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Summary

Motivation

Prior knowledge has a key role in Computer Vision.

ConceptNet (CN) is a rich source of prior knowledge.

Previous works

They suggest that CN sucks.

We don’t care, we think CN is cool

Method

CN for image retrieval... sucks!

CN + ESPGAME for image retrieval... works!

Contribution

We can exploit commonsense ontologies in Computer Vision,
but this knowledge must be filtered in a meaningful way (e.g.
using ESPGAME).
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Computer Vision

Image classification: Kitchen
Image captioning: “a woman in a
chef coat holding bread loaves”
Image Q&A:
Q: What is the chef holding?
A: bread loaves

Computer Vision

Simple → Complex

Learning everything from examples

It does not scale (96.4% classification → 32.2% captioning)

Idea: Prior knowledge can fill the holes in our datasets.
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ConceptNet

ConceptNet (CN)

CN is a commonsense ontology.

Format
Concept1 − Relation type→ Concept2

Relation types

AtLocation, HasProperty, IsA, SimilarSize, UsedFor, CapableOf, ...

Examples

desk− RelatedTo→ office
computer− AtLocation→ office
office− UsedFor→ work
... and 8 million more
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ConceptNet
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ConceptNet

CN is a great source of prior knowledge for Computer Vision.

– CN has millions of assertions (vs hand-crafted ontologies)

– CN provides key knowledge to computers (vs Wikipedia)

– CN is a rich source of commonsense knowledge (vs WordNet)

– CN is simple to use (vs CYC)
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ConceptNet in Computer Vision

Task w/o CN w/ CN CN gain

Image Tagging Xie and He (2013) 7.3% 7.6% 0.3%
Video Retrieval de Boer et al. (2016) 3.9% 3.1% -0.8%
Image Riddles Aditya et al. (2016) 68.0% 68.7% 0.7%

More examples: Bicocchi et al. (2012), Le et al. (2013), others

... but we wanted to give CN another try.
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... because we are scientists

Source: https://xkcd.com/242/
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Sentence Based Image Retrieval

“a woman in a chef coat holding bread loaves”

Rank n images according to their relevance
with respect to a natural language query.
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Baseline

We used the 1000 Concept detectors trained by Fang et al.

Prob Concept

0.996 kitchen
0.920 preparing
0.800 food
0.796 cooking
0.590 making
... ...
0.236 woman

t = “a woman in a chef coat holding bread loaves”

MIL(t,I ) = P(woman|I ) · P(coat|I ) · P(holding|I ) · P(bread|I )
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Baseline

t = “a woman in a chef coat holding bread loaves”

...
1 2 3 4 512

MIL(t,I ) = P(woman|I ) · P(coat|I ) · P(holding|I ) · P(bread|I )

What are the limitations of this approach?

How can we detect a chef without a chef detector?
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Baseline + ConceptNet
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Baseline + ConceptNet

concepts

chef

ConceptNet

1000
detectors

Idea: Augment the set of detectors using CN
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CN Score

Word Prob Word Prob
kitchen 0.996 dish 0.126
cook 0.796 white 0.091
restaurant 0.374 other 0.043
person 0.340 dinner 0.023
large 0.152 head 0.003

CNMIN(chef) = 0.003
CNAVG(chef) = 0.294
CNMAX(chef) = 0.996
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CN Score

Database r@1 r@5 r@10 median mean

⊂ COCO 5K rank rank

Baseline

MIL 13.2 33.4 45.2 13 82.2

CN

CNMIN 12.2 31.4 43.4 15 77.0

CNAVG 13.2 33.7 46.0 13 66.3

CNMAX 12.2 32.1 44.1 14 73.0

CN Gain 0.0% 0.3% 0.8% 0 15.9
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Summary

Motivation

Prior knowledge has a key role in Computer Vision.

ConceptNet (CN) is a rich source of prior knowledge.
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CN + ESPGAME Score

Pc(chef|I ) = P(chef|cook, I )P(cook|I ) + P(chef|¬cook, I )P(¬cook|I )
Pc(chef|I ) = P(chef|cook, I ) · 0.796 + P(chef|¬cook, I ) · 0.204

Pc(chef|I ) ≈ P(chef|cook) · 0.796 + P(chef|¬cook) · 0.204

Pc(chef|I ) ≈ 0.1413 · 0.796 + 0.0003 · 0.204

Pc(chef|I ) ≈ 0.112
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CN + ESPGAME Score

Pcook(chef|I ) ≈ 0.1125
Pkitchen(chef|I ) ≈ 0.0549
Pdish(chef|I ) ≈ 0.0016
Pperson(chef|I ) ≈ 0.0011
Pdinner(chef|I ) ≈ 0.0011
Phead(chef|I ) ≈ 0.0009
Pother(chef|I ) ≈ 0.0009
Pwhite(chef|I ) ≈ 0.0006

CNEMIN(chef) = 0.0006
CNEAVG(chef) = 0.0217
CNEMAX(chef) = 0.1125
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CN + ESPGAME Score

Database r@1 r@5 r@10 median mean

⊂ COCO 5K rank rank

Baseline

MIL 13.2 33.4 45.2 13 82.2

CN + ESPGAME

CNEMIN 14.3 34.6 46.6 12 68.3

CNEAVG 14.6 35.6 48.0 12 61.2

CNEMAX 14.3 35.9 48.2 12 60.6

CN Gain 1.4% 2.5% 3.0% 1 21.6
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CN + ESPGAME Score

t = “a woman in a chef coat holding bread loaves”

...
1 2 3 4 512

...
1 2 3 4 35
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CN + ESPGAME Score

t = “those bagels are plain with nothing on them”

...
1 2 3 4 360

...
1 2 3 4 2
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Results and Discussion

Database r@1 r@5 r@10 median mean

COCO 5K rank rank

NeuralTalk (Vinyals et al., 2015) 6.9 22.1 33.6 22 72.2

GMM+HGLMM (Klein et al., 2015) 10.8 28.3 40.1 17 49.3

BRNN (Karpathy and Fei-Fei, 2015) 10.7 29.6 42.2 14 –

MIL (our baseline) 15.7 37.8 50.5 10 53.6

CNEMAX (our method) 16.2 39.1 51.9 10 44.4

LVQ (Lin and Parikh, 2016) 16.7 40.5 53.8 – –

OE (Vendrov et al., 2016) 18.0 – 57.6 7.0 35.9

higher is better lower is better
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CN + ESPGAME for image retrieval... works!

Contribution

We can exploit commonsense ontologies in Computer Vision,
but this knowledge must be filtered in a meaningful way (e.g.
using ESPGAME).
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Conclusion

Our code: https://bitbucket.org/RToroIcarte/cn-detectors

If you want to share ideas about commonsense knowledge in
Computer Vision, please come to check my poster :)

Thank you!
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