Teaching Multiple Tasks to a Reinforcement Learning Agent using Linear Temporal Logic (LTL)

Rodrigo Toro IcarteToryn Q. KlassenRichard ValenzanoSheila A. McIlraith

ELEMENT^{AI} V^{ector} Institute Vector

Learning by Instruction Workshop, NeurIPS 2018

1 Motivation

- 2 Related work
- 3 Approach:
 - Why (and how) we use LTL for specifying tasks in RL.
 - Why (and how) LPOPL speeds up learning of multiple tasks.
- 4 Results
- 5 Concluding remarks

1 Motivation

- 2 Related work
- 3 Approach:
 - Why (and how) we use LTL for specifying tasks in RL.
 - Why (and how) LPOPL speeds up learning of multiple tasks.
- 4 Results
- 5 Concluding remarks

How can we instruct RL agents?

Luigi can collect raw materials:

Luigi can collect raw materials:

... and make new objects in:

factory

toolshed

workbench

Luigi can collect raw materials:

factory

toolshed

workbench

Make a bridge: get wood, iron, and use the factory

Task type	Example
Single goal	get wood
Sequence of goals	get wood and then use the factory
Disjunctive goals	get wood or iron
Conjunctive goals	get grass and iron
Safety constraints	do not leave the shelter at night

Task type	Example
Single goal	get wood
Sequence of goals	get wood and then use the factory
Disjunctive goals	get wood or iron
Conjunctive goals	get grass and iron
Safety constraints	do not leave the shelter at night

How can we instruct RL agents?

Question: How can we instruct RL agents? **Proposal**: Let's use language to describe tasks!

Question: How can we instruct RL agents? **Proposal**: Let's use language to describe tasks!

Desirable properties:

- It is expressive.
- RL agents understand it:
 - $\blacksquare \ Task \ description \rightarrow Reward \ function.$
 - $\blacksquare Task description \rightarrow Learn faster.$
- Humans understand it.

1 Motivation

- 2 Related work
- 3 Approach:
 - Why (and how) we use LTL for specifying tasks in RL.
 - Why (and how) LPOPL speeds up learning of multiple tasks.
- 4 Results
- 5 Concluding remarks

1 Motivation

2 Related work

- 3 Approach:
 - Why (and how) we use LTL for specifying tasks in RL.
 - Why (and how) LPOPL speeds up learning of multiple tasks.
- 4 Results
- 5 Concluding remarks

Hindsight Experience Replay by Andrychowicz et al. (NIPS-17)

Language: Single goal condition Advantage: Learn to achieve goals in parallel (off-policy RL)

Task	HER
get wood	\checkmark
get wood and then use the factory	
get wood or iron	
get grass and iron	
do not leave the shelter at night	
Off-policy learning	\checkmark

Modular Multitask RL with Policy Sketches by Andreas et al. (ICML-17)

Language: Sequence of sub-goals (called sketch) Advantage: Decompose the problem using the sketch.

Task	HER	Sketches	
get wood	1	1	
get wood and then use the factory		1	
get wood or iron			
get grass and iron			
do not leave the shelter at night			
Off-policy learning	1		
Task decomposition		1	

Teaching Multiple Tasks to an RL Agent using LTL

Language: Linear Temporal Logic (LTL) Advantage: Decompose and use off-policy RL to learn subtasks.

Task	HER	Sketches	LTL
get wood	1	\checkmark	1
get wood and then use the factory		\checkmark	1
get wood or iron			1
get grass and iron			1
do not leave the shelter at night			1
Off-policy learning	1		\checkmark
Task decomposition		\checkmark	1

1 Motivation

2 Related work

- 3 Approach:
 - Why (and how) we use LTL for specifying tasks in RL.
 - Why (and how) LPOPL speeds up learning of multiple tasks.
- 4 Results
- 5 Concluding remarks

1 Motivation

- 2 Related work
- 3 Approach:
 - Why (and how) we use LTL for specifying tasks in RL.
 - Why (and how) LPOPL speeds up learning of multiple tasks.
- 4 Results
- 5 Concluding remarks

Idea: Let's give the RL agent a set of high-level event detectors.

Idea: Let's give the RL agent a set of high-level event detectors.

Example

 $\mathcal{P} = \{ \texttt{got_wood, got_iron, got_grass, used_workbench, used_factory, is_night, at_shelter, ...} \}$

Idea: Let's give the RL agent a set of high-level event detectors.

Example

Use LTL to define tasks by composing occurrences of events in ${\mathcal P}$

Defining tasks using LTL

Linear Temporal Logic (syntax)

LTL augments propositional logic with temporal operators \bigcirc (*next*), \Diamond (*eventually*), and U (*until*):

 $\varphi ::= p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \Diamond \varphi \mid \varphi_1 \, \mathsf{U} \, \varphi_2 \text{ with } p \in \mathcal{P}$

Defining tasks using LTL

Linear Temporal Logic (syntax)

LTL augments propositional logic with temporal operators \bigcirc (*next*), \Diamond (*eventually*), and U (*until*):

 $\varphi ::= p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \Diamond \varphi \mid \varphi_1 \, \mathsf{U} \, \varphi_2 \text{ with } p \in \mathcal{P}$

Examples

```
◊got_wood
◊(got_grass ∧ ◊used_factory)
◊got_wood ∨ ◊got_iron
◊got_grass ∧ ◊got_iron
(is_night → at_shelter) Ugot_wood
```


Defining tasks using LTL

Linear Temporal Logic (syntax)

LTL augments propositional logic with temporal operators \bigcirc (*next*), \Diamond (*eventually*), and U (*until*):

 $\varphi ::= p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \Diamond \varphi \mid \varphi_1 \, \mathsf{U} \, \varphi_2 \text{ with } p \in \mathcal{P}$

Examples

eventually got_wood eventually (got_grass and eventually used_factory) eventually got_wood or eventually got_iron eventually got_grass and eventually got_iron (is_night→at_shelter) until got_wood

at_shelter

none

none

none

got_wood

none

none

got_iron

got_iron

got_iron

$\varphi = \ensuremath{\mathsf{eventually}}\xspace$ used_factory and eventually got_gold

LTL progression

LTL progression

Given an LTL formula φ and state *s*, we can *progress* φ using *s*:

- $prog(s, p) = true \text{ if } p \in L(s)$, where $p \in \mathcal{P}$
- $prog(s, p) = false if p \notin L(s)$, where $p \in \mathcal{P}$

•
$$\operatorname{prog}(s, \neg \varphi) = \neg \operatorname{prog}(s, \varphi)$$

$$\mathsf{prog}(s,\varphi_1 \land \varphi_2) = \mathsf{prog}(s,\varphi_1) \land \mathsf{prog}(s,\varphi_2)$$

•
$$\operatorname{prog}(s, \bigcirc \varphi) = \varphi$$

•
$$\mathsf{prog}(s,\Diamond \varphi) = \mathsf{prog}(s,\varphi) \lor \Diamond \varphi$$

 $\ \ \, \operatorname{prog}(s,\varphi_1 \, {\operatorname{\mathsf{U}}}\, \varphi_2) = \operatorname{prog}(s,\varphi_2) \vee (\operatorname{prog}(s,\varphi_1) \wedge \varphi_1 \, {\operatorname{\mathsf{U}}}\, \varphi_2) \\$

LTL progression

LTL progression

Given an LTL formula φ and state *s*, we can *progress* φ using *s*:

- $prog(s, p) = true \text{ if } p \in L(s)$, where $p \in \mathcal{P}$
- $prog(s, p) = false if p \notin L(s)$, where $p \in \mathcal{P}$

•
$$\operatorname{prog}(s, \neg \varphi) = \neg \operatorname{prog}(s, \varphi)$$

•
$$\operatorname{prog}(s, \varphi_1 \land \varphi_2) = \operatorname{prog}(s, \varphi_1) \land \operatorname{prog}(s, \varphi_2)$$

•
$$\operatorname{prog}(s, \bigcirc \varphi) = \varphi$$

•
$$\operatorname{prog}(s,\Diamond\varphi) = \operatorname{prog}(s,\varphi) \lor \Diamond\varphi$$

 $\bullet \operatorname{prog}(s, \varphi_1 \cup \varphi_2) = \operatorname{prog}(s, \varphi_2) \vee (\operatorname{prog}(s, \varphi_1) \land \varphi_1 \cup \varphi_2)$

This is a correct and well-defined procedure!

got_iron

none

none

none

none

none

got_gold

got_gold

$\varphi = eventually used_factory and eventually got_gold$

got_gold

$\varphi = \textbf{eventually} \text{ used_factory}$

none

$\varphi = \textbf{eventually} \; \texttt{used_factory}$

none

$\varphi = \textbf{eventually} \; \texttt{used_factory}$

none

$\varphi = \textbf{eventually} \; \texttt{used_factory}$

used_factory

$\varphi = \textbf{eventually} \text{ used_factory}$

used_factory

$\varphi = \text{eventually } \underline{\text{used}}\underline{\text{factory}}$

used_factory

$\varphi = \mathsf{true} (+1 \mathsf{ reward})$

used_factory

LTL formulas \rightarrow Rewards

used_factory

(φ can be learned using standard RL)

used_factory

We can do better than this!

1 Motivation

- 2 Related work
- 3 Approach:
 - Why (and how) we use LTL for specifying tasks in RL.
 - Why (and how) LPOPL speeds up learning of multiple tasks.
- 4 Results
- 5 Concluding remarks

- 1 Motivation
- 2 Related work
- 3 Approach:
 - Why (and how) we use LTL for specifying tasks in RL.
 - Why (and how) LPOPL speeds up learning of multiple tasks.
- 4 Results
- 5 Concluding remarks

Suppose Luigi has to learn two tasks:

Suppose Luigi has to learn two tasks:

 $\varphi_1 = eventually(\texttt{got_iron} \text{ and } eventually \texttt{used_factory}) \text{ and } eventually \texttt{got_gold}$

 $arphi_2 = extsf{eventually}([extsf{got_grass or got_wood}] extsf{ and eventually} used_factory)$

Suppose Luigi has to learn two tasks:

 $\varphi_1 = eventually(\texttt{got_iron} \text{ and } eventually \texttt{used_factory}) \text{ and } eventually \texttt{got_gold}$

 $arphi_2 = {\sf eventually}([{\sf got_grass or got_wood}] \ {\sf and eventually} \ {\tt used_factory})$

 \ldots and begins by trying to solve φ_1

Detected events

at_shelter

$$\begin{split} \varphi_1 &= \text{eventually}(\texttt{got_iron and eventually used_factory}) \\ & \text{ and eventually got_gold} \\ \varphi_2 &= \texttt{eventually}([\texttt{got_grass or got_wood}] \text{ and eventually} \\ & \text{ used_factory}) \end{split}$$

Detected events

none

$$\begin{split} \varphi_1 &= \text{eventually}(\texttt{got_iron and eventually used_factory}) \\ & \text{ and eventually got_gold} \\ \varphi_2 &= \texttt{eventually}([\texttt{got_grass or got_wood}] \text{ and eventually} \\ & \text{ used_factory}) \end{split}$$

Detected events

none

$$\begin{split} \varphi_1 &= \text{eventually}(\texttt{got_iron} \text{ and eventually used_factory}) \\ & \text{ and eventually got_gold} \\ \varphi_2 &= \text{eventually}([\texttt{got_grass or got_wood}] \text{ and eventually} \\ & \text{ used_factory}) \end{split}$$

Detected events

none

$$\begin{split} \varphi_1 &= \text{eventually}(\texttt{got_iron and eventually used_factory}) \\ & \text{ and eventually got_gold} \\ \varphi_2 &= \texttt{eventually}([\texttt{got_grass or got_wood}] \text{ and eventually} \\ & \text{ used_factory}) \end{split}$$

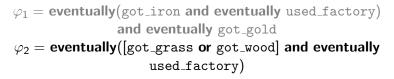
Detected events

got_wood

$$\begin{split} \varphi_1 = & \texttt{eventually}(\texttt{got_iron} \ \texttt{and} \ \texttt{eventually} \ \texttt{used_factory}) \\ & \texttt{and} \ \texttt{eventually} \ \texttt{got_gold} \\ \varphi_2 = & \texttt{eventually}([\texttt{got_grass} \ \texttt{or} \ \texttt{got_wood}] \ \texttt{and} \ \texttt{eventually} \\ & \texttt{used_factory}) \end{split}$$

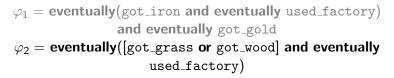
Detected events

got_wood



Detected events

got_wood



LPOPL learns all the tasks in parallel!

 $\label{eq:step1} Step \ 1: \ {\tt Decompose the tasks into subtasks using LTL progression}.$

Step 1: Decompose the tasks into subtasks using LTL progression.

 $\varphi_1 =$ eventually(got_iron and eventually used_factory) and eventually got_gold $\varphi_2 =$ eventually([got_grass or got_wood] and eventually used_factory)

Step 1: Decompose the tasks into subtasks using LTL progression.

- $\varphi_1 = eventually(got_iron and eventually used_factory)$ and eventually got_gold
- $\varphi_2 = eventually([got_grass or got_wood])$ and eventually used_factory)
- $arphi_3 = {\sf eventually}({\tt got_iron} \; {\sf and} \; {\sf eventually} \; {\tt used_factory})$
- $arphi_4 = {\sf eventually} \; {\tt used_factory} \; {\sf and} \; {\sf eventually} \; {\tt got_gold}$
- $\varphi_5 = {\it eventually} \; {\it used_factory}$
- $\varphi_6 = {\it eventually got_gold}$
- $\varphi_7 = {\sf true}$

 $\label{eq:step1} Step \ 1: \ {\tt Decompose the tasks into subtasks using LTL progression}.$

$$\begin{array}{l} \varphi_1 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \\ \land \Diamond \texttt{got_gold} \\ \varphi_2 = \Diamond ([\texttt{got_grass} \lor \texttt{got_wood}] \\ \land \Diamond \texttt{used_factory}) \\ \varphi_3 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \\ \varphi_4 = \Diamond \texttt{used_factory} \land \Diamond \texttt{got_gold} \\ \varphi_5 = \Diamond \texttt{used_factory} \\ \varphi_6 = \Diamond \texttt{got_gold} \\ \varphi_7 = \texttt{true} \end{array}$$

Step 1: Decompose the tasks into subtasks using LTL progression.

$$\begin{array}{l} \varphi_1 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \\ \land \Diamond \texttt{got_gold} \\ \varphi_2 = \Diamond ([\texttt{got_grass} \lor \texttt{got_wood}] \\ \land \Diamond \texttt{used_factory}) \\ \varphi_3 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \\ \varphi_4 = \Diamond \texttt{used_factory} \land \Diamond \texttt{got_gold} \\ \varphi_5 = \Diamond \texttt{used_factory} \\ \varphi_6 = \Diamond \texttt{got_gold} \\ \varphi_7 = \texttt{true} \end{array}$$

Step 2: Learn one policy per subtask using off-policy learning.

Subtasks

 $\begin{array}{l} \varphi_1 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \land \Diamond \texttt{got_gold} \\ \varphi_2 = \Diamond ([\texttt{got_grass} \lor \texttt{got_wood}] \land \Diamond \texttt{used_factory}) \\ \varphi_3 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \\ \varphi_4 = \Diamond \texttt{used_factory} \land \Diamond \texttt{got_gold} \\ \varphi_5 = \Diamond \texttt{used_factory} \\ \varphi_6 = \Diamond \texttt{got_gold} \end{array}$

Detected events: none

Subtasks

 $\begin{array}{l} \varphi_1 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \land \Diamond \texttt{got_gold} \\ \varphi_2 = \Diamond ([\texttt{got_grass} \lor \texttt{got_wood}] \land \Diamond \texttt{used_factory}) \\ \varphi_3 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \\ \varphi_4 = \Diamond \texttt{used_factory} \land \Diamond \texttt{got_gold} \\ \varphi_5 = \Diamond \texttt{used_factory} \\ \varphi_6 = \Diamond \texttt{got_gold} \end{array}$

Detected events: none

$Q_{arphi_1}(s,a)$	$Q_{arphi_4}(s,a)$
$Q_{arphi_2}(s,a)$	$Q_{arphi_5}(s,a)$
$Q_{arphi_3}(s,a)$	$Q_{arphi_6}(s,a)$

Subtasks

 $\begin{array}{l} \varphi_1 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \land \Diamond \texttt{got_gold} \\ \varphi_2 = \Diamond ([\texttt{got_grass} \lor \texttt{got_wood}] \land \Diamond \texttt{used_factory}) \\ \varphi_3 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \\ \varphi_4 = \Diamond \texttt{used_factory} \land \Diamond \texttt{got_gold} \\ \varphi_5 = \Diamond \texttt{used_factory} \\ \varphi_6 = \Diamond \texttt{got_gold} \end{array}$

Detected events: none

$Q_{\varphi_1}(s,a)$
$Q_{\varphi_2}(s,a)$
$Q_{\varphi_3}(s,a)$

$$egin{aligned} Q_{arphi_4}(s,a)\ Q_{arphi_5}(s,a)\ Q_{arphi_6}(s,a) \end{aligned}$$

Subtasks

 $\begin{array}{l} \varphi_1 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \land \Diamond \texttt{got_gold} \\ \varphi_2 = \Diamond ([\texttt{got_grass} \lor \texttt{got_wood}] \land \Diamond \texttt{used_factory}) \\ \varphi_3 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \\ \varphi_4 = \Diamond \texttt{used_factory} \land \Diamond \texttt{got_gold} \\ \varphi_5 = \Diamond \texttt{used_factory} \\ \varphi_6 = \Diamond \texttt{got_gold} \end{array}$

Detected events: got_gold

$Q_{\varphi_1}(s,a)$
$Q_{\varphi_2}(s,a)$
$Q_{\varphi_3}(s,a)$

$$egin{aligned} Q_{arphi_4}(s,a)\ Q_{arphi_5}(s,a)\ Q_{arphi_6}(s,a) \end{aligned}$$

Subtasks

 $\begin{array}{l} \varphi_1 = \diamondsuit(\texttt{got_iron} \land \diamondsuit\texttt{used_factory}) \land \diamondsuit\texttt{got_gold} \\ \varphi_2 = \diamondsuit(\texttt{[got_grass} \lor \texttt{got_wood}] \land \diamondsuit\texttt{used_factory}) \\ \varphi_3 = \diamondsuit(\texttt{got_iron} \land \diamondsuit\texttt{used_factory}) \\ \varphi_4 = \diamondsuit\texttt{used_factory} \land \diamondsuit\texttt{got_gold} \\ \varphi_5 = \diamondsuit\texttt{used_factory} \\ \varphi_6 = \diamondsuit\texttt{got_gold} \end{array}$

Detected events: got_gold

$Q_{\varphi_1}(s,a)$
$Q_{\varphi_2}(s,a)$
$Q_{\varphi_3}(s,a)$

$$egin{aligned} Q_{arphi_4}(s,a)\ Q_{arphi_5}(s,a)\ Q_{arphi_6}(s,a) \end{aligned}$$

Subtasks

 $\begin{array}{l} \varphi_1 = \diamondsuit(\texttt{got_iron} \land \diamondsuit\texttt{used_factory}) \land \diamondsuit\texttt{got_gold} \\ \varphi_2 = \diamondsuit(\texttt{[got_grass} \lor \texttt{got_wood}] \land \diamondsuit\texttt{used_factory}) \\ \varphi_3 = \diamondsuit(\texttt{got_iron} \land \diamondsuit\texttt{used_factory}) \\ \varphi_4 = \diamondsuit\texttt{used_factory} \land \diamondsuit\texttt{got_gold} \\ \varphi_5 = \diamondsuit\texttt{used_factory} \\ \varphi_6 = \diamondsuit\texttt{got_gold} \end{array}$

Detected events: got_gold

$Q_{\varphi_1}(s,a)$	
$Q_{\varphi_2}(s,a)$	
$Q_{\varphi_3}(s,a)$	

$$egin{aligned} Q_{arphi_4}(s,a)\ Q_{arphi_5}(s,a)\ Q_{arphi_6}(s,a) \end{aligned}$$

 $\begin{array}{l} \varphi_1 = \diamondsuit(\texttt{got_iron} \land \diamondsuit\texttt{used_factory}) \land \diamondsuit\texttt{got_gold} \\ \varphi_2 = \diamondsuit(\texttt{[got_grass} \lor \texttt{got_wood}] \land \diamondsuit\texttt{used_factory}) \\ \varphi_3 = \diamondsuit(\texttt{got_iron} \land \diamondsuit\texttt{used_factory}) \\ \varphi_4 = \diamondsuit\texttt{used_factory} \land \diamondsuit\texttt{got_gold} \\ \varphi_5 = \diamondsuit\texttt{used_factory} \\ \varphi_6 = \diamondsuit\texttt{got_gold} \end{array}$

Detected events: got_gold

$Q_{\varphi_1}(s,a)$	
$Q_{\varphi_2}(s,a)$	
$Q_{\varphi_3}(s,a)$	

$$egin{aligned} Q_{arphi_4}(s,a) & \xleftarrow{lpha} \gamma \max_{a'} Q_{arphi_5}(s',a') \ Q_{arphi_5}(s,a) \ Q_{arphi_6}(s,a) \end{aligned}$$

 $\begin{array}{l} \varphi_1 = \diamondsuit(\texttt{got_iron} \land \diamondsuit\texttt{used_factory}) \land \diamondsuit\texttt{got_gold} \\ \varphi_2 = \diamondsuit(\texttt{[got_grass} \lor \texttt{got_wood}] \land \diamondsuit\texttt{used_factory}) \\ \varphi_3 = \diamondsuit(\texttt{got_iron} \land \diamondsuit\texttt{used_factory}) \\ \varphi_4 = \diamondsuit\texttt{used_factory} \land \diamondsuit\texttt{got_gold} \\ \varphi_5 = \diamondsuit\texttt{used_factory} \\ \varphi_6 = \diamondsuit\texttt{got_gold} \end{array}$

Detected events: got_gold

$Q_{\varphi_1}(s,a)$	
$Q_{\varphi_2}(s,a)$	
$Q_{\varphi_3}(s,a)$	

$$egin{aligned} & Q_{arphi_4}(s,a) \xleftarrow{lpha} \gamma \max_{a'} Q_{arphi_5}(s',a') \ & Q_{arphi_5}(s,a) \ & Q_{arphi_6}(s,a) \end{aligned}$$

 $\begin{array}{l} \varphi_1 = \diamondsuit(\texttt{got_iron} \land \diamondsuit\texttt{used_factory}) \land \diamondsuit\texttt{got_gold} \\ \varphi_2 = \diamondsuit(\texttt{[got_grass} \lor \texttt{got_wood}] \land \diamondsuit\texttt{used_factory}) \\ \varphi_3 = \diamondsuit(\texttt{got_iron} \land \diamondsuit\texttt{used_factory}) \\ \varphi_4 = \diamondsuit\texttt{used_factory} \land \diamondsuit\texttt{got_gold} \\ \varphi_5 = \diamondsuit\texttt{used_factory} \\ \varphi_6 = \diamondsuit\texttt{got_gold} \end{array}$

Detected events: got_gold

$Q_{\varphi_1}(s,a)$	
$Q_{\varphi_2}(s,a)$	
$Q_{\varphi_3}(s,a)$	

$$egin{aligned} & Q_{arphi_4}(s,a) \xleftarrow{lpha} \gamma \max_{a'} Q_{arphi_5}(s',a') \ & Q_{arphi_5}(s,a) \ & Q_{arphi_6}(s,a) \xleftarrow{lpha} 1 \end{aligned}$$

 $\begin{array}{l} \varphi_1 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \land \Diamond \texttt{got_gold} \\ \varphi_2 = \Diamond ([\texttt{got_grass} \lor \texttt{got_wood}] \land \Diamond \texttt{used_factory}) \\ \varphi_3 = \Diamond (\texttt{got_iron} \land \Diamond \texttt{used_factory}) \\ \varphi_4 = \Diamond \texttt{used_factory} \land \Diamond \texttt{got_gold} \\ \varphi_5 = \Diamond \texttt{used_factory} \\ \varphi_6 = \Diamond \texttt{got_gold} \end{array}$

Detected events: got_gold

$$\begin{array}{ll} Q_{\varphi_{1}}(s,a) \xleftarrow{\alpha} \gamma \max_{a'} Q_{\varphi_{3}}(s',a') & Q_{\varphi_{4}}(s,a) \xleftarrow{\alpha} \gamma \max_{a'} Q_{\varphi_{5}}(s',a') \\ Q_{\varphi_{2}}(s,a) \xleftarrow{\alpha} \gamma \max_{a'} Q_{\varphi_{2}}(s',a') & Q_{\varphi_{5}}(s,a) \xleftarrow{\alpha} \gamma \max_{a'} Q_{\varphi_{5}}(s',a') \\ Q_{\varphi_{3}}(s,a) \xleftarrow{\alpha} \gamma \max_{a'} Q_{\varphi_{3}}(s',a') & Q_{\varphi_{6}}(s,a) \xleftarrow{\alpha} 1 \end{array}$$

Subtasks

 $\begin{array}{l} \varphi_1 = \diamondsuit(\texttt{got_iron} \land \diamondsuit\texttt{used_factory}) \land \diamondsuit\texttt{got_gold} \\ \varphi_2 = \diamondsuit(\texttt{[got_grass} \lor \texttt{got_wood}] \land \diamondsuit\texttt{used_factory}) \\ \varphi_3 = \diamondsuit(\texttt{got_iron} \land \diamondsuit\texttt{used_factory}) \\ \varphi_4 = \diamondsuit\texttt{used_factory} \land \diamondsuit\texttt{got_gold} \\ \varphi_5 = \diamondsuit\texttt{used_factory} \\ \varphi_6 = \diamondsuit\texttt{got_gold} \end{array}$

Detected events: got_gold

Theorem

LPOPL using tabular q-learning converges to an optimal policy.

1 Motivation

- 2 Related work
- 3 Approach:
 - Why (and how) we use LTL for specifying tasks in RL.
 - Why (and how) LPOPL speeds up learning of multiple tasks.
- 4 Results
- 5 Concluding remarks

1 Motivation

- 2 Related work
- 3 Approach:
 - Why (and how) we use LTL for specifying tasks in RL.
 - Why (and how) LPOPL speeds up learning of multiple tasks.

4 Results

5 Concluding remarks

Experiments

Goal

- Study LPOPL + DQN
- Compare with standard RL
- Compare with alternative decomposition methods for RL

Experiments

Goal

- Study LPOPL + DQN
- Compare with standard RL
- Compare with alternative decomposition methods for RL

Baselines

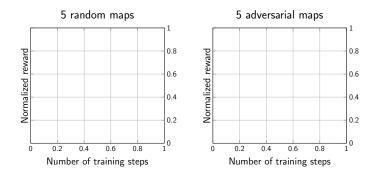
- DQN-L: Standard DQN¹ (no decomposition).
- HRL-E: Hierarchical Deep RL proposed by Kulkarni et al.²
- HRL-L: HRL-E but exploiting LTL to prune *useless* options.

¹Human-level control through deep reinforcement learning (Nature-15)
 ²HDRL: Integrating Temporal Abstraction and Intrinsic Motivation (NIPS-16)

Experiment 1: Interleaving subtasks

Description

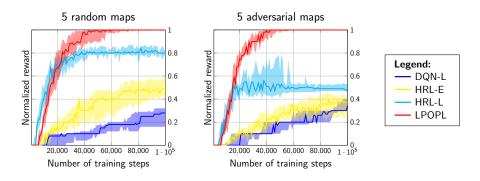
Tasks from (Andreas et al., 2017) w/o unneeded order constraints. e.g. (get iron and get wood), then use factory.



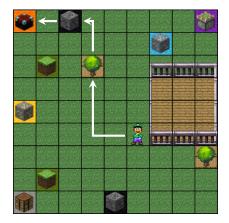
Experiment 1: Interleaving subtasks

Description

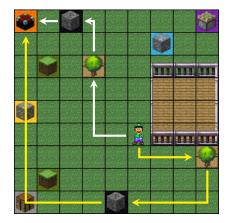
Tasks from (Andreas et al., 2017) w/o unneeded order constraints. e.g. (get iron and get wood), then use factory.



Hierarchical RL might converge to suboptimal policies



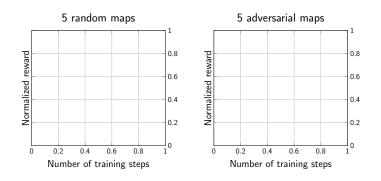
Hierarchical RL might converge to suboptimal policies



Experiment 2: Safety constraints

Description

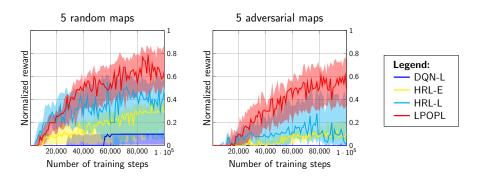
Same set of 10 tasks but including the safety constraint of being at the shelter during the night.



Experiment 2: Safety constraints

Description

Same set of 10 tasks but including the safety constraint of being at the shelter during the night.



1 Motivation

- 2 Related work
- 3 Approach:
 - Why (and how) we use LTL for specifying tasks in RL.
 - Why (and how) LPOPL speeds up learning of multiple tasks.
- 4 Results
- 5 Concluding remarks

1 Motivation

- 2 Related work
- 3 Approach:
 - Why (and how) we use LTL for specifying tasks in RL.
 - Why (and how) LPOPL speeds up learning of multiple tasks.
- 4 Results
- 5 Concluding remarks

Question: How can we instruct RL agents?

Desirable properties:

It is expressive.

Desirable properties:

- It is expressive.
- RL agents understand it:
 - **Task description** \rightarrow Reward function.
 - $\blacksquare \ Task \ description \rightarrow Learn \ faster.$

Desirable properties:

- It is expressive.
- RL agents understand it:
 - **Task description** \rightarrow Reward function.
 - Task description \rightarrow Learn faster.
- Humans understand it.

Desirable properties:

- It is expressive.
- RL agents understand it:
 - **Task description** \rightarrow Reward function.
 - Task description \rightarrow Learn faster.
- Humans understand it.
 - NL \rightarrow LTL by Dzifcak et al. (ICRA-09).

Desirable properties:

- It is expressive.
- RL agents understand it:
 - **Task description** \rightarrow Reward function.
 - Task description \rightarrow Learn faster.
- Humans understand it.
 - NL \rightarrow LTL by Dzifcak et al. (ICRA-09).

Code: https://bitbucket.org/RToroIcarte/lpopl

