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Abstract. This paper examines the problem of how to teach multiple tasks to a Reinforcement Learning (RL) agent. To this end, we use Linear Temporal Logic (LTL) as a language for specifying

multiple tasks in a manner that supports the composition of learned skills. We also propose a novel algorithm that exploits LTL progression and off-policy RL to speed up learning without

compromising convergence guarantees, and show that our method outperforms the state-of-the-art approach on randomly generated Minecraft-like grids.

Running Example

Luigi can collect raw materials:

wood grass iron gold gems

... and make new objects in:

factory toolshed workbench

E.g., make a bridge: get wood, get iron, and use the factory

Motivation

How do you describe a task to an RL agent?

Task specification 6= Reward function

Language→ Reward function

Why would we want such a language?

To define new task faster.

To transfer learning between tasks.

We use Linear Temporal Logic (LTL) to specify tasks and

LPOPL to transfer learning between multiple tasks.

Related Work

Exemplar task HER [2] Sketches [1] LPOPL

get wood 3 3 3

get wood and then use the factory 3 3

get wood or iron 3

get grass and iron 3

do not leave the shelter at night 3

Off-policy learning 3 3

Task decomposition 3 3

Previous works using variants of LTL in RL (e.g. [4, 5, 3])
do not exploit task decomposition or off-policy RL.

Specifying Tasks in LTL

Given a set of high-level events P that the RL agent can de-

tect, such as

P = {got_wood, got_iron, got_grass, used_workbench,

used_factory, is_night, at_shelter, ...},

we can use LTL to define tasks by composing occurrences of

events inP . LTL augments propositional logic with tempo-

ral operators© (next), ◊ (eventually), and U (until):

ϕ ::= p | ¬ϕ |ϕ1∧ϕ2 | ©ϕ |◊ϕ |ϕ1 Uϕ2 with p ∈P

Examples:

• eventually got_wood
• eventually (got_grass and eventually used_factory)

• eventually got_wood or eventually got_iron
• eventually got_grass and eventually got_iron
• (is_night→at_shelter) until got_wood

From LTL formulae to rewards

LTL formulas can be progressed as the agent accomplishes

part of them. We reward the agent when it finishes the task.

Given an LTL formula ϕ and state s , we can progress ϕ using s :

• prog(s , p ) = true if p ∈ L (s ), where p ∈P
• prog(s , p ) = false if p 6∈ L (s ), where p ∈P
• prog(s ,¬ϕ) =¬prog(s ,ϕ)

• prog(s ,ϕ1∧ϕ2) = prog(s ,ϕ1)∧prog(s ,ϕ2)

• prog(s ,©ϕ) =ϕ
• prog(s ,◊ϕ) = prog(s ,ϕ)∨◊ϕ
• prog(s ,ϕ1 Uϕ2) = prog(s ,ϕ2)∨ (prog(s ,ϕ1)∧ϕ1 Uϕ2)

Example:

ϕ1= ◊(got_iron∧◊used_factory)
∧◊got_gold

ϕ2= ◊used_factory∧◊got_gold
ϕ3= ◊used_factory
ϕ4= true (+1 reward)

Off-Policy Learning with LTL

Suppose Luigi has to learn two tasks:

ϕ1= eventually (got_iron and eventually used_factory)
and eventually got_gold

ϕ2= eventually ([got_grass or got_wood] and

eventually used_factory)

Then, all the experience collected while learning to solve ϕ1

can also be used to learn a policy for ϕ2 using off-policy RL.

LPOPL Overview
Step 1: Decompose tasks into subtasks with LTL progression.

ϕ1= eventually (got_iron and eventually used_factory)
and eventually got_gold

ϕ2= eventually ([got_grass or got_wood] and

eventually used_factory)
ϕ3= eventually (got_iron and eventually used_factory)
ϕ4= eventually used_factory and eventually got_gold
ϕ5= eventually used_factory
ϕ6= eventually got_gold
ϕ7= true

Step 2: Learn one policy per subtask with off-policy learning.

Standard q-learning update given experience (s , a , r, s ′):

Q (s , a )
α←− r +γmax

a ′
Q (s ′, a ′)

LPOPL update using q-learning given experience (s , a , s ′):

Qϕ(s , a )
α←− rϕ+γmax

a ′
Qϕ′(s

′, a ′)

where ϕ′= prog(s ′,ϕ) and rϕ = 1 iff ϕ 6=ϕ′= true.

Qϕ1
(s , a )

α←− γmaxa ′Qϕ3
(s ′, a ′)

Qϕ2
(s , a )

α←− γmaxa ′Qϕ2
(s ′, a ′)

Qϕ3
(s , a )

α←− γmaxa ′Qϕ3
(s ′, a ′)

Qϕ4
(s , a )

α←− γmaxa ′Qϕ5
(s ′, a ′)

Qϕ5
(s , a )

α←− γmaxa ′Qϕ5
(s ′, a ′)

Qϕ6
(s , a )

α←− 1

Theorem: LPOPL using tabular q-learning converges to an

optimal policy.

Experiments

Goals: study LPOPL + DQN; compare with standard RL and

with alternative decomposition methods

Baselines
DQN-L

a0 a1 a2 a3

DQN

LTL task

HRL-E

π0 π1 π2 π3 π4 π5 π6 π7

Meta-Controller

LTL task

HRL-L

π0 π1 π2 π3 π4 π5 π6 π7

Meta-Controller

LTL task

◊got_wood∨◊got_gold

Note: Hierarchical methods may find suboptimal policies.

Results
The first experiment considers 10 tasks defined as sequences

of subgoals (Andreas et al., 2017), e.g., get iron, then get

wood, then use factory. The later experiments take advan-

tage of the expressiveness of LTL to describe partially ordered

tasks and safety constraints.

Experiment 1: Sequences of subtasks
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Experiment 2: Interleaving subtasks
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Experiment 3: Safety constraints
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Legend: DQN-L HRL-E HRL-L LPOPL

Conclusion

• LPOPL takes tasks defined with LTL, decomposes them

using LTL progression, and learns the subtasks

• LPOPL outperformed DQN and HRL over various tasks

• code at https://bitbucket.org/RToroIcarte/lpopl
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