Efficient Graph Generation with Graph Recurrent Attention Networks

Uber

Generative Model of Graphs
Model the distribution of graph $G=(V, E)$:

$$
P(G)=\sum_{\pi} P\left(L^{\pi}, \pi\right),
$$

where L^{π} : (binary) adjacency matrix π : node ordering.

Contributions

- Our approach consists of $O(N)$ auto-regressive generation steps, where a block of nodes and associated edges are generated per step.
- We propose an attention-based GNN that better utilizes the topology of the already generated graph, reduces the dependency on the node ordering, and distinguishes multiple newly added nodes.
- We capture the correlation between multiple generated edges via a mixture of Bernoullis output distribution per step.
- We approximate the likelihood by marginalizing over a family of canonical node orderings, e.g., DFS, BFS, or k-core.

Generation Process

ఉ

- Varying the block size and the sampling stride permits the efficiency-quality trade-off.
- Breaking the dependncy between generation steps allows parallel training with sampled subgraphs

Graph Recurrent Attention Networks (GRAN)

$$
\begin{gathered}
\text { new block (node 5, } \\
\text { augmented edges (dashed) }
\end{gathered}
$$

Output distribution on augmented edges

- Initial Node Representation
- Message Passing

$$
\begin{gathered}
h_{b_{i}}^{0}=W L_{b_{i}}^{\pi}+b, \quad \forall i<t \\
m_{i j}^{r}=f\left(h_{i}^{r}-h_{j}^{r}\right), \\
\tilde{h}_{i}^{r}=\left[h_{i}^{r}, x_{i}\right],
\end{gathered}
$$

$$
\begin{aligned}
a_{i j}^{r} & =\operatorname{Sigmoid}\left(g\left(\tilde{h}_{i}^{r}-\tilde{h}_{j}^{r}\right)\right), \\
h_{i}^{r+1} & =\operatorname{GRU}\left(h_{i}^{r}, \sum_{j \in \mathcal{N}(i)} a_{i j}^{r} m_{i j}^{r}\right) .
\end{aligned}
$$

- Output Distribution: $\quad p\left(L_{b_{t}}^{\pi} \mid L_{b_{1}}^{\pi}, \ldots, L_{b_{t-1}}^{\pi}\right)=\sum_{k=1}^{K} \alpha_{k} \prod_{i \in b_{t}} \prod_{1 \leq j \leq i} \theta_{k, i, j}$

$$
\alpha_{1}, \ldots, \alpha_{K}=\operatorname{Softmax}\left(\sum_{i \in b_{t}, 1<j<i} \operatorname{MLP}_{\alpha}\left(h_{i}^{R}-h_{j}^{R}\right)\right), \quad \theta_{1, i, j}, \ldots, \theta_{K, i, j}=\operatorname{Sigmoid}\left(\operatorname{MLP}_{\theta}\left(h_{i}^{R}-h_{j}^{R}\right)\right)
$$

Approximated Likelihood:

$$
P(G)=\sum_{\pi} P\left(L^{\pi}, \pi\right) \geq \sum_{\pi \in \mathcal{Q}} P\left(L^{\pi}, \pi\right) \quad \text { e.g. } \quad \mathcal{Q}=\left\{\pi_{\mathrm{BFS}}, \pi_{\mathrm{DFS}}, \pi_{\text {degree descent }}, \pi_{\mathrm{k} \text {-core }}, \pi_{\text {default }}\right\}
$$

Visualization

$$
\begin{aligned}
& \text { (a) Train } \\
& \text { Fisure }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) Train } \\
& \text { Figure: Train and sampled graphs on the protein dataset. }
\end{aligned}
$$

Figure: Train and sampled graphs on the 3D point cloud dataset.

Experiments

Dataset		$\|V\|_{\text {avg }}\|E\|_{\text {avg }}\|V\|_{\text {max }}\|E\|_{\text {max }}$		
Grid	210	392	361	684
Protein	258	646	500	1575
3D Point Cloud	1377	3074	5037	10886
Table: Dataset statistics.				

Dataset Metric Erdos-Renyi GraphVAE* GraphRNN-S GraphRNN GRAN

Grid	Deg.	0.79	$707 e^{-2}$	0.13	$1.12 e^{-2}$	
	Clus.	2.00	$7.33 e^{-2}$	$3.73 e^{-2}$	$7.73 \mathrm{e}^{-5}$	$3.79 e^{-3}$
	Orbit	1.08	0.12	0.18	$1.03 \mathrm{e}^{-3}$	$1.59 e^{-3}$
	Spec.	0.68	$1.44 e^{-2}$	0.19	$1.18 \mathrm{e}^{-2}$	$1.62 e^{-2}$
Protein	Deg.	$5.64 e^{-2}$	0.48	$4.02 e^{-2}$	$1.06 e^{-2}$	$1.98 e^{-3}$
	Clus.	1.00	$7.14 e^{-2}$	$4.79 \mathrm{e}^{-2}$	0.14	$4.86 e^{-2}$
	Orbit	1.54	0.74	0.23	0.88	0.13
	Spec.	$9.13 e^{-2}$	0.11	0.21	$1.88 e^{-2}$	$5.13 \mathrm{e}^{-3}$
3D PointCloud	Deg.	0.31	-	-	-	$1.75 \mathrm{e}^{-2}$
	Clus.	1.22	-	-	-	0.51
	Orbit	1.27	-	-	-	0.21
	Spec.	$4.26 e^{-2}$	-	-	-	$7.45{ }^{-3}$

Table: For all MMD metrics, the smaller the better. *: our own

$$
\begin{aligned}
& \text { aplementation, }-: \text { not applicable due to memory issue, Deg.: degree } \\
& \text { impler }
\end{aligned}
$$ distribution, Clus.: clustering coefficients, Orbit: the number of 4-nod orbits, Spec.: spectrum of graph Laplacian.

 Figure: Efficiency vs. sample quality. The bar and line plots are the MMD (left y-axis) and speed ratio (right y-axis) respectively.

B K	\mathcal{Q}	Deg.	Clus.	Orbit
1	1	$\left\{\pi_{1}\right\}$	$1.51 e^{-5}$	0
$2.66 e^{-5}$				
120	$\left\{\pi_{1}\right\}$	$1.54 e^{-5}$	0	$4.27 e^{-6}$
1500	$\left\{\pi_{1}\right\}$	$1.70 e^{-5}$	0	$9.56 e^{-7}$
120	$\left\{\pi_{1}, \pi_{2}\right\}$	$6.00 e^{-2}$	0.16	$2.4 e^{-2}$
120	$\left\{\pi_{1}, \pi_{2}, \pi_{3}\right\}$	$8.99 e^{-3} 7.37 e^{-3} 1.69 e^{-2}$		
120	$\left\{\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right\}$	$2.34 e^{-2} 5.95 e^{-2} 5.21 e^{-2}$		
$120\left\{\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}, \pi_{5}\right\}$	$4.11 e^{-4} 9.43 e^{-3} 6.66 e^{-4}$			
4200	$\left\{\pi_{1}\right\}$	$1.69 e^{-4}$	0	$5.04 e^{-4}$
820	$\left\{\pi_{1}\right\}$	$7.01 e^{-5} 4.89 e^{-5} 8.57 e^{-5}$		
1620	$\left\{\pi_{1}\right\}$	$1.30 e^{-3} 6.65 e^{-3} 9.32 e^{-3}$		

Table: Ablation study. B : block size, K : number of Bernoulli mixtures, π DFS, $\pi_{2}: \mathrm{BFS}, \pi_{3}: k$-core, π_{4} : degree descent, π_{5} : default. Code (Pytorch): https://github.com/lrjconan/GRAN

