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Abstract. In this paper, we address the problem of learning-based im-
age super-resolution and propose a novel approach called Local Learnable
Kernel Regression (LLKR). The proposed model employs a local met-
ric learning method to improve the kernel regression for reconstructing
high resolution images. We formulate the learning problem as seeking
multiple optimal Mahalanobis metrics to minimize the total kernel re-
gression errors on the training images. Through learning local metrics
in the space of low resolution image patches, our method is capable to
build a precise data-adaptive kernel regression model in the space of high
resolution patches. Since the local metrics split the whole data set into
several subspaces and the training process can be executed off-line, our
method is very efficient at runtime. We demonstrate that the new devel-
oped method is comparable or even outperforms other super-resolution
algorithms on benchmark test images. The experimental results also show
that our algorithm can still achieve a good performance even with a large
magnification factor.

1 Introduction

The basic idea of Super-Resolution is to estimate a high resolution (HR) image
from a single or several original low resolution (LR) images. It is an inherently
ill-posed inverse problem since the mapping between HR image and LR image
is many-to-one and much information is lost in the HR-to-LR process. Various
methods have been proposed to solve this underdetermined mapping. Roughly,
they can be divided into three major categories: (1) Interpolation based methods
that generate HR image using single LR image [67]. (2) Reconstruction based
methods using multiple LR images with some smoothness priors [89]. And (3)
learning based methods (or example based methods) that use a large training set
of HR/LR patch pairs [I0/T9]. Though the implementation of interpolation based
methods are very fast, they are unable to produce sharp edges and clear details.
As for conventional reconstruction based methods, since the accurate subpixel
motion estimation is extremely difficult [9], their performance is very limited.
Such limitations are analyzed using perturbation theory of linear systems by [11].
In learning based methods, Freeman et al. [10] learn a Markov Random Field
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(MRF) from large number of generic HR/LR image patch pairs, and infer the
HR image patches through belief propagation given LR image patches. They [12]
later propose an approximation method for replacing the inference procedure in
MRF with a nearest neighbour search framework that speeds up the original
belief propagation algorithm and achieves comparable results. Chang et al. [13]
extend this framework from nearest neighbour to a local regression model based
on the idea of Local Linear Embedding (LLE) [15]. This local regression model
needs less training patches [I0] without losing much expression ability of the
whole training database. In recent research, Fattal et al. [I9] investigate the
gradient fields of LR and HR images and devise a new upsampling method. After
that, Sun et al. [16] uses Gradient Profile Prior (GPP) to model the relationship
between sharp and blurred edges, and learn this prior from a training set of
natural images. Glasner et al. [5] raise the issue of patch redundancy in a single
image. They constructed a pyramid framework and utilize other reconstruction
based constraints to exploit this phenomenon for single image super-resolution.
Inspired by latest progress of compress sensing, Yang et al. [3] argue that the
sparse representation in the space of LR patches can apply to the space of HR
patches. Thus reconstruction of HR image can be solved via sparse coding.

In this paper, our research will focus on learning based methods. To quote
experimental results in [5]: “the main improvement in resolution comes from the
Example-Based SR component in combined framework”. Extensive training may
bring substantial benefit to resolution enhancement. Unfortunately, no theories
have been given to investigate how many examples are enough to achieve the
specific resolution. It seems that is the case of “ the more examples, the bet-
ter results”. Typically, millions of HR/LR example patch pairs as required in
[I710] and it is inefficient in both speed and memory. To overcome this main
disadvantage and improve the super-resolution quality, we propose a local re-
gression scheme referred to as Local Learnable Kernel Regression (LLKR). In
this model, specific kernel shapes are learned by metric learning to maintain
the expression ability of the dictionary. Meanwhile, since the metric learning is
not conducted globally, our model captures more local information, thus making
regression more precise and algorithm more efficient.

The rest of the paper is organized as follow: Section 2 introduces the super-
resolution problem approached by kernel regression. Section 3 presents the frame-
work of LLKR model and the dictionary construction at length. The effectiveness
of our model is verified through a series of experiments on benchmark image sets
in Section 4. At last, we concludes the paper and discusses some future work.

2 Super-Resolution via Kernel Regression

In this section, we will briefly demonstrate the learning based image super-
resolution problem and approach it with classical kernel regression.

Given dictionaries of LR and HR image patches (D;, Dy, ), for a low resolution
image x, estimate its corresponding high resolution image y, subjected to the
reconstruction constraint: x = Dy, where D is a downsampling operator. To
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solve this inverse problem, we can rely on regression models. Kernel regression
is such a non-parametric technique to estimate the conditional expectation of a
random variable, among which Nadaraya-Watson kernel regression [I] is most
commonly used.

Specifically, training dictionaries I;, D, consists of n pairs of LR (usually
represented as image features) and HR patches: (x1,y7), (X2,¥2) -, (Xn, ¥n)-
In order to minimize training error, we estimate an unknown function f : R%* —
R in the form of y = f (x) + &, where x € R% y € R%, ¢ is the noise, dx
and dy are the dimensions of LR patch and HR patch. The Nadaraya-Watson

estimator is:
i K (x —x;)

where K () > 0 is a kernel function (e.g. Gaussian, spherical, polynomial and
etc). Generally, the mass of the kernel functions mainly lies in the neighbour-
hood support of x. From the Eq. (), we can explicitly find that the value of
the function f at specific point x is the locally weighted average of the func-
tion values of its neighbouring points. If we use kernel density representation to
approximate the joint probability P (x,y) and marginal probability P (x), then
the conditional probability can be expressed as:

. K(x—-x)
P(yz |X) - Z?;lK(X_Xi) (2)

Thus the Nadaraya-Watson kernel regression is actually the conditional expec-
tation Ely |x].

3 Local Learnable Kernel Regression Model

Before introducing our model, we first investigate how to make kernel regression
adaptive through metric learning which escapes tuning parameters of kernel.

3.1 Metric Learning for Kernel Regression

Since the kernel functions in Eq. (@) determines the conditional probability,
choosing the forms of kernel function and fitting the kernel parameters are the
key issues for the performance of kernel regression. Weinberger [2] proposed the
metric learning for kernel regression (MLKR) model to learn an appropriate
distance function of kernel. The Mahalanobis metric is used to parameterize the
kernel function (II):

K(X—XZ‘):eXp{—(X—Xi)T~M~(X—XZ‘)} (3)

where M is a symmetric positive semi-definite real matrix (Euclidean metric is
a special case of Mahalanobis metric if setting M to identity matrix). Therefore,
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we are able to calculate the regression value via Eq. (). It is straightforward to
define the loss function F as the summed squared error E given below.

A2
E:Z”yz‘*yz‘uz (4)
i=1

where ¥, = f (x;). With this objective function, the metric learning problem is
formulated as constrained optimization:

i t. M >
min E, st.M >0 (5)

However, learning matrix M directly requires enforcing a positive semi-definite
constraint during optimization which is non-linear and expensive to satisfy. To
learn M cheaply, we can decompose it by: M = AT A. If we substitute M in
equation (@) with this factorization in terms of A, the original Mahalanobis
metric is equivalent to Euclidean metric on the data points after applying linear
transformation of x — Ax. Since A is an unconstrained real matrix, the hard
constraint prior is eliminated. Thus we can now cast the metric learning as an
unconstrained matrix optimization problem mgn FE . Note that one can adjust

the number of parameters according to the complexity of the regression task
through setting A to square, triangular or diagonal matrix.

3.2 Local Metric vs Global Metric

Though MLKR, provides an effective way to improve kernel regression, it suffers
drawbacks for applying directly to super-resolution. The premise for the superior
performance of MLKR is that, most local neighbourhood structures of data could
be shaped properly under a single global linear transformation. However, this
assumption is very likely to be violated in super-resolution, since downsampling
process from HR to LR patches is a many-to-one mapping and collapses the local
neighbourhood structures of HR patches which makes LR patches distributed
like multi-modal. Thus, reconstructing HR patch through global metrics learnt
from LR patch is problematic. We therefore seek the potential of replacing it
with multiple local linear transformation (i.e local metrics).

To analyze efficiencies of multiple local metrics and single global metric in the
context of super-resolution, we first conduct an illustrative experiment. In the
stage of collecting data, we randomly sample about 100,000 HR patches with
size 5 from Berkeley Segmentation Database. And we obtain corresponding LR
patches through downsampling operator with factor 3.0. To construct dictionar-
ies, we compute gradients as the representation for LR patches like in [3]. After
these steps, we conduct MLKR with the whole data set to learn one global met-
ric and record the minimum value of total squared regression error . Then we
repeatedly perform k-means algorithm for clustering with different number of
clusters. More specifically, every time we obtain one partition of the data set, we
implement MLKR inside each cluster and record the minimum value of F. The
step length for number of clusters is set to 10 and we plot the curve of F varied
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Number of clusters Fig,2, Two examples
Fig. 1. Total squared regression error F varies with the of le.arned local  metric
matrices

number of clusters

with number of clusters in Fig.[Il From this figure, we can find that total squared
regression error E decreases a lot with number of clusters increase to 40 and then
it tends to be stable. Therefore, for the dictionary used in super-resolution, local
metric learning for kernel regression is more beneficial than MLKR which learns
only one global metric for all data points.

3.3 Local Metric Learning

Inspired by the previous experiment, we thus naturally extend MLKR to learn
multiple local Mahalanobis metrics in LR patch space. The approach is summa-
rized in Algorithm[Il This algorithm is referred to as Local Learnable Kernel Re-
gression (LLKR) for the reason that specific forms of metrics are learnt through
minimizing regression errors in corresponding local spaces of LR patches. There-
fore, we need to solve a MLKR problem inside each cluster. The gradient of the
objective function is derived as:

dy n

(Yir — Yir) Yik = Yik ~ij ij Gij
ZZ )Y ( i) Kijdid] (6)
k=1 i=1

JES2

where d;; = x; — x; and R’ij = Kij/zjem K;;. For the metric initialization,
A is set to an identity matrix with some random disturbance on the diagonal
elements. This optimization problem can be solved efficiently through regular
gradient based optimization algorithms such as conjugate gradient, BFGS or
stochastic gradient descent. Comparing to MLKR model, our method has one
additional parameter - the number of clusters, which is convenient for incorpo-
rating prior knowledge. Roughly speaking, if the magnification factor is large
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Algorithm 1. (Local Learnable Kernel Regression)

Input: training dictionaries (ID;, D), number of clusters p
1: Find p clusters of dictionary D; using k-means.

2: for i =1 to pdo

3:  Specify cluster assignment set C; for ith cluster.

4:  Specify neighbourhood index set §2; for x;, j € C;.

5 solve

~ 2
Y. -V,
! ]EZC:’7” J J|2

st y; = ( GZQ‘ij.ym>/( EZﬁij)

Kjm = exp {*(Xj —xm) AT A (x5 — xm)}

min
A,

6: end
Output: local metrics {A1, ..., Ap}. Cluster centers of dictionary I;: {zc,, ..., zc, }-

which means the collapsing effect fore-mentioned is obvious, the number of clus-
ters should be increased and vice versa. Through experiments we found that,
on average, setting number of clusters to 100 is best for dictionary with around
100,000 patches and using more clusters will take the risk of over-fitting. Further-
more, since the complexity of MLKR is approximately O (nQ), it is prohibitive
to apply when the number of samples is very large (e.g. when the size of the dic-
tionary used for super-resolution is approaching to 1 million). Fortunately, the
algorithmic complexity of LLKR is O (n2 / p) with balanced clustering - when the
numbers of data points in each cluster are almost the same. Two local metrics
learnt in our experiments are visualized in Fig. [l and @l The dimension of each
matrix is 50 x 50.

3.4 Local Metrics for Super-Resolution

In this section, we discuss how to exploit learnt local matrices from training stage
for constructing super-resolution images. Given a LR patch x, we first calculate
which cluster it belongs to. This step is always very efficient since the number of
clusters is much less than the size of the dictionary. Next, within this cluster, we
apply regression formulas of Eq. ({l) and (B]) based on the corresponding learnt
metric and reconstruct HR patch y. As we have discussed in pervious section, we
are only interested in local neighbouring points for kernel regression, we conduct
the nearest neighbours search and set kernel value to zero if it is less than a
predefined threshold (e.g. e7!?). Relying on high dimensional data structure
like kd-trees [4], the neighbourhood seeking step can be speed up significantly.
Moreover, for each cluster, the kd-tree building process can be done off-line. It is
pretty obvious that, comparing to the whole dictionary, the number of patches
inside each cluster is modestly small, thus making our algorithm very fast. The
pseudo-code for super-resolution image construction is shown in Algorithm
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Algorithm 2. (Super-resolution with LLKR)
Input: training dictionaries (D;, D), local metrics {A, ..., Ap}, cluster centers of dic-
tionary I; {zc,, ..., zc, }, low resolution image X.
1: for every patch x € X crawled in raster scan from upper-left to bottom-right with
fixed step do
2:  Find the nearest neighbour cluster label i according to: min ||x — x¢, ||
3:  Specify the local neighbourhood {2 for x in the ith cluster.
4:  Reconstruct the high resolution patch y as follow:

K; = exp {—(ac —z)TATA; (x — xj)} jen

= (Z Kj'?Jj)/(Z Kj)
JENR JENR
5: end

6: Refine Y with the reconstruction constraint through back-projection.
Output: high resolution image Y.

3.5 Dictionary Construction

Dictionary plays an important role in learning based super-resolution algorithms
[10/17]. Usually, enormous dictionaries are required for the learning process. Here
we propose two preprocessing methods to help reducing the size of dictionary.

Random Sampling with Gradient Prune. The basic differences between
HR images and LR images are the high frequency information. They often occur
in edges and corners of the HR image [10]. To investigate this phenomenon, we
adopt a random sampling method with gradient prune strategy. When a random
raw HR image patch is sampled, we calculate the magnitude of its gradient and
then discard this patch if this value is less than a predefined threshold (e.g. 20).
By doing so, we can reduce the number of patches, which are redundant in the
dictionaries and thus not helpful in improving regression performance.

Feature Extraction and Contrast Normalization. In order to construct a
dictionary ID; with rich expression ability, we should keep one point in mind, the
LR image patch should be as informative as possible. High-pass filter is adopted
by Freeman et al. [I0] to obtain such patch. Baker et al. [I8], Chang et al. [13]
and Yang et al. [3] all use gradients with different order of gradient to represent
the LR patch. Considering both the speed and performance, we only take the
normalized 1st order gradient that can be calculated by convolving with Sobel
mask. Thus feature of LR patch in Dy is:

vec (Gp)

L;ec ]

i/
X =
’UGC

where the vec (+) is the vectorization operator and G}, G, are gradient matrices of
LR image patch along horizontal, vertical direction respectively. To enlarge the

(7)

2
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Fig. 3. Some of training images used in our experiments and the corresponding visu-
alization of the contrast normalization

generalization ability, Freeman et al. [I0] take a complex contrast normalization
procedure to generate the dictionary Dy. Here we set up a succinct alternative
method which is based on the assumption that, the mean value of the HR image
patch y and LR image feature x is almost the same if the magnification factor
is modest. We first subtract the HR image patches with its mean value y and
then take the L2 normalization to the remainder patch y — y before saving it.
That means, in dictionary Dy, a HR patch y is:

~ y—y
y= C (8)
ly = ¥ll,

4 Experiments

Experiment Implementations: Nearly 100,000 patches are collected from 40
images which are downloaded form Flicker to build dictionaries. Some of the
training images and the corresponding visualization of contrast normalized ones
are shown in Fig.[Bl And then we resort to cross-validation on this training dic-
tionary to set proper number of clusterings in LR patches for the initialization
of k-means. Within each group, we learn a full square metric matrix. If speed
is a concern, the diagonal metric matrix is a good alternative. As mentioned
in [2], considering for faster learning, one can cache the nearest neighbours and
update them according to the metric every 15 gradient steps. To avoid local min-
ima, random initializations are taken and the outcome with least square error
in ([BJ]) is chosen. In the stage of testing, we apply our algorithm to a serial of
images under different magnification factors from 2.0 to 8.0. As a conventional
scheme, we take the super-resolution algorithm of magnification factor 2.0 as
the base-method. And then we achieve results of greater magnification factor
through applying this base-method recursively. Considering the reconstruction
constraint as forementioned, we use back-projection to restrain the final out-
put. Through our experiments, we find that this procedure typically converges
after 5 to 10 iterations. Another important issue is selecting the size of image
patch. Intuitively, the larger the patch, the worse the generalization ability of
dictionaries and the slower the speed of learning based algorithm. However, if
the patch is too small to capture the width of obvious edges in images, the res-
olution is hardly to be enhanced. In our experiments, we test different sizes and
find that 5 x 5 image patch with 1 pixel step size gives the best performance. For
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(a) Bicubic (b) MRF (c) Sparse coding (d) Our results

Fig. 4. Comparison of super-resolution under the magnification factor 4.0, results from
Bicubic interpolation, MRF super-resolution [10], super-resolution via Sparse Repre-
sentation [3] and our method

processing color images, we first convert them from RGB color space to YCbCr
and then apply our method only to the Y channel since illuminance changes are
most discernable for human vision. As for channels of Cb and Cr, we just mag-
nify them with bicubic interpolation. Lastly, we combine these three channels to
obtain the final high resolution image.

(a) Path (b) Imposed edge  (c) Fast upsampling  (d) Our method
redundancy statistics

Fig. 5. Super-resolution (4x), results using single image super-resolution via patch
redundancy [5], imposed edge statistics [19], fast image upsampling [2I] and our method

Experiment Results: We first compare our method with several learning
based super-resolution algorithms. In Fig. Bl comparison of our method with
bicubic interpolation, Markov Random Field (MRF) for super-resolution [10],
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super-resolution via Sparse Representation [3] are displayed. All images are mag-
nified by factor 4.0. From these figures, it is obvious that images produced by
MRF have some synthesized details which make images somehow unreal. And
the results of our method are more sharp in edges and less blurred overall than
the ones of sparse representation, for example, in the regions of the children’s
eye and hair, near edges of the petal and the horseshoe, and so on.

Table 1. The RMSE, PSNR and SSIM values of different approaches for the Infant
image

Method RMSE PSNR SSIM
Fattal et al. [I9] 17.9325 23.0580 0.5829
Glasner et al. [5] 16.1990 23.9410 0.5930
Shan et al. [2I] 12.3307 26.3110 0.6494
Our method 11.9409 26.5900 0.6971

(a) Imposed edge (b) GPP (¢) Local
statistics self-examples

Fig. 6. Super-resolution (8x), results using imposed edge statistics [19], GPP [I6],
local self-examples [20] and our method

To check the performances of our method further, we then conduct compara-
tive experiments with imposed edge statistics [19], single image super-resolution
using redundant patches [5], super-resolution using Gradient Profile Prior (GPP)
[16], image upscaling from local self-examples [20] and fast image upsampling
[21]. Firstly, we investigate the 4x results on the infant picture in Fig. Bl It
is clear that the result of fast image upsampling is the most blurred one, and
imposed edge statistics generates over-smooth edges with details lost to some
extent. Though the image obtained from single image super-resolution is com-
paratively similar with ours on the whole, we still can find that our method
outperforms it since the irregular contours exist with their method in some re-
gions (e.g. the eye ball and the nostril of infant in the zooming up rectangle).
To assess these results quantitatively, we evaluate the Root Mean Squared Error
(RMSE), Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM)
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[14] index for above methodd. The measurement values are listed in Table [l
And our method achieves the best results in terms of all these measurements.
Then we increase the magnification factor to 8.0 for challenging test. As shown in
Figure [0, the result of imposed edge statistics degenerates and is blurred overall
in this situation. Compared with our method, GPP tends to produce smoothness
along edges which makes the edges wider than original and loses some details.
As for the result of local self-examples, it is interesting to note that the edges
are more sharp than any other methods. However, since their algorithm is for
the purpose of upscaling, it may not obey the reconstruction constraint in the
context of super-resolution. Thus the whole image is over-smoothed and renders
like artistic style graphic which produces some unreal edges (e.g. the corner of
mouth in Figure [l). More high resolution (4x) results of our method compared
with bicubic interpolation are displayed in Figure [

Fig. 7. More super-resolution (4x) results. Left images are results of Bicubic interpo-
lation and right are ours.

5 Conclusions and Future Work

In this paper we propose a local learnable kernel regression (LLKR) model
for learning based image super-resolution. Data-adaptive regression kernels are
learnt through metric learning in local regions of LR patches. Each learnt metric
captures more information inside the corresponding local region than a single
distance metric defined on global space, thus improving the regression preci-
sion totally. Our model can be extended to various applications, such as image
restoration, reconstruction, and some general regression problems. Future work
involves incorporating some priors to automatically choose the number of lo-
cal metrics and improving the performance through learning distance metrics of
other forms.

Acknowledgement. This work is partially funded by the NCET Program of
MOE, the SRF for ROCS and the Fundamental Research Funds for the Central
Universities in China.

! The ground truth of the infant image can be obtained from
http://www.cs.huji.ac.il/ giladfreedmn/projects/lss upscale/
supplemental/index.html
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