

How a General-Purpose Commonsense Ontology can Improve Performance of Learning-Based Image Retrieval

Rodrigo Toro Icarte[†] Jorge A. Baier^{‡§} Cristian Ruz[‡] Alvaro Soto[‡] [†]University of Toronto [‡]Pontificia Universidad Católica de Chile

[§]Chilean Center for Semantic Web Research

[†]rntoro@cs.toronto.edu, [‡]{jabaier, cruz, asoto}@ing.puc.cl

Motivation

Computer Vision (CV)

CN-based Detector Enhancement

More Experiments

ESPGAME alone

Database	r@1	r@5	r@10	median	mean
⊂ COCO 5K				rank	rank
Baseline					
MIL	13.2	33.4	45.2	13	82.2
ESPGAME					
ESP _{min}	12.6	30.7	41.1	17	122.4
ESP _{avg}	13.6	34.2	46.2	13	69.0
ECD	125	227	157	12	66 2

Simple \rightarrow Complex

• Image classification, captioning, Q&A, ...

Learning everything from examples **does not scale**

• 96.4% classification \rightarrow 32.2% captioning

Prior knowledge can fill the holes in our datasets

• Small hand-crafted ontologies, free form text (e.g. Wikipedia), and lexical ontologies (e.g. WordNet)

What about commonsense ontologies, such as ConceptNet?

ConceptNet (CN)

Format: Concept₁ – Relation type \rightarrow Concept₂ **Relation types:** AtLocation, HasProperty, IsA, UsedFor, ... **Examples**:

- desk-RelatedTo \rightarrow office
- computer AtLocation \rightarrow office
- office UsedFor \rightarrow work
- ... and 8 million more

Great source of prior knowledge for CV

Main idea:

Augment the set of detectors using CN

CN score

For each word $w \notin V$, we define:

 $CN_{Agg}(w) =$ $P(w_i|I)$ Agg $w_i \in \{V \cap \operatorname{cn}(w)\}$

where:

- $Agg \in \{\min, avg, max\}$
- cn(w) is the set of neighbors of w in CN

Example

w_i	$P(w_i I)$	w_i	$P(w_i I)$	
kitchen	0.996	dish	0.126	CN (abof) $= 0.00$
cook	0.796	white	0.091	$CN_{min}(CHeI) = 0.00$
restaurant	0.374	other	0.043	$CN_{avg}(CHeI) = 0.29$ $CN_{avg}(cheI) = 0.00$
person	0.340	dinner	0.023	$CN_{max}(CHEI) = 0.99$
large	0.152	head	0.003	

Results

Database	r@1	r@5	r@10	median	mean
⊂ COCO 5K				rank	rank
Baseline					
MIL	13.2	33.4	45.2	13	82.2
CN					
CN _{min}	12.2	31.4	43.4	15	77.0
CN _{avg}	13.2	33.7	46.0	13	66.3
CN _{max}	12.2	32.1	44.1	14	73.0
CN gain	0.0%	0.3%	0.8%	0	15.9

ESP gain	0.4%	0.8%	1.0%	0	16.0
LOF max	13.3	33.7	43.7	IJ	00.2

COCO 5K

Database	r@1	r@5	r@10	median	mean
COCO 5K				rank	rank
GMM+HGLMM [5]	10.8	28.3	40.1	17	49.3
BRNN [4]	10.7	29.6	42.2	14	_
MIL (our baseline)	15.7	37.8	50.5	10	53.6
CNE _{MAX} (our method)	16.2	39.1	51.9	10	44.4
LVQ [6]	16.7	40.5	53.8	_	_
OE [7]	18.0	_	57.6	7.0	35.9

In the paper

- Zero-shot learning
- COCO 22K

Why is CN helping this time?

- Millions of assertions
- Key knowledge for computers
- Rich source of commonsense knowledge
- Simple to use

... we do not know how to exploit it

Task	w/o CN	w/CN	CN gain
Image Tagging [8]	7.3%	7.6%	0.3%
Video Retrieval [2]	3.9%	3.1%	-0.8%
Image Riddles [1]	68.0%	68.7%	0.7%

Sentence Based Image Retrieval

Task: Rank *n* images according to their *relevance* with respect to a text query

Example

"a woman in a chef coat holding bread loaves"

A Baseline for Image Retrieval

CN + ESPGAME score

For each word $w \notin V$, we define:

 $P(w|w_i) \cdot P(w_i|I) + P(w|\neg w_i) \cdot P(\neg w_i|I)$ $CNE_{Agg}(w) =$ Agg $w_i \in \{V \cap \operatorname{cn}(w)\}$

Estimate $P(w|w_i)$ and $P(w|\neg w_i)$ from **ESPGAME**

Example

P(chef|I) = P(chef|cook, I)P(cook|I) + $P(\text{chef}|\neg \text{cook}, I)P(\neg \text{cook}|I)$ $P(\text{chef}|I) = P(\text{chef}|\text{cook}, I) \cdot 0.8 + P(\text{chef}|\neg \text{cook}, I) \cdot 0.2$ $P(\text{chef}|I) \approx P(\text{chef}|\text{cook}) \cdot 0.8 + P(\text{chef}|\neg \text{cook}) \cdot 0.2$ $P(\text{chef}|I) \approx 0.1413 \cdot 0.8 + 0.0003 \cdot 0.2$ $P(\text{chef}|I) \approx 0.112$

Results

Database r@5 r@10 median mean r@1

Summary

Motivation

• Prior knowledge has a key role in Computer Vision

• ConceptNet (CN) is a rich source of prior knowledge

Previous works

- They suggest that CN sucks
- We don't care, we think CN is cool 哭

Method

- CN for image retrieval... sucks!
- CN + ESPGAME for image retrieval... works!

Contribution

• We can exploit commonsense ontologies in Computer Vision, but this knowledge must be filtered in a

Given a text query *t* and an image *I*, we define:

MIL(t, I) =	P(w I)
$w \in$	$V \cap S_t$

where:

- S_t is the set of words in t
- *V* is a set of detectable words
- P(w|I) is the score of detector w over I

We used the 1000 Concept detectors trained by Fang et al. [3]

Example

⊂ COCO 5K				rank	rank	
Baseline						
MIL	13.2	33.4	45.2	13	82.2	
CN + ESPGAME						
CNE _{min}	14.3	34.6	46.6	12	68.3	
CNE _{avg}	14.6	35.6	48.0	12	61.2	
CNE _{max}	14.3	35.9	48.2	12	60.6	
CN gain	1.4%	2.5%	3.0%	1	21.6	

Example

meaningful way (e.g. using ESPGAME)

References

- [1] S. Aditya, Y. Yang, C. Baral, and Y. Aloimonos. Answering image riddles using vision and reasoning through probabilistic soft logic. *arXiv*, 2016.
- [2] M. de Boer, K. Schutte, and W. Kraaij. Knowledge based query expansion in complex multimedia event detection. Multimedia Tools and Applications, 75(15), 2016.
- [3] H. Fang, S. Gupta, F. Iandola, R. K. Srivastava, L. Deng, P. Dollár, J. Gao, X. He, M. Mitchell, et al. From captions to visual concepts and back. In CVPR, 2015.
- [4] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015.
- [5] B. Klein, G. Lev, G. Sadeh, and L. Wolf. Associating neural word embeddings with deep image representations using fisher vectors. In CVPR, 2015.
- [6] X. Lin and D. Parikh. Leveraging visual question answering for image-caption ranking. In *ECCV*, 2016.
- [7] I. Vendrov, R. Kiros, S. Fidler, and R. Urtasun. Order-embeddings of images and language. In ICLR, 2016.
- [8] L. Xie and X. He. Picture tags and world knowledge: learning tag relations from visual semantic sources. In ACMMM, 2013.