When Good Randomness Goes Bad:

Virtual Machine Reset Vulnerabilities and
Hedging Deployed Cryptography

Thomas Ristenpart Scott Yilek

Qt—bc.« I | I

Computer Science and Engineering

Today’s talk in one slide

Virtual machine snapshot technology:

run a VM twice software reuses expose TLS sessions
from same cryptographic or steal TLS server
snapshot randomness secret key
— _/
~

Exploiting a reset vulnerability:
software unaware of resets, crypto fragile

Hedged deployed cryptography:

routine crypto improve security framework to “patch”
operations fragile via graceful crypto to achieve
given predictable or degradation of hedging

reused randomness provable security

Cryptographic operations require suitable randomness

randomness

key

message

String of bits that are:

e Uniformly distributed

* Freshly sampled for each message
* Private

ciphertext

Security of operation relies on having good randomness

4)

How is randomness generated in systems?

Cryptographic Random Number Generators (RNGs)

Measure a variety of events ~
e User input timings (keyboard, mouse)
* Network and OS interrupts

* File system reads

... (N Failures

can
An RNG takes measurements and produces > occur
bits that are (hopefully) uniform {ME Bl at any

level
Long literature showcasing RNG failures
[Wagner, Goldberg 1996] hleasuhle
, events
[Gutterman, Malkhi 2006]
[Gutterman, Pinkas, Reinman 2006] _/
[Dorrendorf, Gutterman, Pinkas 2007]
[Woolley et al. 2007]
[Bello 2008] Exposed randomness
[Mueller 2008] Predictable randomness j[e——
[Abeni et al. 2008] Repeat randomness

[Yilek et al. 2009]

Our first contribution is revealing a new type of RNG failure in practice

Virtual machine (VM) encapsulates entire guest operating system

and (virtualized) hardware resources

-

S
]
i

M manager
-

VM snapshots save entire state (memory, persistant
storage, etc.) of a VM

Backup Migration Replication Fault or intrusion recovery

“Protect Against Adware and Spyware: Users protect their PCs against adware,
spyware and other malware while browsing the Internet with Firefox in a virtual
machine.”

[http://www.vmware.com/company/news/releases/player.html]

vimware

-
t_.f

http://www.freesoftware.com/ |

\ (R)
(/()EJL browser exploit
e

Clean
snapshot N Virtual machine compromised, but not host OS

of VM with I N

browser e ——

running Resetting to snapshot removes malware
\ \J

“Your dad can do his [private] surfing on the virtual machine and can even set it to
reset itself whenever the virtual computer is restarted, so there's no need to worry
about leaving tracks. ... | recommend VMware because you can download a free
version of VMware Server for home use.”

[Rescorla, http://www.thestranger.com/seattle/SavagelLove?0id=490850]

Garfinkel, Rosenblum ‘05] discuss possibility that snapshot use
could lead to security issues

Problems might stem from reuse of security-critical state

_" Y, Hypothetical example:
reuse of a one-time-only cryptographic key

__ J
VM reset vulnerabilities: We exhibit reset vulnerabilities in
multiple uses of a VM snapshot TLS clients and servers due to

can lead to security violations cryptographic randomness reuse

Fresh VM

Load browser

Take snapshot

https://www.mybank.com/
>
/5 - > TLS session
\ Sy 5 key transport
(?{'mf::";_’: =) https://www.randomsite.com/
>
/ga < ~ TLS session
\ =~ __1) 5 key transport

Browser’s TLS client chooses

Thi I TL i
same premaster secret (PMS) is could expose TLS sessions

TLS Client Guest OS S?me PMS. to Same FtMS to Comments
different sites? same site?

<1

Firefox 3.5 Windows XP Always Always 00 mouse
events

Chrome 3.0 Windows XP Never Sometimes

IE 6.0 Windows XP Never Sometimes

Safari 4.0 Windows XP Never Sometimes
<1

Firefox 3.0 Ubuntu Linux Always Always 00 mouse
events
Must visit a
HTTPS si

Chrome 4.0 Ubuntu Linux Always Always > site
before
snapshot

Results hold for both VMWare Server 1.0 and VirtualBox 3.0
virtual machine managers (VMMSs) both running on Ubuntu Linux

TLS clients are choosing randomness long before connection request

Potential for problems anywhere snapshots are used

We show that in some situations using Apache mod_ssl inside VMs: DeA

secret

https://www.mybank.com/

" TLS key
5 exchange

AEacHE

https://www.mybank.com/

” TLS key
5 exchange - J

DSA secret key allows

Key extraction is possible . :
impersonating server

https://www.mybank.com/

=
- TLS key
5 exchange
A few minutes with pen & paper --or-- just check wikipedia article on DSA:
Ml __ _ M2

server
randomness

server
randomness

If adversary has public key, (M1,5S1) and (M2,S2) then
adversary easily computes skserver/@

https://www.mybank.com/

A logical timeline of events

Admmstrator
launches
Apache
daemon

\

Apache children
processes forked

- ' TLS key
5 exchange
HTTPS
request
. handled
Childs by a child
RNGs Randomness
init'd used to sign
User
snapshots VM RNG updated
Snapshot with time,

child PID, stack

later run.

DSA
signing key exch msg
Skserver >

sig

sig sent to client

https://www.mybank.com/

A logical timeline of events

' TLS key

5 exchange

VM managers often
synchronize guest’s
time with Internet

This would seem to
imply that DSA
randomness

would be different
each time

HTTPS
request
handled
by a child
Randomness
Guests’ used to sign
network up
User
snapshots VM RNG updated
Snapshot with time,

child PID, stack

later run.

VM clock g

synch

DSA
signing key exch msg

Skserver é¢
< |

sig

sig sent to client

Experimenting with DSA key extraction

’ DSA
’ secret
key
> .
- TLS key
5 exchange \
> AEacHE
>
- TLS key
5 exchange
>
>
- TLS key
5 exchange

This is one trial.

We performed 5 trials for each VMM without rebooting physical server
We performed 5 trials for each VMM with rebooting physical server
Looked for reuse of randomness across pairs of successful connections

Experimenting with DSA key extraction

Always
i Tmesmer Sheel ot g 0%
machine?
VirtualBox Yes No 10/10 10/10
VirtualBox Yes Yes 10/10 10/10
VMWare Yes No 0/10 0/10
VMWare Yes Yes 4/10 3/10
VMWare No No 6/10 6/10
VMWare No Yes 3/10 1/10

Snapshot reuse leads to repeated cryptographic randomness
'\

1) Applications cache to-be-used randomness Applications
consuming

[)

- randomness

T T T Failures
/ﬁ can

occur
RNG process > 8
at any

level

2) Insufficient differential entropy in RNG source
events across resets

. 0N

APAa S HE

Measurable
events

Fixes?
Don’t cache to-be-used randomness

Good RNG should be invoked immediately before consumption

This might be harder than it looks!
(e.g., state of /dev/random gets rolled back as well)

Probably should use hardware-based RNG

RNG design and use needs careful
engineering in light of virtualization

Our attacks beg another question

|v|1 _ | |v|2

server
randomness

f
Steal secret
key given just
M1,M2,51,S2
and public key

server

[]
randomness [

Why is the crypto so fragile in face of bad randomness?

parameters

The attacks don’t abuse long-lived key

generation! Long-lived
X key generation

randomness

Good /

long-lived keys

Attacks abuse routine operations:
signing, key exchange

But actually this is endemic within cryptography:

. Reused Predictable
Algorithm
randomness randomness
Session Session
TLS key transport : :
compromise compromise
. Secret ke Secret ke
DSA signatures . Y . Y
revelation revelation

OAEP public-key

Distinguishing

Message recovery

encryption attacks (e =3)
Identification Secret key Secret key
protocols revelation revelation
Fiat-Shamir Secret key Secret key
signatures revelation revelation
CTR mode Partial message | Partial message
encryption recovery recovery
Distinguishin Partial message
CBC mode & & &

attacks

recovery

RSA PKCS #1

Distinguishing

Partial message

Cryptographers generally
assume good randomness
when designing primitives
(and assessing their security)

For many security goals,

it is well known that
(provably) one needs good
randomness

Hedged cryptography

Expand security models to include randomness failures for routine operations

Build crypto to be as secure as possible for varying qualities of randomness

message

blic ke
PUBTICKEY ciphertext

randomness

Hedged public-key encryption

Semantic security

Clelele (nothing leaked about message)
Repeated Nothing leaked but message equality
Predictable Nothing leaked but message equality

(as long as message is unpredictable)

Prove that our crypto operations give gracefully degrading security

In some cases, there is no significant degradation (DSA)

Hedged cryptography

[Rogaway 2004]
[Rogaway, Shrimpton 2006]
[Kamara, Katz 2008]

Symmetric encryption with
various types of poor randomness

[Bellare, Brakerski, Naor,
Ristenpart, Segey,
Shacham, Yilek 2009]

Public-key encryption
(predictable/exposed randomness)

Public-key encryption

[Yilek 2009]
(reused randomness)

Our contributions to theory of hedging:
» e Simple framework for hedging of arbitrary crypto operations
* New digital signature secure notion
* Analyses for various primitives (signatures, symmetric encryption,
public-key encryption)

Our framework for hedging is simple Integrates approaches from
[Bellare, et al. 2009] [Yilek 2009]

inputs

keys Routine

_ output
randomness operation

Our framework for hedging is simple Integrates approaches from

| [Bellare, et al. 2009] [Yilek 2009]
l ‘1' inputs
Hedge
k .
Func eys Routlr.1e output
Randomness operation

Hedging does not impact functionality,
allowing immediate deployability

https://www.mybank.com/

>

>

Our framework for hedging is simple Integrates approaches from

| [Bellare, et al. 2009] [Yilek 2009]
l ‘l' inputs
Hedge
k .
Func eys Routlr.1e output
Randomness operation

Our suggestion is to instantiate
Hedge Func using HMAC.

HMAC is built using a cryptographic
key —\ HMAC hash function, e.g. SHA-256 or SHA-512

We can generate longer outputs by
repeated applications of HMAC

variable-length input

fixed-length output

It is keyed, and when key is good it is a When key is “bad”, still behaves like a
secure PRF secure hash function

If hedging had already been implemented...

https://www.mybank.com/

v
session

| ey 5 key transport

session
nsport

If hedging had already been implemented...

DSA

https://www.mybank.com/

p—

5 exchange - J

4

So while hedging doesn’t replace need for good RNGs,
it provides significant defense-in-depth should RNGs fail

Hedging is simple to implement

We hedged crypto operations within OpenSSL v.0.9.8k

... and it’s efficient

Plain time (s) Hedged time (us)
Operation Median (Min.Mean.Max.Std. Dev) | Median (Min.Mean.Max.Std. Dev)
AES128-SHA 6941 (6875.6989.8380.231) 6968 (6890.7310,11334.,920)

DHE-RSA-AES128-SHA 52030 (51756,52120,63388,470) 52828 (51150.52618,62841,735)
DHE-DSS-AESI28-SHA 50907 (50567.50959,64224.471) 51067 (50011,51010,62020,673)

Results of timine 1.000 TLS handshak (Client: Dual Pentium 4 3.20 GHz)
esults ot timing 2, andshakes (Server: Pentium 4 2.0 GHz)

1,024-bit server keys used (Connected via LAN)

VM reset vulnerabilities

(bad)

More and more software will soon be
running in VMs

VM snapshots mean programs are
unknowingly reset, existing software was
not designed for this

More security problems lurking?

Need to carefully design & use RNGs for
VM setting

Hedged cryptography

(good)

Provably graceful degradation of security

It can be fast and simple

The catch: more complex analyses of
crypto provable security

Make up as much as possible for system
failures with better cryptography

Today’s talk in one slide

Virtual machine snapshot technology:

run a VM twice software reuses expose TLS sessions
from same cryptographic or steal TLS server
snapshot randomness secret key
— _/
~

Exploiting a reset vulnerability:
software unaware of resets, crypto fragile

Hedged deployed cryptography:

routine crypto improve security framework to “patch”
operations fragile via graceful crypto to achieve
given predictable or degradation of hedging

reused randomness provable security

