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Abstract. Reward Machines (RMs) provide a structured, automata-based representation of a reward function that enables a Reinforcement Learning (RL) agent to decompose an RL problem into structured subproblems that can be efficiently learned via off-policy learning. Here we show that RMs can be learned from experience,
instead of being specified by the user, and that the resulting problem decomposition can be used to effectively solve partially observable RL problems. We pose the task of learning RMs as a discrete optimization problem where the objective is to find an RM that decomposes the problem into a set of subproblems such that the
combination of their optimal memoryless policies is an optimal policy for the original problem. We show the effectiveness of this approach on three partially observable domains, where it significantly outperforms A3C, PPO, and ACER, and discuss its advantages, limitations, and broader potential.

Partially Observable RL
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Solving this problem

requires memory!
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Reward Machines (RMs)

are discrete memories!
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It is a perfect memory!

Hard problem
RM−→ Easy problem

Our Approach (LRM)

Collect

Traces

(many traces!)

Optimization

Model

Tabu

Search

Proposed

RM

u0

u1 u2

〈o/w, 0〉

〈o/w, 0〉 〈o/w, 0〉

〈 , 0〉

〈 , 0〉;
〈 , 0〉

〈 , 1〉〈 , 1〉
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1) DDQN

2) DQRM

(Add extra traces if the RM is imperfect)

Results
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Summary ⇑ / ⇓Details

Reward Machines (RMs)

RMs are automata-based representations of a reward function

that allow RL agents to learn policies faster [1].
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Q-Learning for Reward Machines (QRM)
• Learn one policy (q-function) per state in the RM.

• Select actions using the policy of the current RM state.

• Reuse experience to update all the q-values at the same time.
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Q-updates

q0(s , a )
α←− 0+γmaxa ′q0(s ′, a ′)

q1(s , a )
α←− 0+γmaxa ′q1(s ′, a ′)

q2(s , a )
α←− 0+γmaxa ′q2(s ′, a ′)

q3(s , a )
α←− 1+γmaxa ′q0(s ′, a ′)

RMs in Previous Work
• RMs were specified by the user (directly [1] or via LTL [2]).

• QRM did not work under partial observability.

Our 2018 RM Results
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Legend: DQRM DHRL-RM DHRL DDQN

Main Contributions

1. First approach for learning RMs from experience.

2. Extended RMs and QRM to work under partial observability.

3. Developed a theory for 1 and 2.

RMs under Partial Observability

RMs are defined over a set of propositional symbols P that corre-

spond to high-level events (e.g., P = { , , , , , , }) that the

agent can detect using a labelling function L : O ×A×O → 2P .

Def. A Reward Machine is a tuple RP = 〈U , u0,δu ,δr 〉 where U

is a finite set of states, u0 ∈ U is an initial state, δu is the state-

transition function, δu : U × 2P → U , and δr is the reward-

transition function, δr : U ×2P→R.

Perfect Reward Machines
Perfect RMs make the environment Markovian w.r.t. O ×U , i.e.:

Pr(ot+1, rt+1|o0, a0, . . . , ot , at ) = Pr(ot+1, rt+1|ot , ut , at )

for every possible trace o0, a0, . . . , ot , at generated by any policy.

Properties: Given an environment E : (i) If the set of belief states

of E is finite, then there exists a perfect RM for E , and (ii) Optimal

policies over O ×U for perfect RMs are also optimal for E .

Optimization Model

Inputs:

1. A set of traces: T = {T0, . . . ,Tn}where each trace Ti is:

Ti = (oi ,0, ai ,0, ri ,0, . . . , ai ,ti−1, ri ,ti−1, oi ,ti
).

2. A labelling function L : O ×A×O → 2P .

Model:

minimize
〈U ,u0,δu ,δr 〉

∑

i∈I

∑

t ∈Ti

log(|Nxi ,t ,L (ei ,t )|) (LRM)

s .t . 〈U , u0,δu ,δr 〉 ∈RP (1)

|U | ≤ umax (2)

xi ,t ∈U ∀i ∈ I , t ∈ Ti ∪{ti} (3)

xi ,0= u0 ∀i ∈ I (4)

xi ,t+1=δu(xi ,t , L (ei ,t+1)) ∀i ∈ I , t ∈ Ti (5)

Nu ,l ⊆ 22P ∀u ∈U , l ∈ 2P (6)

L (ei ,t+1) ∈Nxi ,t ,L (ei ,t ) ∀i ∈ I , t ∈ Ti (7)

Outputs:

1. A Reward Machine: 〈U , u0,δu ,δr 〉 ∈RP .

2. A set of possible next high-level observations Nxi ,t ,L (ei ,t ).

Theorem (necessary conditions):

When T →∞, any perfect RM is an optimal solution of LRM.

Tabu Search

Space of all feasible RP

Experimental Remarks

• The binary classifiers were used by all the approaches.

• LRM works because Tabu search finds high-quality RMs.

• DQRM pays off in domains with sparse rewards.

• Code: bitbucket.org/RToroIcarte/lrm.
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