finite state
automata. We then leverage the correspondence between fi-
nite state automata and regular languages [Hopcroft and Ull-
man, 1979] to show how a diversity of compelling goal and
property specification languages, including several variants
of LTL, regular expressions, and other goal specification lan-



guages, augmented with scalar rewards, can all be translated
to reward machines. Indeed, even controlled subsets of nat-
ural language can, in principle, be translated to reward ma-
chines. We further observe that for many of these languages,
automated automata-compilation methods and software al-
ready exist. By translating all of these specification languages
to reward machines, we can use learning algorithms that ex-
ploit reward function structure, without having to write a new
learning algorithm for each language. Further, adoption of
a normal form enables the composition of reward functions
initially specified in multiple specification languages.

In the latter part of the paper, we propose a new reward-
machine-tailored q-learning algorithm that significantly en-
hances an existing algorithm through the exploitation of re-
ward shaping (e.g, [Ng et al., 1999]). Experiments with
tabular and Deep q-learning confirm the merits of reward-
machine-tailored q-learning techniques in improving sample
efficiency and providing high-quality solutions, solving prob-
lems that otherwise cannot reasonably be solved using state-
of-the-art RL algorithms. The work presented here leverages
and unifies previous work of the authors (e.g., [Camacho et
al., 2017; Toro Icarte et al., 2018a; Toro Icarte et al., 2018b;
Camacho et al., 2018]).

2 Background on Reinforcement Learning
In reinforcement learning an agent interacts with an unknown
environment to learn how to act in a manner that maximizes
its expected cumulative reward [Sutton and Barto, 2018].
Typically, the environment is modeled as a Markov Deci-
sion Process (MDP). An MDP with an initial state is a tuple
M = 〈S,A, s0, T, r, γ〉where S is a finite set of states,A is a
finite set of actions, s0 ∈ S is the initial state, T (st+1|st, at)
is the transition probability distribution, r : S ×A× S → R
is the reward function, and γ ∈ (0, 1] is the discount factor.

At each time t, the agent picks an action at and transitions
from a state st ∈ S to a state st+1 ∈ S drawn from the
distribution T (·|st, at). We will call a triple (st, at, st+1) an
experience. From that experience (i.e., after performing at)
the agent gets the reward r(st, at, st+1).

In RL, the agent starts not knowing T and r, and tries to
learn a policy. A policy is a probability distribution π(a|s)
over actions given a state. An optimal policy is one that
maximizes the expected discounted future reward from each
s ∈ S. Given a policy π, we can define its corresponding
q-function qπ(s, a) as the expected discounted future reward
if action a is taken in s and policy π is followed to pick all
later actions. Any optimal policy π∗ will be such that its cor-
responding q-function q∗ satisfies the Bellman equation:

q∗(s, a) =
∑
s′∈S

T (s′|s, a)

(
r(s, a, s′) + γmax

a′∈A
q∗(s′, a′)

)
Furthermore, it’s well-known that, given a function q∗ satis-
fying that equation, an optimal policy can be extracted.

2.1 Q-Learning
Tabular q-learning [Watkins and Dayan, 1992] learns poli-
cies by learning to approximate the optimal q-function. An
approximate q-function q̃(s, a) is initialized in some manner

Figure 1: Minecraft-inspired domain containing natural resources,
buildings where they can be processed, and perils such as zombies
(adapted from [Andreas et al., 2017]).

(e.g. randomly), and after each experience (s, a, s′) the ap-
proximation is updated according to the rule

q̃(s, a)
α←− r(s, a, s′) + γmax

a′
q̃(s′, a′)

where x α←− y abbreviates x ← x + α · (y − x) and α is a
hyperparameter (the learning rate).

Tabular q-learning has some attractive features. It is an off-
policy method that can learn from the experiences generated
by any policy. The algorithm converges to an optimal policy
if, in the limit, the agent visits each state-action pair infinitely
often. However, for problems with large or continuous state
spaces, tabular q-learning is impractical.

Deep Q-Networks (DQN) [Mnih et al., 2015] is a more
modern variation of q-learning that approximates the q-
function using a deep neural network. Like tabular q-
learning, DQN is an off-policy algorithm, but unlike tabular
q-learning, DQN is not guaranteed to converge to an optimal
policy, and can even diverge due to delusional bias [Lu et al.,
2018] and other instability pathologies. In our experiments
with Deep RL in this paper, we used two enhancements on
DQN, Double DQN [Van Hasselt et al., 2016] and Priori-
tized Experience Replay [Schaul et al., 2015], as Toro Icarte
et al. [2018b] did.

3 Specifying Reward Functions
An RL agent cannot inherently perceive reward from the en-
vironment. A programmer has to write the reward function
(regardless of whether the environment behavior is manifest
from a simulator or from the real world). Writing such reward
functions is often challenging for the following reasons:
(a) The state representation may not be conducive to direct

reward specification (for example, if it is pixels). It may
not provide the appropriate level of abstraction – the ap-
propriate building blocks – for the programmer.

(b) By definition, reward functions are Markovian. They
typically map states, or states and actions, to a scalar re-
ward value. Nevertheless, reward may actually be a con-
sequence of some complex temporally extended behav-
ior such as opening the freezer door, taking something
out, and subsequently closing the freezer door. Such be-
havior may be difficult to capture directly with a Marko-
vian reward function, depending on how much informa-
tion is captured in a state. Reward is only conferred
when the temporally extended behavior is completed.



To address the first issue, (a) above, we require a suitable
vocabulary for reward specification. In some cases, this may
be drawn from the variables that define the set of states, S. In
other cases, the vocabulary for constructing rewards may be
a set of features or properties that are extracted from the state
or experiences via property detectors. For the purposes of this
paper, we assume the existence of some vocabulary in terms
of a set of propositional symbols, and of a labeling function
that relates the agent’s experiences to this vocabulary. For
the programmer, this vocabulary will have to be selected and,
where necessary, the labeling function constructed.
Definition 1 (vocabulary and labeling function) A vocab-
ulary is a set P of propositional symbols. A labeling function
is a function L : S × A × S → 2P , i.e., it maps experiences
to truth assignments over the vocabulary P .
While P is defined as a set of propositional symbols, it can
be written in an equivalent lifted or explicitly relational repre-
sentation to further expose semantic structure and to allow for
parsimonious representation of the reward function. Further,
we have defined L slightly more generally than the labeling
functions used by Toro Icarte et al. [2018b] by allowing the
label to depend on the last action and previous state in ad-
dition to the current state. This makes it easier for labels to
refer to events like movement that involve change of state. A
common class of labeling function just involves the current
state, or the current state and the action.
Illustrative example. Consider a variant of a Minecraft-
inspired domain originally proposed by Andreas et al.
[2017], depicted in Figure 1. In this 2D grid world, Luigi
can extract raw material such as wood, grass, iron, gold, and
gems, and can interact with his environment using a factory,
toolshed or a workbench to construct things such as ropes or
bridges. There are also dangers such as zombies that lurk
at night. We want to specify rewards in terms of a set P of
propositional symbols including got wood , used factory ,
and the like, while a labelling function would identify to
the agent when those propositions were true. Here are some
English-specified examples of reward-worthy behavior.
[E1] “Make a bridge by collecting wood and iron in any
order, and using the factory afterwards.”
[E2] “If it’s night time, stay in the shed until daylight.”
[E3] “Always avoid zombies.”
[E4] “While there are gems on the ground, put them in your
bag. When your bag is full, deliver the gems to the shed, and
get an empty bag.”
Associated with each behavior is a scalar value that denotes
the reward conferred for its satisfaction.

Reward functions are classically Markovian. These rather
simple examples motivate the need for languages that sup-
port easy specification of non-Markovian reward functions
that capture conditional or even negated temporally extended
properties over states and/or actions, sometimes with looping.

To address this second issue, (b) at the outset of this sec-
tion, we adapt the work of Bacchus et al. [1996] to define the
notion of a Non-Markovian Reward Decision Process.
Definition 2 (NMRDP) A Non-Markovian Reward Decision
Process (NMRDP) is a tuple 〈S,A, s0, T,R, γ〉, where

S,A, s0, T, γ are defined as in MDPs, and (unlike in MDPs)
R : (S ×A)+ × S → R is a non-Markovian reward function
that maps finite state-action histories into a real value.

The discounted cumulative non-Markovian reward re-
ceived by the agent along a state-action-state trajectory
(s0, a0) · · · (sn, an)sn+1 is Σni=0γiR(hi, si+1), where hi =
(s0, a0) · · · (si, ai). Optimal strategies are those that maxi-
mize the expected discounted cumulative non-Markovian re-
ward. A key aspect to observe is that, in contrast to MDPs
with Markovian rewards, optimal solutions may not take the
(simple, memoryless) form of policies anymore because they
depend on the state history. They take the more general form
of strategies, or mappings π : (S ×A)∗ × S → A.

In the following section, we introduce reward machines, an
automata-like structure for representing non-Markovian re-
ward functions via a Markovian decomposition. In Section
5 we argue that reward machines provide a normal form rep-
resentation which is able to serve as a lingua franca for rep-
resenting non-Markovian reward functions by leveraging the
well-established correspondence between regular languages
and automata. We catalogue a diversity of compelling for-
mal languages, whose formulas describe (some or all) regular
languages. These formal languages can serve as specifica-
tion languages for non-Markovian reward functions and can
be automatically translated to reward machines.

4 Reward Machines
In this section, we define the notion of a reward machine
(RM). As we will see, RMs are defined with respect to a
vocabulary of propositional symbols P denoting features or
events of the concrete state of the environment. We assume
that the agent is given, or can detect, the truth or falsity of the
proposition represented by each such symbol at all times –
i.e., there is a labelling function (see Definition 1) available.

Intuitively, an RM indicates what (Markovian) reward
function should currently be used to provide the reward sig-
nal, given the sequence of state labels (truth assignments in
P) that the agent has seen so far. Any RM can be thought of
as a Mealy machine [Mealy, 1955] where the input alphabet
is the set of possible state labels and the output alphabet is a
set of Markovian reward functions.

Definition 3 (Mealy machine) A Mealy machine is a tuple
〈Q, q0,Σ,R, δ, ρ〉 where Q is a finite set of states, q0 ∈ Q is
the initial state, Σ is the finite input alphabet, R is the finite
output alphabet, δ : Q × Σ → Q is the transition function,
and ρ : Q× Σ→ R is the output function.

A Mealy machine takes input and produces output. On
each step, the machine consumes an input symbol σ ∈ Σ,
transitions from the state q ∈ Q it started the step in to state
δ(q, σ) ∈ Q, and outputs the symbol ρ(q, σ) ∈ R.

In order to formally define an RM, first suppose we have a
finite set of (environment) states S (not to be confused with
Mealy machine states), a finite set of actions A, a finite set of
propositional symbols P , and a labeling function L : S×A×
S → 2P . We will call 〈S,A,P, L〉 a setting.

Definition 4 (RM) A reward machine (RM) for the setting
〈S,A,P, L〉 is a Mealy machine 〈Q, q0,Σ,R, δ, ρ〉 where the



input alphabet is Σ = 2P , and R is a finite set where each
R ∈ R is a reward function from S ×A× S to R.

Toro Icarte et al. used RMs as compact representations of
non-Markovian reward functions in NMRDPs. Upon per-
forming its ith action, ai, in an NMRDP, the agent gets
the experience (si, ai, si+1). If the current RM state was
qi ∈ Q, the RM then transitions to qi+1 = δ(qi, σi), where
σi = L(si, ai, si+1). In doing so, the RM issues reward
r(si, ai+1, si+1), where r = ρ(qi, σi). This procedure im-
plicitly defines a non-Markovian reward function.

Definition 5 (induced by an RM) The non-Markovian re-
ward function R induced by an RM 〈Q, q0,Σ,R, δ, ρ〉, given
a setting 〈S,A,P, L〉, is R((s0, a0) · · · (sn, an)sn+1) :=
r(sn, an, sn+1), where r = ρ(qn, σn) and qn is defined in-
ductively by q0 = q0 and qi+1 = δ(qi, L(si, ai, si+1)).

4.1 Relationship to Automata
Mealy machines are similar to deterministic finite automata
(DFAs), except DFAs produce a binary output (accept/reject)
given a input string, rather than an output string. Formally,
a DFA is a tuple 〈Q,Σ, q0, δ, F 〉, where Q is a finite set of
automaton states, q0 ∈ Q is the initial state of the automaton,
and δ : Q × Σ → Q is a transition function. Instead of an
output function, a DFA has a set of accepting states F ⊆ Q.
A DFA accepts an input string σ0 · · ·σn−1 ∈ Σ∗ iff qn ∈ F ,
where q0 = q0 and qi+1 = δ(qi, σi).

It is well-known that DFAs can recognize all and only regu-
lar languages. In the next section we consider various formal
languages whose formulas can be transformed into DFAs.
These languages can be used to define reward functions by as-
sociating rewards with satisfaction of formulas (equivalently,
with reaching accepting states in corresponding DFAs). We
describe a two-step transformation of formulas with associ-
ated rewards into RMs, by first transforming a formula into a
DFA and then transforming the DFA into an RM by adding
an appropriate output language and output function.

5 Formal Language Specification
In the previous section, we saw how to specify non-
Markovian reward functions using RMs. RMs not only pro-
vide benefit as a specification language, but they also expose
reward function structure in a manner that can be exploited
by tailored q-learning algorithms, as we discuss in Section 6.
While RMs have many virtues, it may not be the case that the
syntax of RMs is well-suited to easy, programmer-friendly
specification of every type of reward-worthy behavior. Just
as with programming languages, or goal specifications for AI
model-based planning (e.g., [Baier et al., 2008]), RL reward
specification can benefit from a diversity of well-designed
high-level specification languages. We argue for the use of
formal languages as a natural alternative to programming lan-
guages (and RMs) for reward function specification. They are
compositional, some are declarative, and many support easy
specification of temporally extended behavior.

In this section, we propose to use RMs as a normal form
representation for reward functions and as a lingua franca for
reward specification that enables us to preserve the benefits

of RMs in exposing reward function structure and provid-
ing for reward-function-tailored q-learning. To this end, we
leverage the relationship between regular languages and au-
tomata, highlighting a selection of formal languages that can
be used for reward function specification and that have estab-
lished translations to automata. To facilitate the specification
of reward functions, we are developing a tool to automatically
generate reward machines from various formal languages.1

5.1 Formal Languages and Temporal Logics
In this section, we review a myriad of formal languages that
can be used to describe temporally extended behavior and,
therefore, to specify when reward should be given to the
agent. NMRDPs’ reward has previously been specified us-
ing a variety of temporal logics: PLTL [Bacchus et al., 1996;
Bacchus et al., 1997], $FLTL [Thiébaux et al., 2006], and
LTLf [Camacho et al., 2017; Brafman et al., 2018]. As with
RMs, each of these languages is defined using a vocabulary
of propositional symbols P (or equivalent finite domain re-
lational symbols) as described in Definition 1 (in Section 3).
With perhaps the exception of $FLTL, any formula ϕ in these
temporal logics can be transformed into a DFA that accepts
all and only the traces that satisfy ϕ. Henceforth, we will re-
fer to those DFAs as transformations of the formula. Later,
we show how to exploit this property to construct RMs that
induce the same reward function as the reward specification.
Linear Temporal Logic. Linear Temporal Logic (LTL) is a
modal logic that extends propositional logic with the tempo-
ral operators next ( ) and until (U). The semantics of an LTL
formula is evaluated over infinite-length state traces. Intu-
itively, α expresses that α needs to hold in the next timestep,
and αUβ expresses that α needs to hold until β holds. Other
modalities such as eventually (♦) and always (�) are typi-
cally used. Within LTL, the safe and co-safe fragments are of
special interest. Safe properties assert that a bad prefix never
occurs. In contrast, co-safe properties assert that a good pre-
fix will eventually occur. Safe and co-safe properties can be
transformed into DFAs with absorbing accepting states that
recognize good and bad prefixes, respectively. The transfor-
mation is double exponential [Kupferman and Vardi, 2001],
but transformation tools that work well in practice exist (e.g.
[Duret-Lutz et al., 2016])2.
Illustrative example (continued). Here we show how some
of the previous examples of temporally extended behavior can
be encoded as LTL formulae (cf. [Toro Icarte et al., 2018a]),
assuming the appropriate symbols within the vocabulary.
[E1] “Make a bridge by collecting wood and iron in any
order, and using the factory afterwards.”: ♦(got wood ∧
♦used factory) ∧ ♦(got iron ∧ ♦used factory)
[E2] “If it’s night time, stay in the shed until daylight.”:
�(is night → at shelter)
[E3] “Always avoid zombies.”: �¬near zombie

Linear Temporal Logic on finite traces. Different variants
of LTL interpreted over finite traces have been studied (e.g.
[Baier and McIlraith, 2006; De Giacomo and Vardi, 2013]).

1https://bitbucket.org/acamacho/fl2rm
2Spot software: https://spot.lrde.epita.fr
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LTLf is one of the recent examples. The syntax of LTLf is the
same as for LTL. For convenience, the macro final := ¬ > is
used to indicate the end of the trace. LTLf can be transformed
into DFA in double exponential time, and automated tools for
this transformation are available (e.g. [Baier and McIlraith,
2006; Zhu et al., 2017]).
Linear Temporal Logic of the Past. Another variant of LTL
interpreted over finite traces is the Linear Temporal Logic of
the Past (PLTL) [Emerson, 1990]. The syntax of PLTL ex-
tends propositional logic with modal operators yesterday ()
and since (S), that have analogous semantics to the LTLf op-
erators next and until, except that they look back in time from
the current state, rather than looking to the future. They are
well-suited to specifying reward-worthy behavior [Bacchus et
al., 1996]. Similarly, PLTL has operators always in the past
() and sometime in the past (), as well as the macro
start := ¬>. PLTL formulae can be transformed into DFA
in double exponential time (cf. [Sohrabi et al., 2011]).
Linear Dynamic Logic on finite traces. Whereas LTLf can
be transformed into DFA, it cannot capture all languages that
can be captured with DFA. Linear Dynamic Logic on finite
traces (LDLf ) borrows the syntax of Propositional Dynamic
Logic (PDL), and interprets it over finite traces. While the
syntax of LDLf is not as intuitive as LTLf , its expressiveness
is the same as DFA and the transformation is still double ex-
ponential [De Giacomo and Vardi, 2013].
LTL with Regular Expressions for finite traces (LTL-RE).
LTL-RE [Triantafillou et al., 2015] has the same expressive
power as LDLf , but with a more user-friendly syntax.
Subset of TLA+. The Temporal Logic of Actions (TLA+)
is a formal language used to design and verify concurrent
systems [Lamport, 2002]. In TLA+ it is possible to express
behaviors in terms of states, actions, next-state relations, and
temporal formulas. While its syntax allows for complex spec-
ifications, a subset of TLA+ can be mapped into other tem-
poral logics (e.g. LTLf ), and therefore transformed into DFA.
Subset of Golog. Golog (Algol in Logic) is a logic-based
agent programming language. Its syntax includes procedural
programming constructs such as if-then-else and while loops,
together with non-deterministic choice of actions and argu-
ments. Subsets of Golog can be transformed into DFA. For
reference, see [Baier et al., 2007; Baier et al., 2008].
Regular expressions. Regular expressions are used to de-
scribe regular languages, which are all and only the languages
that have a DFA representation. A regular expression over an
alphabet P is constructed using constant symbols – the char-
acters in P , and special symbols that represent the empty lan-
guage and the language that contains only the empty string
– and the operations of concatenation, union, and the Kleene
star. We note that it is also possible to define other opera-
tors like if-then-else and loops in terms of these operators.
Regular expressions can be transformed into DFA with, e.g.,
Thompson’s construction [Thompson, 1968].

5.2 Specifying Rewards with Temporal Logics
Following previous work on NMRDPs, we use formal lan-
guages as a means to specify when to assign reward to the

agent relative to their execution trace (Definition 6). In-
tuitively, a pair (r : ϕ) denotes that reward r is given
when the sequence of experiences along execution trace τ =
(s1, a1) · · · (sn, an)sn+1 satisfies a property described by ϕ.
Note that the formulas have alphabet P . Thus, ϕ is evalu-
ated over a sequence σ1, . . . , σn of Σ-characters, where each
σi = L(si, ai, si+1) is obtained by projecting the ith experi-
ence by means of L.

The expressivity of our reward specifications differs from
previous work on NMRDPs that considered rewards ex-
pressed by pairs (r : ϕ). In previous work, states were as-
sumed to be propositional, and ϕ was evaluated directly over
the sequence of states along execution (cf. [Bacchus et al.,
1996; Camacho et al., 2017; Brafman et al., 2018]). In con-
trast, our reward specifications are evaluated over sequences
of (projected) experiences, which contain information on the
current state, action, and next state. This allow us to express
richer properties. We formalize the concepts below.
Definition 6 (reward specification) A reward specification
is a set R = {(r1 : ϕ1), . . . , (rn : ϕn)}, where each ri ∈ R
and ϕi is a formula over propositional variables P .

As usual, let τ = (s0, a0)(s1, a1) · · · (sn, an)sn+1 ∈
(S × A)+ × S be a sequence of states and actions rep-
resenting the agent’s execution history. The sequence of
experiences received by the agent along τ is the sequence
{(si, ai, si+1)}0≤i≤n – note that the second state in an expe-
rience overlaps with the first state in the next experience. We
say that the projection of the experiences of τ by L entails
ϕ, and we write τ |=L ϕ, if L(s0, a0, s1) · · ·L(sn, an, sn+1)
entails ϕ.

We will use 1(x) to denote the indicator function which
evalutes to 1 if the condition described by x is true and 0
otherwise. Following Bacchus et al. [1996], we define how
rewards should be assigned for a reward specification:
Definition 7 (induced by a specification) For a setting
〈S,A,P, L〉, the non-Markovian reward function induced
by a reward specification R = {(r1 : ϕ1), . . . , (rn : ϕn)}
assigns reward R(τ) :=

∑n
k=1 rk · 1(τ |=L ϕk) to a trace

τ = (s0, a0) · · · (sn, an)sn+1 ∈ (S ×A)+ × S.

5.3 Constructing Reward Machines
We show here that reward machines can be constructed from a
formal reward specification, provided that the reward formu-
las can be transformed into DFAs – that is, represent regular
languages. The rationale for transforming reward specifica-
tions into RMs is to adopt RMs as a normal form to express
non-Markovian reward. By doing so, new techniques for re-
inforcement learning in NMRDPs, agnostic of the input lan-
guage, can be developed and used off-the-shelf for various
reward specification languages.

Consider a setting 〈S,A,P, L〉 and a reward specifica-
tion R = {(r1 : ϕ1), . . . (rn : ϕn)}, where each ϕi is a for-
mula that represents some regular language (expressed in e.g.
LTLf ). Without loss of generality, we assume all formulae
share a common alphabet P . The construction of an RM con-
sistent with R follows the steps below.
Step 1: Construction of the DFA. In the first step, each
ϕi is transformed into a DFA, A(i). For safe and co-safe



LTL, LTLf , and PLTL, the construction is worst-case double-
exponential in the size of the formula.
Step 2: Construction of the RM. Let A(i) =

〈Q(i),Σ, q
(i)
0 , δ(i), F (i)〉 be DFA transformations of each ϕi,

respectively. We define MR = 〈Q, q0,Σ,R, δ, ρ〉 as the RM
with components

Q :=Q(1) × · · · ×Q(n)

q0 :=(q
(1)
0 , . . . , q

(n)
0 )

δ(q, σ) :=(δ(1)(q(1), σ), . . . , δ(n)(q(n), σ))

ρ(q, σ) :=

n∑
k=1

ρ(k)(q(k), σ)

where ρ(k)(q, σ)(s, a, s′) := rk ·1(δ(k)(q, σ) ∈ F (k)). Recall
that 1(x) is the indicator function that evaluates to one if x is
true, and zero otherwise. Note that each ρ(k)(q, σ) is a con-
stant function – that is, its value does not depend on (s, a, s′).
As such, the space of reward functions R can be defined as
the set containing, for each subset of {r1, . . . , rn}, a constant
reward function returning the sum of that subset.

The following theorems formulate the correctness of the
construction, and provide bounds on the size of the RM with
respect to the DFA transformations of reward formulae.
Theorem 1 The RM MR and R induce the same non-
Markovian reward function.

Proof sketch. Let τ = (s0, a0) · · · (sn, an)sn+1 ∈ (S ×
A)+ × S. We want to prove that the reward issued by the
RM MR after processing τ equals the reward induced by R,
which is R(τ) :=

∑n
k=1 rk · 1(τ |=L ϕk).

Let qn−1 = (q
(1)
n−1, . . . , q

(n)
n−1) be the state of MR after

processing all but one of the experiences, i.e., after processing
L(s0, a0, s1) · · ·L(sn−1, an−1, sn). By construction of the
DFA A(k), it follows that q(k)n = δ(q

(k)
n−1, L(sn, an, sn+1)) ∈

F (k) iff L(s0, a0, s1) · · ·L(sn, an, sn+1) entails ϕk
(i.e., iff τ |=L ϕk, using the notation from Sec-
tion 5.2). The reward issued by MR after processing
all the experiences is ρ(qn−1, L(sn, an, sn+1)) :=∑n
k=1 ρ

(k)(q
(k)
n−1, L(sn, an, sn+1)). Finally, the desired

result is obtained by observing that ρ(k)(q, σ)(s, a, s′) :=

rk · 1(δ(k)(q, σ) ∈ F (k)), and q(k)n ∈ F (k) iff τ |=L ϕk. �

Theorem 2 Let R = {(r1 : ϕ1), . . . , (rn : ϕn)} be a reward
specification, where for 1 ≤ i ≤ n, ϕi can be transformed
into a DFA with mi states. An RM MR = 〈Q, q0,Σ,R, δ, ρ〉
that induces the same non-Markovian reward function as R
can be constructed such that:
• Q has no more than m1 × · · · ×mn states
• R has no more than 2n reward functions

Proof sketch. It follows from the construction of MR and
Theorem 1. �

6 Using QRM with Reward Shaping
Reinforcement learning algorithms typically treat the reward
function as a black box that returns a scalar reward given a

state or state-action pair. Representing a reward function as
a reward machine exposes the reward function structure in a
normal form, allowing for general learning algorithms that
tailor to the problem-specific reward function. With auto-
mated translation of a multitude of specification languages to
the RM normal form, it allows for specification in any of these
languages while benefiting from powerful reward-function-
tailored learning techniques.

In previous work, Toro Icarte et al. [2018a] proposed an
algorithm for reward-function-tailored q-learning with LTL
specifications of reward functions, called LPOPL. They sub-
sequently developed QRM, a q-learning algorithm tailored
to RM specifications of reward functions [Toro Icarte et al.,
2018b]. In both cases, reward-function-tailored q-learning
significantly outperformed state-of-the-art (deep) q-learning
algorithms while preserving convergence guarantees. In this
section, we review QRM and propose a means of further ex-
ploiting the RM normal form structure via reward shaping.
We show experimentally that reward shaping can be effec-
tively combined with QRM.

Q-Learning for RMs (QRM) was introduced as a way to
decompose and exploit a reward machine [Toro Icarte et al.,
2018b]. QRM learns one q-function q̃i(s, a) per RM state qi.
Then, given any experience (s, a, s′), the RM is used to com-
pute the reward ri = ρ(qi, L(s, a, s′)) that the agent would
receive for this experience, if it occurred while the RM was
in state qi. The next state in the reward machine can also
be computed as qj = δ(qi, L(s, a, s′)). This gives us all the
information needed to perform a q-update for q̃i(s, a):

q̃i(s, a)
α←− ri + γmax

a′
q̃j(s

′, a′) (1)

for all qi ∈ Q simultaneously. The resulting method is guar-
anteed to converge to an optimal solution in the tabular case.

We propose to augment QRM with reward shaping [Ng et
al., 1999] over the RM. The intuition behind reward shaping
is that some reward functions are easier to learn policies for
than others, even if those functions have the same optimal
policy. To that end, Ng et al. [1999] proved that given any
MDP M = 〈S,A, s0, T, r, γ〉 and function Φ : S → R,
changing the reward function ofM to

r′(s, a, s′) = r(s, a, s′) + γΦ(s′)− Φ(s) (2)
will not change the set of optimal policies. Thus, if we find
a function Φ – referred to as a potential function – that also
allows us to learn optimal policies more quickly, we are guar-
anteed that the found policies are still optimal with respect to
the original reward function.

In previous work, Camacho et al. [2017; 2018] proposed
reward shaping over automata in service of finding a pol-
icy for a fully specified MDP with LTL-specified reward
function. The potential functions considered took the form
Φ(s, q), where s is the MDP state and q is the state in a DFA
representation of the LTL formula. They proposed several
methods for extracting potential functions from a DFA. One
such function was based on the minimum number of transi-
tions between q and any accepting state of the automata.

6.1 Reward Shaping with Value Iteration
The construction of RMs from a DFA presented in Section 5.3
suggests that potential functions could similarly be extracted



Algorithm 1 Value Iteration for Automatic Reward Shaping

Input: Q, δ, ρ, γ
for qi ∈ Q do
v(qi)← 0 {initializing v-values}

e← 1
while e > 0 do
e← 0
for qi ∈ Q do
v′ ← maxδ(qi,σ)=qj ρ(qi, σ) + γv(qj)
e = max{e, |v(qi)− v′|}
v(qi)← v′

return v

from a reward machine. In this section, we consider the use
of value iteration over the RM states as a way to compute a
potential function. Intuitively, the idea is to approximate the
cumulative discounted reward of being in any RM state by
treating the RM itself as an MDP.

Formally, given RM 〈Q, q0,Σ,R, δ, ρ〉, we construct MDP
M = 〈S,A, ∅, T, r, γ〉, where S = Q, A = 2P , T (q′|q, σ) =
1 if q′ = δ(q, σ) (zero otherwise), r(q, σ, q′) = ρ(q, σ), and
γ < 1. Intuitively, this is a MDP where every transition in
the RM corresponds to a deterministic action with the same
reward. We note thatM has no start state, since we have to
compute the value of being in every state inMwhen using an
optimal policy. That is, we compute v∗(q) = maxσ q

∗(q, σ)
where q∗ is the optimal q-function and q is a state ofM. We
do so using the well-known value iteration algorithm. The
overall process of computing v∗ using value iteration given
Q, δ, ρ, and γ, is shown in Algorithm 1.

Once we have computed v∗, we then define the potential
function as Φ(s, q) = −v∗(q) for every environment state
s and RM state q. As we will see below, the use of negation
encourages the agent to transition towards RM states that cor-
respond to task completion. By construction, shaping using
this potential function will still guarantee we converge to the
optimal solution in the tabular case.

To make this approach more clear, consider an example
task in what we refer to as the office world environment. In
this grid world, the agent can move in the four cardinal direc-
tions. At certain locations, the agent can find coffee, mail, an
office, and decorations. The task for this example is to bring
the coffee (represented by proposition K), to the office (rep-
resented by proposition o), without stepping on any locations
with decorations (represented by proposition [). This task
can be written using the LTLf formula ϕ = �(¬[) ∧ ♦(K ∧
♦(o)) ∧�(K→ �(o↔ final)). That is, the agent should

always avoid the decorations, eventually get the coffee and
then eventually reach the office, and – any point after getting
coffee – only reach the office at the final time (the last point
is to ensure that the agent doesn’t get rewarded a second time
for being in the office after getting the coffee). The same
behaviour can be captured in PLTL with the formula ϕ′ =
(¬[) ∧ o ∧ ((K)) ∧ (o→ (start ∨ ¬(K))).
That is, the agent should have avoided the decorations at all
times, be at the office, have been at the coffee, and (so reward
is only given once) at any prior time when the agent was at

−0.9 −1.0

0.0

0.0
〈K ∧ ¬[, 0+0〉

〈¬K ∧ ¬[, 0+0.09〉

〈[, 0+0.9〉

〈o ∧ ¬[, 1+1〉

〈¬o ∧ ¬[, 0+0.1〉

〈[, 0+1〉

〈true, 0+0〉
〈true, 0+0〉

Figure 2: Reward shaping example with γ = 0.9.

the office it should not have earlier got the coffee.
Figure 2 shows an RM with the reward specification R =

{(1 : ϕ)} that gives a reward of 1 to the agent for satisfying
the task ϕ. Nodes represent RM states, and each transition is
labelled by a pair 〈c, r + rs〉, where c is a logical condition
to transition between the states, r is the reward that the agent
receives for the transition according to R, and rs is reward
shaping applied to that transition. Applying our value itera-
tion approach with γ = 0.9 gives the RM states the poten-
tial values indicated within each node. The reward shaping
for each transition is calculated using equation (2). Notice
that with reward shaping the agent is given positive reward
for stepping on a decoration (i.e., transitioning to the bottom
node). However, it only gets immediate reward, and is then
unable to get further reward. In contrast, the agent can ac-
cumulate reward by avoiding the decorations. Moreover, the
reward for completing the task (i.e., reaching the right-most
node) is increased by reward shaping, thus ensuring that the
optimal policy still completes the task as quickly as possible.

6.2 Experiments with RM-Based Reward Shaping
We tested the effectiveness of reward shaping using value it-
eration over a reward machine. In particular, we evaluated
three approaches: a q-learning agent which takes the environ-
ment state and the current RM state as input, a QRM-based
agent, and a QRM-based agent that uses reward shaping. We
experimented using the same three environments, tasks, and
reward machine specifications as Toro Icarte et al. [2018b].
We also used the same network architecture and setup when
using Deep RL methods. Code used is publicly available.3

Our evaluation is in the multi-task setting, meaning that
for each test environment, the agent is given a set of tasks to
solve. For all tasks, the agent gets a reward of 1 only upon
the task’s completion, and receives a reward of 0 on all other
steps. During experiments on an environment, we alternate
between the tasks on an episode-by-episode basis.

The q-learning agent learns a separate q-function for each
task. In contrast, QRM can exploit the RMs for the different
tasks in the multi-task setting by updating the q-functions for
all the states of all the RMs, not just the states of the current
task’s RM [Toro Icarte et al., 2018b]. To do so, the RMs
are used to simulate the state transition and reward seen for
experience (s, a, s′) from every state in every RM. We can
then update the q-function for each of these RM states, as
done using equation 1 in the case of a single RM.

3https://bitbucket.org/RToroIcarte/qrm

https://bitbucket.org/RToroIcarte/qrm


Experiments involved 3 test environments. The first was
the office world described above. For this environment, we
used four tasks including delivering the coffee and/or mail,
and patrolling between several locations. In all tasks, the
agent had to avoid stepping on the decorations.

The second environment was the Minecraft domain de-
scribed above. In this grid world domain, the agent can move
in the cardinal directions and pick up different raw materials
in order to build objects. For our tests, we used variants of the
ten object building tasks introduced by Andreas et al. [2017],
with any unnecessary strict ordering of subtasks removed.

The third environment was a variant of the continuous Wa-
terWorld domain [Karpathy, 2015]. Here, the agent moves
around a continuous two-dimensional box, by changing its
velocity in one of the four cardinal directions on every step.
Different coloured balls are also moving around the environ-
ment. The ten tasks used all corresponded to touching dif-
ferent coloured balls, sometimes in a specific sequence. The
environment is fully observable, unlike the original.

The results are shown in Figure 3. For these experiments,
we used a discount factor γ of 0.9 and an exploration con-
stant ε of 0.1. For the two grid world environments, we used
a step size α of 1. In the WaterWorld, the step size was set
to 0.00001. Each method was also run 30 times per envi-
ronment. In the grid world environments, we used tabular
RL, while we used neural networks to approximate the q-
functions in the WaterWorld domain. To generate the charts,
we paused the learning procedure every 100 steps for the grid
worlds and every 1, 000 steps for the WaterWorld, and then
tested the effectiveness of the current policy on every task.
The plot shows the average performance over the 30 runs –
as well as the 25th and 75th percentile – after having nor-
malized the reward per task using the maximum discounted
reward possible on that task. For example, an average value
of 1 means that the agent has learned to perform optimally on
all tasks in that environment over all 30 runs.

Figure 3 illustrates the powerful advantage that QRM-
based approaches have over standard q-learning, as first ob-
served by Toro Icarte et al. [2018b]. It further shows that
combining reward shaping with QRM (denoted by “QRM +
RS”) leads to significant improvements in two of the three
domains. We reiterate that this improvement is achieved with
a simple, completely automatic preprocessing step that mod-
ifies the reward function while still maintaining optimality.
We find it interesting that reward shaping did not help in the
WaterWorld environment, the only domain in which we used
deep RL. This counter-intuitive result opens possibilities for
future research. Finally, our results encourage exploration of
other learning algorithms that exploit the structure exposed
by RMs (or other normal form representations).

7 Concluding Remarks
We examined two important challenges of Reinforcement
Learning: (i) the difficulty of reward specification, and (ii)
sample efficiency. We proposed the use of Reward Machines
(RMs) as a normal form to represent reward functions and as a
lingua franca for reward functions initially specified in other
languages. We provided a formal characterization of RMs
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Figure 3: Results on two tabular and one deep learning domain.

in terms of Mealy machines and noted the association with
automata, thereby providing a means to translate a diversity
of goal and temporal property specification languages, aug-
mented with scalar rewards, to RMs. Finally, we presented
an algorithm to realize the translation between automata and
RMs, providing a link to a tool under development for auto-
matically generating RMs from various formal languages.

RMs expose the structure of the reward function to the
learning agent, which when used in conjunction with RM-
customized q-learning, results in a marked improvement in
sample efficiency, and thus in faster realization of high-
quality policies. The translation of all these formal languages
to RMs obviates the need for numerous tailored q-learning
algorithms, while supporting reward specification in a di-
versity of compelling languages. We proposed the use of
reward shaping to enhance existing RM-tailored q-learning
by computing a potential function that approximates the ex-
pected cumulative discounted reward based on the RM struc-
ture. A link to the code used for experimenting with this
method has been provided. Results were impressive in the
tabular case, significantly outperforming QRM, the incum-
bent RM-tailored q-learning algorithm. In the Deep learn-
ing case, the use of reward shaping showed no added benefit
over this already highly effective RM-tailored q-learning al-
gorithm, though further investigation is needed.

Formal languages present important advantages over tradi-
tional programming languages used for reward specification:
they are compositional, some are declarative, and many sup-
port easy specification of temporally extended behavior. Our
methods enable the use of a myriad of different languages
to specify reward, while enjoying the advantage of reward-
function-tailored q-learning.
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