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Abstract

In this note, we review the PAC-Bayesian approaches following [4, 3].

1 Prerequisites

We follow the literature to use KL to denote the KL divergence between two Bernoulli distributions
p and q as,

p l-p
KL*(pllg) = pIn TP
Recall the definition of strongly convex functions as follows.
Definition 1.1. A twice differentiable function f is called strongly convex with parameter m > 0 if
for any z in the domain, we have
V2f(z) = ml.

Lemma 1.1. For any p, ¢ € [0, 1], we have
KL*(pllg) > 2(p — )*,

Proof. Let f(p) = KL™(p|lq) — 2(p — q)2, we have

f'(p) =In <1fp> —1In (13q> —4(p—q)

17 o 1 N
o) = oi-p

Since p(1 — p) achieves its maximum 1/4 with p = 1/2, we have f”(p) > 0, Vp € [0, 1]. Note that

f'(¢) = 0. Hence, f(p) decreases when p < ¢, increases when p > ¢, and achieves the minimum

value f(q) = 0. O
Lemma 1.2. For any p, ¢ € [0, 1] with p < ¢, we have

N2

KL* (o) = 229",

2q

Proof. Let f(p) = KL™(p|lq) — %, we have

f'p) =n (ﬂp) i <1gq) e

oy L1 gq-p+p?
f(p)fp(l—p) g qp(1-p)

Preprint. Under review.



Since p < g, then we have f”(p) > 0. Note that f'(¢) = 0. Hence, f(p) decreases when p < g.
Therefore f(p) > f(q) = 0 which proves the claim. O

Lemma 1.3. KL (p||q) is 4-strongly convex w.r.t. argument p and convex w.r.t. argument g.
Proof. Similar to the proof of Lemma 1.1, denoting f(p) = KL (p||q), we have
() (e
o) = p(1—p)

Therefore, according to the definition 1.1, f(p) is 4-strongly convex.

> 4.

Denoting g(q) = KL (p||q), we have

/ D 1—p

9(@) ==+ —

qg 1l-gq

1 p 1-p

9 (@) =5+ 73— >0
> (1—gq)?

Therefore g(q) is convex. O
Lemma 1.4. (Hoeffding’s Lemma [2]) For bounded random variables X1, --- , X,,, where X; €

[0,1] and is i.i.d. with mean g, let X, = -- 3" X;, then for any ¢ > 0 with 4+ ¢ < 1 and
w—e>0,

P(Xp > it e) < oKL (uell) o =2me?

P (Xm <p- 6) < e~ KL (n—ell) < o—2me?

Proof. Lett > 0,5, => " X;\,p=p+e,p=1—p,and i = 1 — p1, we have
P(Xm —p =€) =P (Sp — mu > me)
—P <€tSm > etm(p+e))
E [etsm]

- etm(lHFe)
_E[e]”
- etm(l‘+5)
_E[Xief + (1 X,)ef]”
- etm(l"""e)

(pe' +1—p)"
etm(,u—i—e)

(et 1=\
o et(ﬂ+5)

= (pe' + pe= )™ (1)

(Markov Inequality)

(Convexity of e!™)

Let f(t) = mIng(t) = mIn (uet? + jie ), we have
g'(t)

f(t) = o0

v m(g(t)g"(t) —g'(t)%)
g'(t) = ppe'? — pe™"?
g"(t) = pp?e'? + ap’e”'*



Since f”(t) > 0, f achieves its minimum while e* = Zz

mtin ft) = mtin mln (uet(l_p) + ,Be_tp)

= min mIn (e™™ (pe' + 1))

—mln (’;pﬂp) )

Combine Eq. (1) and Eq. (2), we have
P(Xm — > e) < mtin ef®

PP \™
- (ppp”)

_ ommpin(2)-mpin(2)

— oM KLT (utel|)

< g2me? (Lemma 1.1)

Similarly, we can prove the case for the other side. O

Remark. This proof is based on the one from [&].

Lemma 1.5. For non-negative continuous random variables X, we have

E[X] = /000 P(X > v)dv.

Proof.

P(X)dXdv (region of the integral is the same)

O

Remark. This lemma can also be obtained via Integration by Parts. Specifically, let f(v) =
[P(X)dX =P(X >v)and g(v) = [, 1dX = v, we have

/O B(X > v)dv = / F)d W)dv = F)gw) / £ ()g(w)dv

=— /000 —P(v)vdv
=E[y] = E[X]

Similar result holds for discrete nonnegative random variables.



Lemma 1.6. [2-side] Let X be a random variable satisfying P(X > €) < e=2m¢* and P(X <
—€) < e=2m¢* where m > 1 and € > 0, we have

]E[62(7rL—1)X2] < 2m.

Proof.

Inv 1 Inv Inv
IP’<X2 2(m—1)>dy/0P<XZ 2(m_1)>du+ (X 1/ )

& Inv
<1 PIlX>,|[——
- +/1 < - 2(m—1)>dy

> 2 Inv
<1 _|_/ e “M3m-D du
1

14 <f(m 1)

)

Similarly, we can show that
o 1
/ Plx<—/—Y Jav<m (5)
0 2(m —1)
Combining Eq. (3) and Eq. (4), we finish the proof. O
Remark. One can also obtain the 1-side version E[eQ(m_l)X 2] < m by, e.g., adding the assumption

that X > 0 and following the same proof.

Lemma 1.7. [2-side] Let X be a random variable defined on (0, 1) with mean y satisfying P(X >

nw+e) < e~m KL (utelln) and PX<pu—c¢ < e~ KLF (u=ellr) where m >Le>0,ut+e<l1
and u — € > 0, we have

]E[e(mfl)KLWXH#)] < 2m.

Proof. Denoting f(p) = KL (p||), we have

fin-(125) (c%5)

Since f”(p) > O forall p € (0, 1), f(p) decreases when 0 < p < p, increases when 1 < p < 1 and
attains its minimum 0 at p = p. Therefore, based on the inverse function theorem, there exists the
inverse function ¢ of KL (p||u) when p € (0, u), i.e., p = (KL (p||i)), Vp € (0, ). Similarly,
there exists another inverse function ¢ of KL (p||) when p € (u,1), i.e., p = (KLY (p||u)),
Vp € (u,1). Note that the functional forms of ¢ and ¥ may or may not be the same (i.e., whether



KL (p||p) is symmetric w.r.t. p = p) depending on the value of z. As shown below, the exact
functional form of the inverse function does not matter as long as it exists.

E[e(m—nkm(xuq)] _ /OO]P’ (e(m_1)KL+(X|\q) > V) dy (Lemma 1.5)
0

:/OOOIP<KL+(X||q)2 v )dy

m—1
[elres(E)e [o(xse () o
0 m—1 0 m—1
We use the same trick again as in Lemma 1.6,
& Inv ! Inv & Inv
PlX>¢ dv = PlX2>¢ dv + PlX>¢ dv
0 m—1 0 m—1 1 m—1
§1+/ P<X>¢><ln” ))dz/
1 m/—l
:1+/ e_%lfludu
1

1

=1+ (—(m— Ly~ m-1

)

Similarly, we have fooo P (X < (%)) dv < m. Therefore, combining it with Eq. (6) and Eq.
(7), we prove the claim. O]

Remark. Similarly, one can obtain the 1-side version E[e(™—DKL" (X))

assumption that X > p and following the same proof.

< m by, e.g., adding the

2 Main Result

We only consider the binary classification problem. Let us first introduce some basic setup.
e Data 2, 2 = (z,y) input # € R? and the output y € {0, 1}
e Data Space Z,z € Z

. iid
e Data Distribution D, z <~ D

Hypothesis h, model
Hypothesis Class H, h € H
o Training Set S with size m, S = {z1,...,2m}

o Loss 4, 0:H x Z—{0,1}

As usual, we care about the generalization error, i.e., error rate or misclassification rate in this case,
Lp(h) = P (h(z) £ 1), ®)

where we use the subscript to emphasize the dependency on the data distribution. However, since we
can not observe it directly, we approximate it using the empirical distribution, a.k.a., empirical error,

m m
1

Ls(h) = =" z) = - > 1h(a) 7 ui. ©

m
i=1

where ¢ is the 0-1 loss.



Bayesian View We are interested in bounding the generalization error using the empirical error.
PAC-Bayes [4, 3] takes a Bayesian view of PAC theory [7]. In particular, it assumes that we have
a prior distribution P over the hypothesis class 7 and we gonna obtain the posterior () after the
learning process on the training set. We can define the generalization error and empirical error in
terms of this Bayesian view as,

Ls(Q) = En~q[Ls(h)]
Lp(Q) = EpqlLp(h)].

Before introducing the main results, let us prove some useful lemmas. First, note that Ls(h) and
Lp(h) are distributions over Bernoulli random variables themselves.

Lemma 2.1. For any h and any € > 0 with Lp(h) + € < 1 and Lp(h) — € > 0, we have

Lp(h) + ¢) < e~ KL o (-+ellLo(h)

Li(h) — ¢) < e~ KL (Lo (h)=el Lo (1)

Proof. First, recall the definition of Lg(h) in Eq. (9) and observe that for any h we have Eg[Lg(h)] =
Lp(h). Then we replace p1 and X,,,in Lemma 1.4 with Lp(h) and Lg(h), we finish the proof. [
Lemma 2.2. For any distribution @ over H, Vi € H, p(h) € (0,1) and g(h) € (0,1), we have

KL (Enq[p(h)]|En~qla(h)]) < Enq [KLT (p(h)a(h))]

Proof. Denoting f(p) = KL (p||q), from Lemma 1.3, we know f(p) is strongly convex for any ¢.
Therefore, based on the Jensen’s inequality, we have

KL* (En~qp(h)]|[Er~qla(h)]) < Enng [KLT (p(h)|[En~qla(h)])] - (10)

Denoting g(q) = KL (p||q), from Lemma 1.3, we know g(q) is convex for any p,
KL (p(h)[En~qla(h)]) < Envg [KLT (p(h)]la(h))] - (11
Combining Eq. (10) and Eq. (11), we have
KL" (En~qlp(W)]|[En~q[a(h)]) < Enng [En~g [KLT (p(h)]lq(R))]]
= Enq [KL™ (p(h)[la(h))] ,

which proves the claim. O

2.1 Generalization Bound with KL divergence
Now we introduce the generalization bound which uses KL to measure the distance between prior
P and posterior ) over models.

Theorem 2.3. Let P be a prior distribution over H and let 6 € (0, 1). Then, with probability 1 — §
over the choice of an i.i.d. training set S according to D, for all distributions ) over #, we have

KL(Q|P) +ln27m
m—1

KL"(Ls(Q)IILp(Q)) <

Proof. Fix a hypothesis h, based on Lemma 2.1, we have

P(Ls(h) > Lp(h) +¢€) < e ™KL Lo +elLo(h)

P(Ls(h) > Lp(h) — €) < e KL" (o=l Lo (),
Then, based on Lemma 1.7, we have
Es[e(m—l)KL+(LS(h)HLD(h))] < 2m. (12)



Therefore, for all S and any 6 > 0, we have,

Eg[e(m—D KL (Ls(W] Lo(h)]5

p <€<m1>KL+<LS<h>|LD<h>> > 2;”) < <5 (13

2m

For any function f(h), we have

En~qlf(h)] = Enngllne/ ™)

P
=Epg[nef® +1n % +1n—]

Q
=KL(Q||P) + Enwo {m (geﬂh)ﬂ

< KL(Q|P) + mEjq [gef(h)}

= KL(QIIP) + WEpp [/ ®] . (14)

Let f(h) = (m — 1)KL*(Lg(h)||Lp(h)). From Eq. (13) and Eq. (14), we have, with at least
probability 1 — ¢,

(1 = DEraKL* (Ls(W) | Lp(h))] < KL(Q|[P) + nEpep [etn= DKL (s 0lLo(0)

< KL(Q||P) + In (?) . (15)

From Lemma 2.2, we have

(m — 1) KL (En~q[Ls (W[ En~q[Lp(R)]) < (m — DEpo[KLT (Ls(h) | Lp(h))]

< KL(Q|P) + In (2;”) 7 (16)

which proves the theorem. O

Remark. The proof follows the original proof of [3]. Again, we can have a one-side version,

KLH(Ls(Q)|Lp(Q)) < “L@IP) +1n

9

m—1

by adding the assumption Lg(Q) > Lp(Q) which is reasonable in practice.

One can also prove a slight different generalization bound by using a different technique as below.
Theorem 2.4. Let P be a prior distribution over H and let 6 € (0, 1). Then, with probability 1 — §
over the choice of an i.i.d. training set .S according to D, for all distributions ) over H, we have
m—+1
m

KL™(Ls(Q)Lp(Q))

Proof. From Eq. (14) in the proof of Theorem 2.3, for any function f(h), we have

Envolf(h)] < KL(QIP) + nEpep [/®]. am

Based on Lemma 2.2 and let f(h) = mKL'(Ls(h)|[Lp(h)), we have
KL (Ls(Q)[ILp(Q)) < EnvQKL" (Ls(h)||Lp(h))]
S0

m
_ KL@QI[P) + InEpp [e/™]

m

=En-ql

(18)



Note that since we consider 0-1 loss and samples are i.i.d., mLg(h) can only take values from
{0,1,2,...,m} and follows the binomial distribution B(m, Lp(h)). Hence, we have,

Eg [EhNP [ef(h)n —Eg [E,wp [e KL*(Ls(h)HLD(h))H

— R |:]Eh~P _emLs(h) In £503 4m(1-Ls(h)) In ffgi’;g)”
=Es |Enp -<Ls(h)>mLS(h) <1_L5(h))m(1L5(h))
[\ Lp(h) 1— Lp(h)
i [o (LY (1 sty
| Lp(h) 1—Lp(h)
(& /m _ k/m k 1—k/m m=k
=, L k1 - L m—k
' sz_%(’f) P (L= Lo () (LDUL)) (1—LD(h>)
[ m EN® fm—k\""
()
Lk=0

where the last inequality uses the fact that (") ( %)k (mT’k)mfk is the probability of a binomial

random variable (following B(m, %)) taking the value as k, thus being no larger than 1. The second
to the last line makes use of the law of the unconscious statistician (LOTUS).

Based on Markov’s inequality, for any § > 0, we have

)
P (Eth |:ef(h):| Z m; 1) < 6ES [EhNP [6 }:I < 57 (20)

=< 1 =<
which along with Eq. (18) proves the theorem. O

Remark. This proof largely follows the one in [1]. The observation that, for any h, mLg(h) is
distributed according to the binomial distribution B(m, Lp(h)) is really insightful. One can further

improves Eq. (19) to show /m < Eg [Eth [ef(h)]] < v2m. How?
2.2 Canonical Generalization Bound

Theorem 2.5. Let P be a prior distribution over H and let 6 € (0, 1). Then, with probability 1 — ¢§
over the choice of an i.i.d. training set .S according to D, for all distributions @) over H, we have

KL(Q||P) +In 277"
2(m—1)

Lp(Q) < Ls(Q) + \/

Proof. (Proof-I) From Lemma 1.1 and Theorem 2.3, we have

KL(Q||P) + In 2%”
m—1 '

2(Ls(Q) — Lp(Q))* < KL™(Ls(Q)|Lp(Q)) <

Therefore, we have,

N

which proves the theorem. O

Proof. (Proof-II) Let A(h) = Lp(h) — Lg(h). From Eq. (14), for any function f(h), we have

Envolf()] < KL(QIP) + nEpep [/®]. D



Let f(h) = 2(m — 1)A(h)%. We have
2(m — 1)Epgl[A(R)]? < 2(m — 1)Epug[A(h)?]  (Jensen’s inequality)
< KL(Q|P) + InByp [20m—DAM] (22)
Since Lp(h) € [0, 1], based on Hoeffding’s inequality, for any € > 0, we have
P(A(R) >¢€) < e~ 2me’

P(A(h) < —¢) < e 2
Hence, based on Lemma 1.6, we have

Eg {ez(mq)A(W] <om = E,_p [Es [ez(mq)A(h)?” <om
< Eg [Eth [eQ(m—l)A(h)z}} <2m

Based on Markov’s inequality, we have

5E’S Enop eZ(m—l)A(h)2

P (EhNP [eQ(m—l)A(h)z} > 27774) < |: |:2 :|:| <. (23)

m

Combining Eq. (22) and Eq. (23), with probability 1 — §, we have

KL(Q|P) +1n (2—’”)
Eno[A(R))? < 6 24
h~QlAR)]” < 2= 1) (24)
which proves the theorem. O

Remark. This theorem has a simple form and is more similar to the majority of generalization
bounds. Therefore, it is frequently used in the literature. Proof-I is based on the one in [3, 1]. Proof-1I
is based on the one in the chapter 31 of [6]. The proof technique in Proof-II is more general in a sense
that one can generalize the loss beyond 0-1 loss under this framework and derive similar results.
Theorem 2.6. Let P be a prior distribution over H and let 6 € (0, 1). Then, with probability 1 — ¢
over the choice of an i.i.d. training set .S according to D, for all distributions ) over H, we have

2Ls(Q) (KL(Q||P) + In 2*) N 2 (KL(Q||P) + In 22)
m—1 m—1

Lp(Q) < Ls(Q) + \/

Proof. From Lemma 1.2, we have for any p, g € [0, 1] with p < ¢,

KL* (p[lq) > kel 1

2q
If KL (p||q) < z, then we have
CUZ@;(;])Q@QQ$Z(PQ)2@Q§P+\/QQ7W (25)
Note that ,
g<p+20z & <\f—\/2273> §p+g
S V2 <2+ + Ve (26)
Based on Eq. (25) and Eq. (26), we have
q<p++/2qx
<p+(V2p+z+V2)Wr
=p+V2pr+a22+zx
<p+/2pr+2x  (Subadditivity: vz +y < VT + \/7) (27)
Letp = Ls(Q),q = Lp(Q), and z = KL(Q‘in_)TanTm. Theorem 2.3 shows KL (p|l¢) < 2. Then
Eq. (27) proves the theorem. O



Remark. Note that whether Theorem 2.5 or Theorem 2.6 provides a sharper bound depends on the
actual value of Lg(Q). But Theorem 2.5 has a simpler form.

2.3 Generalization Bound of Deterministic Models

Let us first review a result from [5] which generalizes the PAC-Bayes bound to a general class of
deterministic models. We define the model to be f,, € H : X — R¥ where w are the parameters
of the model, X is the input space, and k£ > 1. We also define the y-margin loss for the k-category
classification as,

Lp(fu,y) = B (fw(x)[y] <7+ mex fw(ff)[j]) ;

where v > 0 and f,,(x)[j] means the j-th output of the model. Accordingly, we can define the
empirical version,

Lslfun) = - 321 (£al0)li] <7+ max ()]

z; €S
We use Ni' to denote the first m positive integers, i.e., Nt = {1,2,...,m}.

Theorem 2.7. Let f,(x) : X — R* be any model with parameters w, and P be any distribution on
the parameters that is independent of the training data. For any w, we construct a posterior Q(w + u)
by adding any random perturbation  to w, s.t., P(maxgex || fu+u(®) — fu(2)]oo < T) > 3. Then,
for any v, 0 > 0, with probability at least 1 — ¢ over the size-m training set .S, for any w, we have:

2KL(Q||P) + In 32

ED(fwyo) S ZS(fwv'-Y) + \/

28
2(m—1) (28)
Proof. Letw = w + u. Let C be the set of perturbation with the following property,
v
C=quw w () = fu(@)|lo < = ¢ 29
{u gl 2) = Aot < 7} 9)

w = w + u (w is deterministic and u is stochastic) is distributed according to Q(w). We now
construct a new posterior () as follows,
1 ~ ~
Q@) {o @ eC. 60

Here Z = [, . dQ(w) = P(w € C). We know from the assumption that Z > 1. Cis the

complement set of C. Therefore, for any w ~ Q, we have

max o (2)[i] = fa (@) 51| = [fuw(@)]i] = fu(2)[]]

ieN) jeENS zex

< max fa(@)[i] = fo(2)5] = fuw(@)[i] + fu(2)]]

" ieNf,jeNf zex

< omax Afg(e)fi] = fuw(@)[i]|+| fa(2)l5] = fu(2)[]
1€EN] JEN, ,zeX
< max |fa(@)li] ~ fu@lill+ max | fa(@)lj] — fulo)l]
€N zeX JENI ,zeX
<%+%=% 31)

Recall that



Denoting ji = argmax;_, fi(7)[j] and j3 = argmax;_, fu,(z)[j], from Eq. (31), we have

Ja(@ly] - Fa@)l3] = Fu(@)] + fu(@)l3)|< 5

= Ja(@l] — fo@)l3] < ful@)ly) — Fu@)3] + 5 (32)
Note that since fg(z)[ji] > fa(2)[j3], we have
fa(@)l) = fa@)l57] < fo@)y] - fal2)lj3]
< fu@)ly) = ful@)li3] +

b2
—
es]
o
~
98]
[\]
N
=

Therefore, we have
Ju(@)[Y] = fu(®)[i3] <0 = fa(z)ly] - fa(x)[j7] <

which indicates P (fu(2)ly] < fu(@)js]) < P (Fa(o)ly] < fa(@)ji] + 3), or equivalently

Lo(fu:0) < Lo(fa: 3). (33)

Note that this holds for any perturbation w ~ Q.
Again, recall that
Lp(fa, %) =P

5
(

fa) < 3+ ma )]

LD(fwa’Y) = zLIzDD

jM@M<7+%gM@WD

From Eq. (31), we have
fa(@ly) = fa@)li7) = fu(@ly] + ful@)lii)|< 3
= fu(@)l] ~ fu(@)i] < fa(@)ly] - fa(@)i] + 5 (34)
Note that since f,(x)[j5] > fuw(z)[j7], we have

fu(@) Y] = fu(@)[53] < fu(@)[y] = fulz)[i7]
< fa(@)ly] — fo(2)[57] +

(Eq. (34))

Mo |2

Therefore, we have

fo(@)ly] = fo(@)[ii] < 5 = fu(@)ly] = ful@)liz] <7,

Mo |2

which indicates L p (fa,3) < Lp (fw,7y)- Therefore, from the perspective of the empirical estimation
of the probability, for any @ ~ Q, we almost surely have

is(fm%) < Ls(fu,7)- (39)

Now with probability at least 1 — §, we have

Lo(fu,0) SEgeg |Ln(far3)]  (Eq. (33)

. KL(Q||P) + In 22
<Ezuo {Ls(fu% %)} + \/ (622(Hm)—+1) J (Theorem 2.5)

- KL(Q||P) + In 2m
<thmﬂ+¢ GIEEL (ke 09) 36

11



Note that

KL(Q||P) = /an—dw+ /an—dw

weC

= %1 —d + /anZdw+/Q QZ)PdﬁH— /an(l—Z)dw
weC weC weC welC

= ZKL(Q||P) + (1 - Z)KL(Q||P) — H(Z), 37)

where @ denotes the normalized density of Q restricted to C. H(Z) is the entropy of a Bernoulli
random variable with parameter Z. Since we know % < Z < 1 from the beginning, 0 < H(Z) < 1n2,
and KL is nonnegative, from Eq. (37), we have

KL(Q||P) = % [KL(Q|IP) + H(Z) — (1 - Z) KL(Q||P)]

1
< [KL@QIP) + H(Z)]
<2KL(Q||P) +21n2. (38)
Combining Eq. (36) and Eq. (38), we have

- KL(Q|P) + § In 3
Lo(f.0) SLs(fw,’V)Jr\/ LS )

which finishes the proof. O

Remark. Note that the constants are slightly different from the one in [5] due to the facts that we
use two-side version of Theorem 2.5 and we use natural logarithm rather than the one with base 2.

12
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