
GROUP ID: 5

GUI Interaction on Autopilot
Christina Chung

UTORid: chungc37
Teaching Labs ID: g4rice

Sahand Akbari
UTORid: akbaris6

Teaching Labs ID: akbaris6

Mohammad Kianpisheh
UTORid: kianpish

Teaching Labs ID: kianpish

ABSTRACT
By making objects tangible and directly manipulable, the
graphical user interface provides an easy-to-use interface
for non-programmers to operate a computer. But because
these interfaces suffer from an inherent lack of
programmability, users are often subjected to the tedium of
manually repeating their tasks. We propose Autopilot, a
context-aware system that detects and automates repetitive
behavior. We validated Autopilot against the baseline of
manual input, and show that not only does the system
substantially reduce the amount of time it takes for
participants to perform a repetitive task, but many
expressed an openness toward incorporating the system into
their practices.

INTRODUCTION
Thoughts, feelings, and beliefs are easily conveyed when
humans communicate with one another. For instance, if a
person were to point to a pile of papers and ask a friend to
throw it away, the instruction would be well understood.
This is due in part by peoples’ gifted abilities to grasp the
context of a situation [6]. Unfortunately, the same cannot be
said when humans communicate with computers. What is
considered to be a “pile” of papers? Which pile of papers is
to be thrown away? Getting computers to understand such
contextual information is a problem that has long stymied
the development of rich user experiences. Only until
recently, with advancements in artificial intelligence, have
computers gained some ability to understand its user’s
intentions.

In Dey’s conception, context-awareness is the ability of a
computer “to provide relevant information and/or services
to the user” [6]. While there are several forms of context-
awareness, one is the automation of a task. In this work, we
address the problem of automating repetitive tasks,
particularly those performed on the graphical user interface
(GUI). In essence, a repetitive task is a sequence of actions
that is repeated multiple times in succession, such as
renaming several files in a directory. Tasks such as these
can be tedious for the able-bodied, and challenging for the
impaired [7], making them well-suited for automation.

We propose Autopilot, a context-aware system that detects
and automates repetitive behavior by leveraging the
programming by demonstration (PBD) paradigm [4]. In
PBD, users demonstrate the task to be automated, while the
computer attempts to intuit the behavior. In sum, this work
aims to enrich user experience by lessening the tedium of
performing repetitive tasks.

Figure 1. A screenshot of the Autopilot system. (a) Program
the number of repetitions that the system should detect before
prompting the user to execute a macro; (b) record a macro; (c)
a macro (click to edit); (d) execute a macro.

RELATED WORK
By making objects tangible and directly manipulable, the
GUI provides an easy-to-use interface for non-programmers
to operate a computer [17]. However, these interfaces suffer
from an inherent lack of programmability, subjecting users
to manually repeating actions [14]. As a result, users have
expressed a desire for automation [12].

One of the more largely attempted approaches to automate
GUI interaction is through PBD, in which computers learn
how to perform tasks from user-demonstrated behavior [4].

For instance, SMARTedit automates the process of
formatting text in a text editor based on a few examples
provided by the user [10]. CoScriptor enables users to save
previously performed actions in web-processes for future
reuse [11]. In these works, the tasks that are automated are
bound to single applications, and do not support tasks
involving several.

One primary challenge in supporting automation on a cross-
application level is knowing where GUI elements are
positioned, as this information often not readily available.
To recognize GUI elements, a popular technique is to
leverage computer vision, using various forms of template
matching and feature matching [13,18]. These techniques
have been used by a number of applications: providing
contextual help when interacting with a desktop computer
[19], testing GUI elements [2], context-aware video
tutorials [3,16], and GUI task automation [7]. Yet,
computer vision techniques break down when GUI
elements substantially change in appearance. As the
purpose of Autopilot is to propose better interaction
techniques rather than to make advancements in GUI
element detection, Autopilot will be implemented in a mock
operating system to avoid the hassle of dealing with current
technological limitations.

GROUP ID: 5

Figure 2. An example of importing images into PowerPoint with Autopilot. 1-7) generating the macro; 8) editing macros; 10-12)
executing a macro on demand. (Please refer to “Example Usage Scenarios” for a detailed description of this storyboard.)

The design of Autopilot was shaped by two works in the
literature, Help, It Looks Confusing (HILC) [7], which
supports automation of GUI interactions on desktop
computers, and SUGILITE, which accomplishes a similar
goal for mobile devices [8].

At present, identifying repetitive actions without prior
knowledge is a complex problem that necessitates robust
noise and sequence detection in high-volume, high-

dimensional data [5]. To account for these setbacks, HILC
and SUGLITE instead use macros to identify repetitive
behavior, by requiring its users to pre-record actions that
they would like to automate. Additionally, the macros
produced by the two systems can generalize to new
behaviors. For instance, one might teach SUGILITE to
order a Starbucks Cappuccino but the macro for that task
could be generalized to ordering an Iced Cappuccino as

GROUP ID: 5

Figure 3. Example scenario of Autopilot detecting repetitive behavior (please refer to “Detecting Repetitive Behavior” for a
detailed description of this storyboard.)

well. Our design takes a similar approach by producing
macros from recorded behavior and generalizing these
macros to other tasks.

Both systems come with its share of drawbacks. Firstly,
SUGILITE and HILC’s functionality for editing incorrectly
learned macros could be improved. For example, users of
SUGILITE have access to each macro’s source code, for
which they can modify to its intended behavior. In its
evaluation, users did not perceive this feature to be useful,
as the code was often difficult to parse, especially for those
with limited programming experience. Similarly, HILC
queries users with follow-up questions if an action is
deemed ambiguous. This may diminish the user's sense of
control, as they cannot modify the macros directly to their
intentions, but must rely on the system to propose them [1].
A final shortcoming found in both systems is that, when
tasks are automated, users literally see them being carried
out on the screen. We believe this may be hindrance, as it
precludes users from engaging in other activities on their
computer while macros are executing. Updating the GUI
repeatedly also consumes computational resources, leading
to an increased processing time.

EXAMPLE USAGE SCENARIO
This section describes a situation where Autopilot may be
useful: importing a many images into PowerPoint. This
scenario is depicted as a storyboard in Figure 2 and Figure
3.

Creating Macros
Sarah would like to automate the process of importing ten
images in her “Documents” directory into PowerPoint. To
do so, she must first create a macro on the Autopilot
application. She clicks on the Autopilot application on her
computer’s toolbar and the Autopilot application window
appears (Figure 2 (1)). Then, she clicks on the “record”
button to record the desired behavior (Figure 2 (2)). During
the recording procedure, her GUI interactions will be
logged by Autopilot. Each GUI interaction appears as a step
within the Autopilot application window. Sarah now
launches the PowerPoint application (Figure 2 (3)). Next,
she clicks the “+” button, selects “1.png”, and adds it
PowerPoint. The image is then displayed within the slide
deck (Figure 2 (4)). She has now completed all actions that
she would like to automate. She now removes an unwanted
step from the list actions logged by Autopilot: launching
PowerPoint (Figure 2 (5)). Next, she clicks the “Save”
button to save the macro (Figure 2 (6)). Autopilot then adds
the macro to the top of the list of macros and is given the
default name “New_Macro_1” (Figure 2 (7)).

Editing Macros
Sarah can edit or delete macros have been previously
created, by clicking on their names. Sarah renames her
newly created macro to be “MoveToPPT” and decides to
delete “MoveClips” as well (Figure 2 (8)).

GROUP ID: 5

Figure 4. Four screenshots of Autopilot. (a) Recorded steps of a macro; (b) interface for renaming and editing macros; (c)
prompter for executing a macro; (d) bottom right: execution of a macro.

Automating Macros
To transfer the rest of the images into PowerPoint, Sarah
clicks the “MoveToPPT” macro’s “Play” button (Figure 2
(9)).

Autopilot then prompts Sarah to confirm whether she would
like to transfer the selected images into PowerPoint
(“2.png” through “11.png”). Since she only wants up to
“10.png” to be transferred, she deselects “11.png” and
proceeds to click the “Yes” button to execute the macro
(Figure 2 (10)). During the automation of a task, a circular
circular progress bar will appear next the Autopilot icon on
Sarah’s desktop toolbar. This allows Sarah to know the that
macro is under execution while attending to other activities
on her computer. Once the task has completed, the progress
bar disappears (Figure 2 (11)). The images are then
transferred over to her slide deck (Figure 2 (12)).

Detecting Repetitive Actions
At a new point in time, Sarah would like to move the first
ten images within her “Documents” directory into another
PowerPoint project. Having forgotten that she created a
macro to automate this task, she proceeds to add “1.png”
into PowerPoint (Figure 3 (1)). Since she has programmed
the number of repetitions to be detected to be once before
the system recommends a macro to be run (Figure 1 (a)),
when she proceeds to select “2.png”, Autopilot predicts that
a task is being repeated. The Autopilot window pops up and
prompts Sarah to confirm whether she would like to
transfer the “3.png through 12.png” into PowerPoint
(Figure 3 (2)). Since she only wants up to “10.png” to be
transferred into PowerPoint, she deselects “11.png” and
“12.png”. After doing so, she clicks the “Yes” button, and

these images are then transferred over to her slide deck
(Figure 3 (3)).

Sarah changes her mind. She now wants to include
“11.png” in her slide deck, so she manually imports it into
PowerPoint (Figure 2 (4)). Next, she inadvertently selects
“12.png”. Autopilot detects this as a potential repetitive
behavior and displays a prompt to confirm whether she
would like to transfer “12.png” into PowerPoint (Figure 3
(5)). Since she does not intend for this behavior, so she
clicks “No” to cancel the prompt. Upon doing so, Autopilot
does nothing and no longer recommends automating tasks
until another macro gets repeated above the programmed
threshold (Figure 3 6)).

THE Autopilot SYSTEM
The Autopilot system was designed to incorporate the five
design goals that follow. Screenshots of Autopilot are
shown in Figure 1 and Figure 4.

A Sense of Control
According to Barkhuus and Dey, context-aware
applications can be characterized in two ways [1]. On the
one hand, the system can carry out actions automatically
regardless of the user’s intentions. This is known as active
awareness. Passive awareness, on the other hand, is when
the system has contextual information, but does not act
upon it without the user’s permission. In their study,
Barkhuus and Dey found that awareness compromises
one’s sense of control, since activities that one would
normally carry out are now taken over by the system.
However, participants reported preferring systems
providing awareness over those that did not, as they were

GROUP ID: 5

accepting of less control if it was as a means to
accomplishing a valuable goal.

Presently, learning by demonstration is still a challenge for
computer scientists [9]. This is because unlike other
approaches in machine learning, which have access to large
amounts of training data, PBD systems must learn behavior
from a few examples. A fully automatic Autopilot may spur
unwanted consequences when its behavior counters users’
desires. As a result, Autopilot was designed to be passively
aware—it identifies whether users may be performing a
repetitive task, but does not proceed to automate tasks
without their confirmation (Figure 4 (c)).

Automate on Demand
Users have the option to execute a macro on demand
(Figure 1 (d)), rather than having to perform the repeated
actions based on the programming number of times (Figure
1 (a)) to get a prompt from Autopilot.

Directly Manipulable Interface
Autopilot incorporates a direct manipulation interface
(Figure 1) [17]. While this seemingly contradicts its goals
of alleviating the burdens of interacting with GUI, we felt
that users would only be occasionally recording or
modifying their macros. Most of their interactions would
entail responding to Autopilot’s recommendations for
automating tasks. As a result, users may forget how to
execute specific commands on Autopilot after an extended
period non-use. A direct manipulation interface can
mitigate this as the interfaces are intuitive to use [17].

An additional consideration that we had was providing
keyboard shortcuts to enable users to respond to Autopilot’s
prompts, but this would add complications as the system
would have to figure out whether a user’s keyboard event
was intended for Autopilot or for some other application.

Proximity-Occlusion Trade-off
Autopilot is shown as a dropdown window on the desktop
computer’s toolbar (Figure 1). We also played with idea of
implementing a tooltip that would appear next to the user’s
cursor to reduce the distance that the user’s cursor must
travel when interacting with the system. However, we
decided against it since the tooltip may occlude the user’s
view and result in user frustration.

Error Correction
In line with Intharah’s suggestion that systems should “fail
gracefully” [7], Autopilot has a corrective measure: users
may remove any action that they do not want as part of a
macro when recording (Figure 4 (a)) or anytime after
(Figure 4 (c)). In Autopilot, each step of a macro is
displayed with an accompanying screenshot and a
descriptive text of the associated action. This was inspired
by Myer’s work on program visualization, which abstracts
code with a visual representation, providing an easier way
for people to understand and modify commands [15].

IMPLEMENTATION
The source code is available online (Appendix). The system
was implemented in a web application emulating an
operating system, and was developed using JavaScript
(Angular JS and Node.js), HTML and CSS. In a real
operating system, knowing where GUI elements are located
is a challenge, and there is currently no way to perform
cross-application GUI interactions without inducing mouse
and keyboard events. Since we intend to evaluate whether
user perceive the experience to be better when they do not
have to literally see the GUI interactions being carried out,
we will use a mock operating system to achieve this goal.
Moreover, a mock-up that we’ve personally implemented
will enable us to test and refine our designs more efficiently
as we will have more familiarity with its inner workings.

As the system was primarily developed for demonstration
purposes rather than for use in practice, events that were
logged and monitored were limited to user clicks. The
system currently supports only the following repetitive
behaviours: adding images to PowerPoint, opening the
PowerPoint app, and the operating system’s file system
explorer. Ideally, a real implementation of Autopilot would
detect and automate all repetitive GUI interactions.

After a new event is logged, Autopilot will analyze the log
to identify whether the user has engaged in repetitive
behavior. We operationalize repetitive behavior as being a
macro that has been repeated above a threshold that the user
may specify (Figure 1 (a)). If Autopilot detects that one of
the macros has been repeated above that threshold,
Autopilot will recommend automating the task the next
time the user performs its initial step.

EVALUATION
To evaluate Autopilot, we conducted a user study that
compared the system to the baseline approach of manual
input.

Participants
Eight participants (2f, 6m) were recruited by word-of-
mouth. Given that HILC is of greatest semblance to our
work and recruited seven participants for its evaluation [7],
we followed to their footsteps in recruiting eight (i.e.,
seven, with one additional participant to counterbalance
Autopilot with the baseline). Participants were aged 18-34
(M=25, SD=5.32). All participants were adept
programmers, as measured on a scale from 1-5 (where 1=no
experience, 5=very experienced): 3 (n=2), 4 (n=1), 5 (n=5).
Participation in the study was voluntary and compensation
was not provided.

Task and Apparatus
The experiment was carried out on a 13’’ Macbook Pro
with an Intel Core i5 processor (Figure 5 (a)). Participants
performed GUI interactions using a Microsoft Wireless
Mobile Mouse 4000 (Figure 5 (b)).

GROUP ID: 5

Figure 5. The experimental apparatus. (a) 13'' MacBook Pro;
(b) Microsoft Wireless Mobile Mouse 4000.

The task involved participants transferring images from a
directory into PowerPoint, both manually (i.e., one image at
a time, without any aids) and using Autopilot. For the
study, the repetition threshold was set to one for
consistency across participants.

Stimulus
Two factors formed the independent variables in this study:
interaction method and image count. To compare Autopilot
to the baseline of manual input, the interaction method
factor was comprised of the levels: manual—in which the
user manually performs the task of importing images into
PowerPoint and secondly, automated—in which the user
uses Autopilot to automate the task. The image count factor
modulated the number of images that participants had to
import into PowerPoint namely, three, six, nine and twelve
images. These levels were realized because prior work has
shown that three to six repetitions is the point at which
automation breaks even with manual input, in regard to the
task completion time. Yet, because it requires at least two
images for Autopilot to recommend that a macro should be
execute, our lowest level was three rather than one [12].

All factors were fully-crossed for each participant,
providing 2 × 4 = 8 stimulus conditions.

Measures
A two-factor within-subjects design was employed. To
mitigate ordering effects, the interaction method levels were
counterbalanced, and the image count levels were
randomized. That is, each participant began the study with
one interaction method (either manual or automated),
performed the tasks for each of the four image count
conditions in a randomized order, and then proceeded to the
second interaction method.

Our measures were both objective and subjective. In line
with other work [7,12], the task completion time for each
stimulus condition was recorded as a measure of
performance. We considered the task completion time to be
the elapsed time between the start of a stimulus condition to
the time at which participants had successfully imported all
specified images into PowerPoint. The subjective measures
consisted of responses to a post-study questionnaire that
participants filled out at the end of the experiment. The
post-study questionnaires included ratings of the system’s
usefulness and usability on a 7-point Likert (Table 2), and

an open-ended question regarding each participant’s overall
impression of Autopilot.

Procedure
Participants first signed a consent form, received
information about the study task, and was provided with a
walkthrough of the emulated operating system and
Autopilot. Afterwards, participants then began the study—
uploading images into PowerPoint for each of the stimulus
conditions. Participants filled out the post-study
questionnaire after completing all stimulus conditions.

RESULTS
On average, participants spent 15.37 (SD=2.48) minutes in
the study.

Task Completion Time
Average task completions times for each of the stimulus
conditions are shown on Table 1. To test for significance
effects, a two-way repeated measures ANOVA was used.
For brevity, only significant results are reported. The
sphericity assumption was met for all reported effects.

There was a significant main effect of interaction method
on the task completion time 𝐹 1, 7 = 	8.124, 𝑝 =	<
.05, 𝜂1 = .537 . Image count also had a significant main
effect on the task completion time [𝐹 3, 21 = 20.654,
𝑝 < .001, 𝜂1 = .747]. Further, the ANOVA test revealed a
significant two-way interaction effect between image count
and interaction method	[𝐹 3, 21 = 10.364, 𝑝 < .001,
𝜂1 = .597].

Pairwise cross-factor comparisons revealed a significant
main effect of image count for the manual interaction
method	 𝐹 3, 21 = 21.841, 𝑝 < .001, 𝜂1 = .757 (Figure
6). In this case, Tukey Bonferroni-corrected post-hoc tests
indicated that the differences were between image counts
three and six (p < .005), three and twelve (p < .01), six and
nine (p < .005), six and twelve (p < .005), and nine and
twelve (p < .05). There was also a significant effect of
interaction method on an image count of nine [F(1, 7) =
6.147, p < .05, 𝜂1 =.468] (Figure 7 left) and interaction
method on an image count of twelve [F(1, 7) = 20.717, p <
.001, 𝜂1 =.757] (Figure 8 right).

In sum, these results suggest that when users must perform
many repetitive actions, Autopilot substantially reduces the
task completion time in comparison to the manual input
approach.

Image Count Manual Automated
3 17590.88 ms 16316.00 ms
6 24946.88 ms 23685.25 ms
9 37574.25 ms 21772.12 ms
12 43813.50 ms 20885.12 ms

Table 1. Average task completion times in milliseconds for
each stimulus condition.

GROUP ID: 5

Figure 6. The mean and 95% confidence interval plots of the
task completion times in milliseconds for each level of image
count on the manual interaction method.

Figure 7. The mean and 95% confidence interval plots of the
task completion times in milliseconds for each interaction
method when the image count was nine (left) and when the
image count was twelve (right).

Questionnaire Item Mean
1. It’s easy to learn how to use this system. 5.25
2. My interaction with the system is clear and
understandable. 3.25

3. I’m satisfied with my experience using this system. 4.63
4. I find the system useful in helping me creating
automation. 5.88

5. I find automating tasks with the system is efficient. 5.88
6. I would use this system to automate my tasks. 4.25

Table 2. Post-study questionnaire items and the mean
responses as measured by a 7-point Likert scale (where
1=strongly disagree, 7=strongly agree).

Subjective Feedback
The Likert scale ratings for the post-study questionnaire
items are summarized in Table 2. Ratings pertaining to the
usability of Autopilot (Table 2 questions 1-3) were
relatively mediocre. Generally, participants reported that
the system was useful (Table 2 questions 4-6).

In the long answer responses, all participants expressed that
Autopilot could be a useful tool for automation “With this
tool, I could insert pictures faster especially when I had to
put 12 pictures.” (P5). However, participants pointed to
improvements that could be made in several respects. For
one, some participants (3/8) noted it was difficult to learn
how the system “Not very intuitive at the beginning but
after few repetitions I was able to understand more about
the system.” (P3)

It also seemed that the system’s approach of informing the
user about a macro’s beheaviour, i.e., by displaying the
sequence of steps that it will execute (Figure 4 (c)), was not

informative, as some participants (2/8) were apprehensive
about running a macro as they unsure of what it might do to
the state of their operation system. For instance, P5 brought
up that “It was totally unclear how my actions were
recorded, and what was the ‘recipe’ that the system
automatically created…It would be great if the system
shows a preview so that I can expect what will happen”. P7
underscored a similar concern “It could feel rather
mysterious trying to use a macro if you haven’t done the
same one before—you don’t know if it could go wrong!”

Finally, some participants expressed a desire for additional
features that could integrated into the system, such as
enabling users to specify the contexts and conditions for
which a macro should execute “It would be cool if we can
specify the context of condition” (P6), as well as
programming the system to detect repetitive behaviour
without the use of a macro “I had to click the record
button…if the system recognized my behavior
automatically, it would be much convenient and fast.” (P8)

DISCUSSION
The evaluation of Autopilot was promising. Not only did
participants perform tasks faster using the system, but many
had expressed an openness toward incorporating the system
it into their practices.

In spite of this, all participants thought that the system
needed to be improved prior to making it available for
widespread use, particularly by providing a more intuitive
interface. Additionally, participants expressed concerns
about not knowing how certain macro might alter state of
their operating system. Autopilot could be made better by
leaving no surprises, perhaps as suggested by P5, this can
be achieved by showing a preview of a macro’s behaviour.
Further, the actions should be revertible if something goes
awry.

Participants also seemed to want the system to accomplish
more than its current capabilities. For instance, by defining
the specific contexts for which automation should occur,
and to detect repetitive behaviour purely from recognizing
routine behaviour instead of employing macros.

LIMITATIONS AND FUTURE WORK
The evaluation of Autopilot is largely limited by the fact
that all participants had prior experience in programming.
As developing code is analogous to creating a macro (“rules
than can be reused”), these participants would likely be
more adept at using the system than those with no exposure
to programming. The study’s results are therefore prone to
bias and future evaluations of Autopilot should aim for a
more diverse group of users.

Additionally, future studies should examine how users
might leverage the system in practice, rather than in a lab
setting where the usage scenarios might feel artificial.

To progress GUI automation technologies, future work
should be directed toward providing these systems with an

0

10000

20000

30000

40000

50000

Auto Manual
Interaction Method

Ta
sk

 c
om

pl
et

io
n

tim
e

(m
s)

0

10000

20000

30000

40000

50000

Auto Manual
Interaction Method

Ta
sk

 c
om

pl
et

io
n

tim
e

(m
s)

GROUP ID: 5

enhanced ability to understand its user intentions, thus
making “macro-less” automators that can detect repetitive
behaviour a palpable reality. This will entail improving
recognition of human routine behaviours, and of the
contexts and conditions for which particular repetitive tasks
should be automated.

CONCLUSION
This work presents an account on the development and
evaluation of Autopilot, a context-aware system that detects
and automates repetitive GUI interactions, using
programming-by-demonstration. The results of the study
have shown that Autopilot substantially reduces the amount
of time that users spend carrying out repetitive tasks, and
the feedback from participants showed promise in its future
adoption.

In sum, this work is stepping stone toward alleviating the
tedium of repetitive GUI interactions, and a broader goal of
advancing context-aware designs.

APPENDIX
Source code: https://github.com/chrchung/autopilot.

REFERENCES
1. Louise Barkhuus and Anind Dey. 2003. Is Context-

Aware Computing Taking Control away from the User?
Three Levels of Interactivity Examined. . Springer,
Berlin, Heidelberg, 149–156.
https://doi.org/10.1007/978-3-540-39653-6_12

2. Tsung-Hsiang Chang, Tom Yeh, and Robert C. Miller.
2010. GUI Testing Using Computer Vision. In
Proceedings of the 28th international conference on
Human factors in computing systems - CHI ’10, 1535.
https://doi.org/10.1145/1753326.1753555

3. Kai-Yin Cheng, Sheng-Jie Luo, Bing-Yu Chen, and
Hao-Hua Chu. 2009. SmartPlayer: user-centric video
fast-forwarding. In Proceedings of the 27th
international conference on Human factors in
computing systems - CHI 09, 789.
https://doi.org/10.1145/1518701.1518823

4. Allen. Cypher, Daniel Conrad. Halbert, David
Kurlander, Henry Lieberman, David Maulsby, Brad A.
Myers, and Alan Turransky. 1993. Watch what I do :
programming by demonstration. MIT Press. Retrieved
November 14, 2017 from
https://dl.acm.org/citation.cfm?id=168080

5. Himel Dev and Zhicheng Liu. 2017. Identifying
Frequent User Tasks from Application Logs. In
Proceedings of the 22nd International Conference on
Intelligent User Interfaces - IUI ’17, 263–273.
https://doi.org/10.1145/3025171.3025184

6. Anind K. Dey and Anind K. 2001. Understanding and
Using Context. Personal and Ubiquitous Computing 5,
1: 4–7. https://doi.org/10.1007/s007790170019

7. Thanapong Intharah, Daniyar Turmukhambetov, and
Gabriel J. Brostow. 2017. Help, It Looks Confusing:

GUI Task Automation Through Demonstration and
Follow-up Questions. In Proceedings of the 22nd
International Conference on Intelligent User Interfaces
- IUI ’17, 233–243.
https://doi.org/10.1145/3025171.3025176

8. Toby Jia, -Jun Li, Amos Azaria, and Brad A Myers.
SUGILITE: Creating Multimodal Smartphone
Automation by Demonstration.
https://doi.org/10.1145/3025453.3025483

9. Tessa Lau. 2009. Why Programming-By-Demonstration
Systems Fail: Lessons Learned for Usable AI. AI
Magazine 30, 4: 65–67.
https://doi.org/10.1609/aimag.v30i4.2262

10. Tessa Lau, Steven A. Wolfman, Pedro Domingos, and
Daniel S. Weld. 2003. Programming by Demonstration
Using Version Space Algebra. Machine Learning 53,
1/2: 111–156.
https://doi.org/10.1023/A:1025671410623

11. Gilly Leshed, Gilly Leshed, Eben M. Haber, Tara
Matthews, and Tessa Lau. CoScripter: Automating
& Sharing How-To Knowledge in the Enterprise.
Retrieved November 15, 2017 from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.120.8647

12. Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers.
2017. SUGILITE: Creating Multimodal Smartphone
Automation by Demonstration. In Proceedings of the
2017 CHI Conference on Human Factors in Computing
Systems - CHI ’17, 6038–6049.
https://doi.org/10.1145/3025453.3025483

13. D.G. Lowe. 1999. Object recognition from local scale-
invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, 1150–
1157 vol.2. https://doi.org/10.1109/ICCV.1999.790410

14. B.A. Myers. 1992. Demonstrational interfaces: A step
beyond direct manipulation. Computer 25, 8: 61–73.
https://doi.org/10.1109/2.153286

15. B. A. Myers, B. A., Myers, and B. A. 1986. Visual
programming, programming by example, and program
visualization: a taxonomy. In Proceedings of the
SIGCHI conference on Human factors in computing
systems - CHI ’86, 59–66.
https://doi.org/10.1145/22627.22349

16. Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue
Wang, Lubomir Bourdev, Shai Avidan, and Michael F.
Cohen. 2011. Pause-and-play: Automatically Linking
Screencast Video Tutorials with Applications. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology - UIST ’11,
135–144. https://doi.org/10.1145/2047196.2047213

17. Shneiderman. 1983. Direct Manipulation: A Step
Beyond Programming Languages. Computer 16, 8: 57–
69. https://doi.org/10.1109/MC.1983.1654471

GROUP ID: 5

18. Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.
2009. Sikuli: Using GUI Screenshots for Search and
Automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology -
UIST ’09, 183–192.
https://doi.org/10.1145/1622176.1622213

19. Tom Yeh, Tsung-Hsiang Chang, Bo Xie, Greg Walsh,
Ivan Watkins, Krist Wongsuphasawat, Man Huang,
Larry S. Davis, and Benjamin B. Bederson. 2011.
Creating Contextual Help for GUIs Using Screenshots.
In Proceedings of the 24th annual ACM symposium on
User interface software and technology - UIST ’11, 145.
https://doi.org/10.1145/2047196.2047214

