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Motivation

How can we instruct RL agents?
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Running example

Luigi can collect raw materials:

wood grass iron gold gems

... and make new objects in:

factory toolshed workbench

Make a bridge: get wood, iron, and use the factory
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Running example

Task type Example

Single goal get wood
Sequence of goals get wood and then use the factory
Disjunctive goals get wood or iron
Conjunctive goals get grass and iron
Safety constraints do not leave the shelter at night

How can we instruct RL agents?
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Motivation

Question: How can we instruct RL agents?
Proposal: Let’s use language to describe tasks!

Desirable properties:

It is expressive.

RL agents understand it:

Task description → Reward function.
Task description → Learn faster.

Humans understand it.
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Related work

Hindsight Experience Replay by Andrychowicz et al. (NIPS-17)

Language: Single goal condition
Advantage: Learn to achieve goals in parallel (off-policy RL)

Task HER

Sketches LTL

get wood 3

3 3

get wood and then use the factory

3 3

get wood or iron

3

get grass and iron

3

do not leave the shelter at night

3

Off-policy learning 3

3

Task decomposition 3 3
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Related work

Modular Multitask RL with Policy Sketches by Andreas et al. (ICML-17)

Language: Sequence of sub-goals (called sketch)
Advantage: Decompose the problem using the sketch.

Task HER Sketches

LTL

get wood 3 3

3

get wood and then use the factory 3

3

get wood or iron

3

get grass and iron

3

do not leave the shelter at night

3

Off-policy learning 3

3

Task decomposition 3

3
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Related work

Teaching Multiple Tasks to an RL Agent using LTL

Language: Linear Temporal Logic (LTL)
Advantage: Decompose and use off-policy RL to learn subtasks.

Task HER Sketches LTL

get wood 3 3 3

get wood and then use the factory 3 3

get wood or iron 3

get grass and iron 3

do not leave the shelter at night 3

Off-policy learning 3 3

Task decomposition 3 3
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Defining tasks using LTL

Idea: Let’s give the RL agent a set of high-level event detectors.

Example

P = {got wood, got iron, got grass, used workbench,
used factory, is night, at shelter, ...}

Use LTL to define tasks by composing occurrences of events in P
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Defining tasks using LTL

Linear Temporal Logic (syntax)

LTL augments propositional logic with temporal operators ©
(next), ♦ (eventually), and U (until):

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | © ϕ | ♦ϕ | ϕ1 Uϕ2 with p ∈ P

Examples

♦got wood

♦(got grass ∧ ♦used factory)
♦got wood ∨ ♦got iron

♦got grass ∧ ♦got iron

(is night→ at shelter) U got wood
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Defining tasks using LTL

Linear Temporal Logic (syntax)

LTL augments propositional logic with temporal operators ©
(next), ♦ (eventually), and U (until):

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | © ϕ | ♦ϕ | ϕ1 Uϕ2 with p ∈ P

Examples

eventually got wood

eventually (got grass and eventually used factory)
eventually got wood or eventually got iron

eventually got grass and eventually got iron

(is night→at shelter) until got wood
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Example

Detected events
at shelter

ϕ = eventually(got iron and eventually used factory)
and eventually got gold
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Example

Detected events
got wood

ϕ = eventually(got iron and eventually used factory)
and eventually got gold
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Example

Detected events
got iron

ϕ = eventually used factory and eventually got gold
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LTL progression

LTL progression

Given an LTL formula ϕ and state s, we can progress ϕ using s:

prog(s, p) = true if p ∈ L(s), where p ∈ P

prog(s, p) = false if p 6∈ L(s), where p ∈ P

prog(s,¬ϕ) = ¬ prog(s, ϕ)

prog(s, ϕ1 ∧ ϕ2) = prog(s, ϕ1) ∧ prog(s, ϕ2)

prog(s,©ϕ) = ϕ

prog(s,♦ϕ) = prog(s, ϕ) ∨ ♦ϕ

prog(s, ϕ1 Uϕ2) = prog(s, ϕ2) ∨ (prog(s, ϕ1) ∧ ϕ1 Uϕ2)

This is a correct and well-defined procedure!
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Example

Detected events
got iron

ϕ = eventually used factory and eventually got gold
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Detected events
none
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Example

Detected events
got gold

ϕ = eventually used factory and eventually got gold
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Example

Detected events
none

ϕ = eventually used factory
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Example

Detected events
used factory

ϕ = eventually used factory
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Example

Detected events
used factory

ϕ = eventually used factory
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Example

Detected events
used factory

ϕ = true (+1 reward)
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Example

Detected events
used factory

LTL formulas → Rewards
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Example

Detected events
used factory

(ϕ can be learned using standard RL)
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Example

Detected events
used factory

We can do better than this!

Toro Icarte et al: Teaching Multiple Tasks to an RL Agent using LTL 13 / 25



Outline

1 Motivation

2 Related work

3 Approach:

Why (and how) we use LTL for specifying tasks in RL.
Why (and how) LPOPL speeds up learning of multiple tasks.

4 Results

5 Concluding remarks

Toro Icarte et al: Teaching Multiple Tasks to an RL Agent using LTL 14 / 25



Outline

1 Motivation

2 Related work

3 Approach:

Why (and how) we use LTL for specifying tasks in RL.
Why (and how) LPOPL speeds up learning of multiple
tasks.

4 Results

5 Concluding remarks

Toro Icarte et al: Teaching Multiple Tasks to an RL Agent using LTL 14 / 25



LPOPL: An example

Suppose Luigi has to learn two tasks:

ϕ1 = eventually(got iron and eventually used factory) and
eventually got gold

ϕ2 = eventually([got grass or got wood] and eventually
used factory)

... and begins by trying to solve ϕ1
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LPOPL: An example

Detected events
at shelter

ϕ1 = eventually(got iron and eventually used factory)
and eventually got gold

ϕ2 = eventually([got grass or got wood] and eventually
used factory)

LPOPL learns all the tasks in parallel!
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LPOPL overview

Step 1: Decompose the tasks into subtasks using LTL progression.

ϕ1 = eventually(got iron and eventually used factory)
and eventually got gold

ϕ2 = eventually([got grass or got wood]
and eventually used factory)

ϕ3 = eventually(got iron and eventually used factory)
ϕ4 = eventually used factory and eventually got gold

ϕ5 = eventually used factory

ϕ6 = eventually got gold

ϕ7 = true

Step 2: Learn one policy per subtask using off-policy learning.
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Example

Subtasks
ϕ1 = ♦(got iron ∧ ♦used factory) ∧ ♦got gold

ϕ2 = ♦([got grass ∨ got wood] ∧ ♦used factory)
ϕ3 = ♦(got iron ∧ ♦used factory)
ϕ4 = ♦used factory ∧ ♦got gold

ϕ5 = ♦used factory

ϕ6 = ♦got gold

Detected events: none

Q-updates

Qϕ1(s, a) Qϕ4(s, a)

Qϕ2(s, a) Qϕ5(s, a)

Qϕ3(s, a) Qϕ6(s, a)
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Qϕ1(s, a) Qϕ4(s, a)

Qϕ2(s, a) Qϕ5(s, a)

Qϕ3(s, a) Qϕ6(s, a)
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Q-updates
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Example

Subtasks
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ϕ2 = ♦([got grass ∨ got wood] ∧ ♦used factory)
ϕ3 = ♦(got iron ∧ ♦used factory)
ϕ4 = ♦used factory ∧ ♦got gold

ϕ5 = ♦used factory

ϕ6 = ♦got gold

Detected events: got gold

Q-updates

Qϕ1(s, a) Qϕ4(s, a)
α←−− γmaxa′ Qϕ5(s ′, a′)

Qϕ2(s, a) Qϕ5(s, a)

Qϕ3(s, a) Qϕ6(s, a)
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Example

Subtasks
ϕ1 = ♦(got iron ∧ ♦used factory) ∧ ♦got gold

ϕ2 = ♦([got grass ∨ got wood] ∧ ♦used factory)
ϕ3 = ♦(got iron ∧ ♦used factory)
ϕ4 = ♦used factory ∧ ♦got gold

ϕ5 = ♦used factory

ϕ6 = ♦got gold

Detected events: got gold

Q-updates

Qϕ1(s, a)
α←−− γmaxa′ Qϕ3(s ′, a′) Qϕ4(s, a)

α←−− γmaxa′ Qϕ5(s ′, a′)

Qϕ2(s, a)
α←−− γmaxa′ Qϕ2(s ′, a′) Qϕ5(s, a)

α←−− γmaxa′ Qϕ5(s ′, a′)

Qϕ3(s, a)
α←−− γmaxa′ Qϕ3(s ′, a′) Qϕ6(s, a)

α←−− 1
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Example

Subtasks
ϕ1 = ♦(got iron ∧ ♦used factory) ∧ ♦got gold

ϕ2 = ♦([got grass ∨ got wood] ∧ ♦used factory)
ϕ3 = ♦(got iron ∧ ♦used factory)
ϕ4 = ♦used factory ∧ ♦got gold

ϕ5 = ♦used factory

ϕ6 = ♦got gold

Detected events: got gold

Theorem

LPOPL using tabular q-learning converges to an optimal policy.
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Experiments

Goal

Study LPOPL + DQN

Compare with standard RL

Compare with alternative decomposition methods for RL

Baselines

DQN-L: Standard DQN1 (no decomposition).

HRL-E: Hierarchical Deep RL proposed by Kulkarni et al.2

HRL-L: HRL-E but exploiting LTL to prune useless options.

1Human-level control through deep reinforcement learning (Nature-15)
2HDRL: Integrating Temporal Abstraction and Intrinsic Motivation (NIPS-16)
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Experiment 1: Interleaving subtasks

Description

Tasks from (Andreas et al., 2017) w/o unneeded order constraints.
e.g. (get iron and get wood), then use factory.
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Hierarchical RL might converge to suboptimal policies
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Experiment 2: Safety constraints

Description

Same set of 10 tasks but including the safety constraint of being at
the shelter during the night.
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Concluding remarks

Question: How can we instruct RL agents?

Proposal: Define tasks using Linear Temporal Logic.

Desirable properties:

It is expressive.

RL agents understand it:

Task description → Reward function.
Task description → Learn faster.

Humans understand it.

NL → LTL by Dzifcak et al. (ICRA-09).

Code: https://bitbucket.org/RToroIcarte/lpopl
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