
When Good Randomness Goes Bad:
Virtual Machine Reset Vulnerabilities and

Hedging Deployed Cryptography

Thomas Ristenpart Scott Yilek

Today’s talk in one slide

Virtual machine snapshot technology:

run a VM twice

from same

snapshot

expose TLS sessions

or steal TLS server

secret key

software reuses

cryptographic

randomness

Exploiting a reset vulnerability:

software unaware of resets, crypto fragilesoftware unaware of resets, crypto fragile

Hedged deployed cryptography:

routine crypto

operations fragile

given predictable or

reused randomness

improve security

via graceful

degradation of

provable security

framework to “patch”

crypto to achieve

hedging

Cryptographic operations require suitable randomness

Encrypt

message

randomness
ciphertext

key

String of bits that are:

• Uniformly distributed

• Freshly sampled for each message

• Private

Security of operation relies on having good randomnessSecurity of operation relies on having good randomness

How is randomness generated in systems?

Cryptographic Random Number Generators (RNGs)

Measure a variety of events

• User input timings (keyboard, mouse)

• Network and OS interrupts

• File system reads

• …

An RNG takes measurements and produces

bits that are (hopefully) uniform RNG process

Applications

consuming

randomness

Failures

can

occur

at any

level

Measurable

events

Long literature showcasing RNG failures

[Gutterman, Pinkas, Reinman 2006]

[Dorrendorf, Gutterman, Pinkas 2007]

[Wagner, Goldberg 1996]

[Gutterman, Malkhi 2006]

[Bello 2008]

[Woolley et al. 2007]

[Mueller 2008]

[Abeni et al. 2008]

[Yilek et al. 2009]

Exposed randomness

Predictable randomness

Repeat randomness

level

Our first contribution is revealing a new type of RNG failure in practice

Virtual machine (VM) encapsulates entire guest operating system

and (virtualized) hardware resources

VM snapshots save entire state (memory, persistant

storage, etc.) of a VM

VM manager

Backup Replication Fault or intrusion recoveryMigration

“Protect Against Adware and Spyware: Users protect their PCs against adware,

spyware and other malware while browsing the Internet with Firefox in a virtual

machine.”

[http://www.vmware.com/company/news/releases/player.html]

http://www.freesoftware.com/

browser exploit

Virtual machine compromised, but not host OS
Clean

snapshot

of VM with

Resetting to snapshot removes malware

of VM with

browser

running

“Your dad can do his [private] surfing on the virtual machine and can even set it to

reset itself whenever the virtual computer is restarted, so there's no need to worry

about leaving tracks. … I recommend VMware because you can download a free

version of VMware Server for home use. ”

[Rescorla, http://www.thestranger.com/seattle/SavageLove?oid=490850]

Problems might stem from reuse of security-critical state

[Garfinkel, Rosenblum ‘05] discuss possibility that snapshot use

could lead to security issues

Hypothetical example:

reuse of a one-time-only cryptographic key

We exhibit reset vulnerabilities in

TLS clients and servers due to

cryptographic randomness reuse

VM reset vulnerabilities:

multiple uses of a VM snapshot

can lead to security violations

We show that in some widely-used browser/VM combinations:

Fresh VM

Load browser

Take snapshot

https://www.mybank.com/

TLS session

key transport

https://www.randomsite.com/

TLS session

key transport

Browser’s TLS client chooses

same premaster secret (PMS)
This could expose TLS sessions

TLS Client Guest OS
Same PMS to

different sites?

Same PMS to

same site?
Comments

Firefox 3.5 Windows XP Always Always
<100 mouse

events

Chrome 3.0 Windows XP Never Sometimes

IE 6.0 Windows XP Never Sometimes

Safari 4.0 Windows XP Never Sometimes

Firefox 3.0 Ubuntu Linux Always Always
<100 mouse

eventsevents

Chrome 4.0 Ubuntu Linux Always Always

Must visit a

HTTPS site

before

snapshot

Results hold for both VMWare Server 1.0 and VirtualBox 3.0

virtual machine managers (VMMs) both running on Ubuntu Linux

TLS clients are choosing randomness long before connection request

Potential for problems anywhere snapshots are used

https://www.mybank.com/

TLS key

exchange

We show that in some situations using Apache mod_ssl inside VMs:

https://www.mybank.com/

DSA

secret

key

Key extraction is possible
DSA secret key allows

impersonating server

https://www.mybank.com/

TLS key

exchange

https://www.mybank.com/

TLS key

exchange

DSA

secret

key

A few minutes with pen & paper

M1 M2

--or-- just check wikipedia article on DSA:

Sign

S1

skserver
Sign

S2

randomness

If adversary has public key, (M1,S1) and (M2,S2) then

adversary easily computes skserver

skserver

randomness

A logical timeline of events

HTTPS HTTPS

https://www.mybank.com/

TLS key

exchange

DSA

secret

key

Apache children

processes forked

Adminstrator

launches

Apache

daemon

User

snapshots VM

Snapshot Snapshot

later run.

Sign

sig

DSA

signing

sig sent to client

HTTPS

request

handled

by a child
Childs’

RNGs

init’d

RNG updated

with time,

child PID, stack

Randomness

used to sign

key exch msg

skserver

A logical timeline of events

HTTPS HTTPS

https://www.mybank.com/

TLS key

exchange

DSA

secret

key

VM clock

Sign

sig

DSA

signing

sig sent to client

HTTPS

request

handled

by a child

RNG updated

with time,

child PID, stack

Randomness

used to sign

key exch msg

VM managers often

synchronize guest’s

time with Internet

This would seem to

imply that DSA

randomness

would be different

each time

User

snapshots VM

Snapshot Snapshot

later run.

VM clock

synch

Guests’

network up skserver

Experimenting with DSA key extraction

TLS key

exchange

TLS key

exchange

DSA

secret

key

exchange

TLS key

exchange

This is one trial.

We performed 5 trials for each VMM without rebooting physical server

We performed 5 trials for each VMM with rebooting physical server

Looked for reuse of randomness across pairs of successful connections

VMM Time sync?

Always

reboot

physical

machine?

pairs w/ repeat

sesion IDs

pairs w/ DSA

key extractable

VirtualBox Yes No 10/10 10/10

VirtualBox Yes Yes 10/10 10/10

Experimenting with DSA key extraction

VirtualBox Yes Yes 10/10 10/10

VMWare Yes No 0/10 0/10

VMWare Yes Yes 4/10 3/10

VMWare No No 6/10 6/10

VMWare No Yes 3/10 1/10

Snapshot reuse leads to repeated cryptographic randomness

RNG process

Applications

consuming

randomness

Failures

can

occur

at any

level

1) Applications cache to-be-used randomness

2) Insufficient differential entropy in RNG source

Measurable

events

level2) Insufficient differential entropy in RNG source

events across resets

Fixes?

Don’t cache to-be-used randomness

Good RNG should be invoked immediately before consumption

This might be harder than it looks!

(e.g., state of /dev/random gets rolled back as well)

Probably should use hardware-based RNG

RNG design and use needs careful

engineering in light of virtualization

Sign

S1

M1

skserver

randomness
Sign

S2

M2

skserver

randomness

Why is the crypto so fragile in face of bad randomness?

Steal secret

key given just

M1,M2,S1,S2

and public key

Our attacks beg another question

Why is the crypto so fragile in face of bad randomness?

The attacks don’t abuse long-lived key

generation!

Attacks abuse routine operations:

signing, key exchange

Long-lived

key generation

parameters

randomness

long-lived keys
Good

Algorithm
Reused

randomness

Predictable

randomness

TLS key transport
Session

compromise

Session

compromise

DSA signatures
Secret key

revelation

Secret key

revelation

But actually this is endemic within cryptography:

OAEP public-key Distinguishing Message recovery

Cryptographers generally

assume good randomness

when designing primitives

(and assessing their security)

OAEP public-key

encryption

Distinguishing

attacks

Message recovery

(e = 3)

Identification

protocols

Secret key

revelation

Secret key

revelation

Fiat-Shamir

signatures

Secret key

revelation

Secret key

revelation

CTR mode

encryption

Partial message

recovery

Partial message

recovery

CBC mode
Distinguishing

attacks

Partial message

recovery

RSA PKCS #1
Distinguishing

attacks

Partial message

recovery

For many security goals,

it is well known that

(provably) one needs good

randomness

Hedged cryptography

Expand security models to include randomness failures for routine operations

Build crypto to be as secure as possible for varying qualities of randomness

Encrypt

message

randomness
ciphertext

public key

Randomness Hedged public-key encryption Typical PKE (hybrid w/ CTR mode)

Good
Semantic security

(nothing leaked about message)
Semantic security

Repeated Nothing leaked but message equality Partial information leaked always

Predictable
Nothing leaked but message equality

(as long as message is unpredictable)
Message recovery always

Prove that our crypto operations give gracefully degrading security

In some cases, there is no significant degradation (DSA)

[Bellare, Brakerski, Naor,

Ristenpart, Segev,

Shacham, Yilek 2009]

[Rogaway 2004]

[Rogaway, Shrimpton 2006]
Symmetric encryption with

various types of poor randomness

Public-key encryption

(predictable/exposed randomness)

Public-key encryption

(reused randomness)
[Yilek 2009]

Hedged cryptography

[Kamara, Katz 2008]

Our contributions to theory of hedging:

• Simple framework for hedging of arbitrary crypto operations

• New digital signature secure notion

• Analyses for various primitives (signatures, symmetric encryption,

public-key encryption)

(reused randomness)
[Yilek 2009]

Our framework for hedging is simple

Routine

operation

inputs

randomness
output

keys

Integrates approaches from

[Bellare, et al. 2009] [Yilek 2009]

Routine

operationRandomness
output

Hedge

Func

Hedging does not impact functionality,

inputs

keys

Our framework for hedging is simple Integrates approaches from

[Bellare, et al. 2009] [Yilek 2009]

Hedging does not impact functionality,

allowing immediate deployability

https://www.mybank.com/

Hedge

Func

Hedge

Func

variable-length input
Our suggestion is to instantiate

Hedge Func using HMAC.

Routine

operationRandomness
output

Hedge

Func

inputs

keys

Our framework for hedging is simple Integrates approaches from

[Bellare, et al. 2009] [Yilek 2009]

HMACkey

fixed-length output

HMAC is built using a cryptographic

hash function, e.g. SHA-256 or SHA-512

It is keyed, and when key is good it is a

secure PRF

When key is “bad”, still behaves like a

secure hash function

We can generate longer outputs by

repeated applications of HMAC

If hedging had already been implemented…

https://www.mybank.com/

TLS session

key transport

https://www.randomsite.com/

TLS session

key transport

If hedging had already been implemented…

https://www.mybank.com/

TLS key

exchange

DSA

secret

key

https://www.mybank.com/

TLS key

exchange

So while hedging doesn’t replace need for good RNGs,

it provides significant defense-in-depth should RNGs fail

Hedging is simple to implement

We hedged crypto operations within OpenSSL v.0.9.8k

… and it’s efficient

Results of timing 1,000 TLS handshakes
(Client: Dual Pentium 4 3.20 GHz)

(Server: Pentium 4 2.0 GHz)

(Connected via LAN)1,024-bit server keys used

VM reset vulnerabilities Hedged cryptography

More and more software will soon be

running in VMs

VM snapshots mean programs are

Provably graceful degradation of security

It can be fast and simple

(bad) (good)

VM snapshots mean programs are

unknowingly reset, existing software was

not designed for this

Need to carefully design & use RNGs for

VM setting

Make up as much as possible for system

failures with better cryptography

The catch: more complex analyses of

crypto provable security

It can be fast and simple

More security problems lurking?

Today’s talk in one slide

Virtual machine snapshot technology:

run a VM twice

from same

snapshot

expose TLS sessions

or steal TLS server

secret key

software reuses

cryptographic

randomness

Exploiting a reset vulnerability:

software unaware of resets, crypto fragilesoftware unaware of resets, crypto fragile

Hedged deployed cryptography:

routine crypto

operations fragile

given predictable or

reused randomness

improve security

via graceful

degradation of

provable security

framework to “patch”

crypto to achieve

hedging

