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Abstract

We often build complex probabilistic models by composing simpler models—using
one model to generate parameters or latent variables for another model. This allows
us to express complex distributions over the observed data and to share statistical
structure between different parts of a model. In this thesis, we present a space of
matrix decomposition models defined by the composition of a small number of motifs
of probabilistic modeling, including clustering, low rank factorizations, and binary
latent factor models. This compositional structure can be represented by a context-
free grammar whose production rules correspond to these motifs. By exploiting the
structure of this grammar, we can generically and efficiently infer latent components
and estimate predictive likelihood for nearly 2500 model structures using a small
toolbox of reusable algorithms. Using a greedy search over this grammar, we au-
tomatically choose the decomposition structure from raw data by evaluating only a
small fraction of all models. The proposed method typically finds the correct struc-
ture for synthetic data and backs off gracefully to simpler models under heavy noise.
It learns sensible structures for datasets as diverse as image patches, motion capture,
20 Questions, and U.S. Senate votes, all using exactly the same code.

We then consider several improvements to compositional structure search. We
present compositional importance sampling (CIS), a novel procedure for marginal
likelihood estimation which requires only posterior inference and marginal likelihood
estimation algorithms corresponding to the production rules of the grammar. We
analyze the performance of CIS in the case of identifying additional structure within
a low-rank decomposition. This analysis yields insights into how one should design
a space of models to be recursively searchable. We next consider the problem of
marginal likelihood estimation for the production rules. We present a novel method
for obtaining ground truth marginal likelihood values on synthetic data, which en-
ables the rigorous quantitative comparison of marginal likelihood estimators. Using
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this method, we compare a wide variety of marginal likelihood estimators for the
production rules of our grammar. Finally, we present a framework for analyzing the
sequences of distributions used in annealed importance sampling, a state-of-the-art
marginal likelihood estimator, and present a novel sequence of intermediate distri-
butions based on averaging moments of the initial and target distributions.

Thesis Supervisor: William T. Freeman
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In supervised learning, there are a handful of generic algorithms which perform
very well out of the box, including support vector machines, deep neural networks,
and random forests. Unsupervised learning, however, still requires a great deal of
human effort. The difference is that the supervised learning toolbox consists of a set
of algorithms, while the unsupervised learning toolbox consists of modeling motifs,
such as clustering and dimensionality reduction, which can be composed together in
myriad ways to construct models.

Compositionality is a blessing because richly structured models can be tailored
towards domains as diverse as vision, speech, and biology. It is also a curse, because
modeling data requires specifying a model, designing, implementing, and debugging
efficient inference algorithms, evaluating the fit of the model, and possibly refining
the model if it is not a good enough match. Because of this challenge, most unsuper-
vised learning software packages implement a handful of overly simple models such
as principal component analysis or k-means. At the other extreme, probabilistic pro-
gramming (Goodman et al., 2008; Borgstrom et al., 2011) aims to perform inference
generically across a wide range of models. Such systems typically use general-purpose
inference algorithms described at the level of individual random variables, such as
Metropolis-Hastings or variational message passing. Unforunately, when designing
algorithms at such a low level, it is difficult to take advantage of the specialized
inference techniques researchers have developed for particular models.

In this thesis, we adopt a middle ground between the extremes of probabilistic
programming and model-specific inference algorithms. Specifically, many probabilis-
tic models are built compositionally out of simpler models for which effective approx-
imate inference algorithms have been developed, such as dimensionality reduction,
linear dynamics, and sparse coding. We propose a set of inference techniques geared
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towards such high-level motifs rather than individual random variables, allowing for
practical inference algorithms in a wide range of model structures.

Because the correct modeling assumptions may not be obvious in advance, a
general purpose toolbox for unsupervised learning must also confront the problem
of model selection. In principle, a software package could exhaustively evaluate all
plausible models on a given dataset using a criterion such as held-out likelihood or
marginal likelihood, and then choose whichever one performs the best. However,
evaluating models is generally at least as hard as fitting them, so this would raise
the same algorithmic challenges as inference. Furthermore, due to the combinatorial
number of possible models, fitting all of them would likely be infeasible, or at least
wasteful. For these reasons, model selection techniques are more commonly used to
make smaller decisions within a pre-specified model class, such as which variables
directly influence one another or how many clusters are needed to explain the data.

We propose a model selection strategy which explicitly takes advantage of the
compositional structure of the space. In paticular, one can fit a simple model to the
data, look for patterns in the model parameters or latent variables which weren’t part
of the model specification, and refine the model to capture the additional structure.
We show that the recursive application of a handful of simple probabilistic modeling
motifs allows for the discovery of rich, high-level structure.

In this thesis, we propose compositional frameworks for representing two types
of models: matrix decompositions and Gaussian processes. Each of these frame-
works can compactly represent a variety of existing models from the literature. We
present techniques for posterior inference, model scoring, and structure search which
directly exploit the compositional structure of a mdoel space. These techniques are
shown to perform well empirically at discovering high-level representations of a wide
variety of datasets using exactly the same code. Finally, we present some novel al-
gorithms which should serve as building blocks in the compositional estimation of
marginal likelihood. We believe this is a step towards a general purpose system for
unsupervised learning and structure discovery.

1.1 Model composition

There are many operations by which simple models can be combined. In supervised
learning, one often averages the predictions of an ensemble of models, a strategy
that was used effectively in the Netflix challenge (Bell and Koren, 2007). In unsu-
pervised learning, it is more common to use what we will term composition: using
one generative model as a prior for certain random variables in another generative
model. Specifically, consider a latent variable model where the observations y are
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modeled in terms of latent variables z specific to each observation and parameters θ
which are shared between all observations. If we start with a model which assumes a
generic prior over z (such as independent Bernoulli random variables), we can often
fit more complex distributions by replacing the generic prior with a more structured
one. Such models are commonly termed “hierarchical” or “deep,” but we will use
the term compositional because it reflects the way in which they are constructed.
Some examples of this sort of composition include:

• Hierarchical models of images. In a landmark paper, Olshausen and
Field (1996) proposed a sparse coding model of natural images, whereby image
patches are modeled as linear combinations of a small number of basis functions
drawn from a larger dictionary. Sparse coding can be represented as a Gaussian
scale mixture model, where each coefficient is the product of a scale variable
and a unit Gaussian variable, and all of the scale variables and Gaussian vari-
ables are independent. Various hierarchical models have been proposed which
relax the independence assumption on the scale variables, modeling the joint
distribution as a tree graphical model (Wainwright et al., 2001) or a low-rank
Gaussian (Karklin and Lewicki, 2008). Such models constitute the state-of-
the-art for low-level image processing tasks (Portilla et al., 2003) and capture
textural properties of images (Karklin and Lewicki, 2008).

• Deep sigmoid belief networks. Deep sigmoid belief networks (Neal, 1992)
are an early example of a model used to learn multi-level feaure representations.
A single-layer sigmoid belief net models an observation vector (such as an image
of handwritten digit) as a superposition of multiple independent events such
as strokes. Thus, the observations are encoded as a vector of binary hidden
variables determining which events are present. In a single layer sigmoid belief
net, the events are modeled as independent Bernoulli random variables; a two-
layer belief net models the events themselves using a single-layer sigmoid belief
net. This process can be repeated to construct deep sigmoid belief nets.

It is also possible to add structure to the parameters θ. This can lead to more
efficient use of limited data by sharing structure between different parts of a model.
Some examples of this strategy include:

• Multitask learning. For many classification tasks such as object detection,
the set of categories follows a heavy-tailed distribution: a handful of categories
appear many times in a given dataset, while a large number of categories appear
only a few times (Spain and Perona, 2008). One may wish to share statistical
structure between different categories so that the rare ones can be learned
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from fewer examples; this general area is known as multitask learning. For
instance, similar parameters may work well for detecting trucks, school buses,
and sports cars. This assumption can be captured by placing a structured
prior, such as a mixture of Gaussians, on the parameter vectors for detecting
different categories (Salakhutdinov et al., 2011). Such a model can be regarded
as the composition of a clustering model with a supervised learning model.

• Hierarchical Dirichlet processes. Dirichlet processes are a Bayesian non-
parametric model used to fit mixture models with an unbounded number of
components. A Dirichlet process is defined in terms of a base distribution, the
distribution that new components are drawn from. A hierarchical Dirichlet
process (HDP) (Blei et al., 2003) uses a Dirichlet process as the base mea-
sure for other Dirichlet processes. For instance, the distribution over words
in a document can be modeled as a Dirichlet process whose base measure is
a global Dirichlet process corresponding to a set of topics shared between all
documents. This can be viewed as the composition of two Dirichlet processes.

While these two forms of compositionality have distinct motivations, there is no
fundamental difference between them. In Chapter 3, we present a space of matrix
decomposition models defined in terms of a context-free grammar whose production
rules correspond to simple probabilistic models. Let Y denote an observation ma-
trix, where each row corresponds to a single observation vector. The simplest matrix
decomposition models assume a factorization Y ≈ ZΘ, where Z is a matrix repre-
senting the latent variables and Θ is a matrix representing the parameters. Either Z
or Θ can be recursively decomposed, thereby capturing both types of compositional
model described above. In fact, our matrix decomposition grammar is symmetric
with respect to rows and columns: the system would behave the same if the in-
put dimensions were treated as data points, and vice versa. This grammar gives a
compact way of describing compositional models, since composition maps directly to
applying productions of the grammar.

Composition is not the only operator for combining models. For instance, Chap-
ter 5 presents a space of Gaussian process kernel structures defined in terms of
addition and multiplication of simple base kernels. However, model composition is
extremely versatile, and a surprising variety of models can be constructed purely
through the composition of a few simple motifs.

12



1.2 Bayesian model comparison

In order to perform model selection, we need to specify a criterion for comparing
models. One such criterion is the marginal likelihood of the model, or p(D|Mi),
where D denotes the observed data and Mi denotes the model (Kass and Raftery,
1995). This is a principled criterion from a Bayesian perspective because, combined
with a prior over models (such as a uniform prior), the marginal likelihood can be
plugged into Bayes’ Rule to compute the posterior over models:

p(Mi |D) =
p(Mi) p(D|Mi)∑
j p(Mj) p(D|Mj)

.

Comparing models with marginal likelihood is known as Bayesian model comparison,
and the marginal likelihood is sometimes referred to as the Bayes factor.

Marginal likelihood is an appealing model selection criterion for several reasons.
First, it manages the tradeoff between model complexity and the goodness of fit to
the data. Integrating out the model parameters results in a sophisticated form of
Occam’s Razor which penalizes the complexity of the model itself, rather than the
specific parameterization (Rasmussen and Ghahramani, 2001). Second, it is closely
related to description length (Barron et al., 1998), a compression-based criterion for
model selection. Finally, since the marginal likelihood can be decomposed into a
product of predictive likelihoods, it implicitly measures a model’s ability to make
predictions about novel examples. For these reasons, marginal likelihood is often
the model selection criterion of choice when it is available. It is widely used to
compare Gaussian process models (Rasmussen and Williams, 2006) and Bayesian
network structures (Teyssier and Koller, 2005), where either closed-form solutions or
accurate, tractable approximations are available.

Marginal likelihood has been criticized as being overly sensitive to the choice of
model hyperparameters (Kass and Raftery, 1995). However, a number of modifica-
tions have been proposed to deal with this issue, including intrinsic Bayes factors
(Berger and Pericchi, 1996), fractional Bayes factors (O’Hagan, 1995), the evidence
approximation (MacKay, 1999), and careful choices of prior which avoid favoring
one model over another (Heckerman et al., 1995; Neal, 2001b). All of these tech-
niques are best seen as extensions of marginal likelihood, and they involve similar
computations.

The main difficulty in applying marginal likelihood is that it is intractable to
compute for most models of interest. Implicitly, p(D|Mi) requires marginalizing out
all of the parameters and latent variables of the model, an extremely high-dimensional
summation or integration problem. It is equivalent to computing a partition function,
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a problem which is #P-hard for graphical models in general. Much of the technical
novelty of this thesis involves algorithms for estimating marginal likelihood which
exploit the compositional structure of the model space.

1.2.1 Learning abstract structure

In cognitive science, Bayesian model comparison has also served as a model of how
humans learn abstract concepts. Cognitive scientists have long debated the question
of nature vs. nurture: how much of our knowledge is innate, and how much must be
inferred from the environment (Chomsky, 1980; Pinker, 2003)? The work of Kemp
and Tenenbaum (2008) showed that, at least in principle, it is possible to choose
from a fairly large space of structures given a realistic amount of data. They defined
a space of 20 structural forms of graphs which could potentially be used to organize
the entities of a given domain, such as grids, trees, and cylinders. The structures
were fit to human similarity judgments for a variety of domains and evaluated us-
ing approximate marginal likelihood. The highest-scoring structures for a variety of
real-world datasets corresponded closely to human intuition: colors were arranged in
a ring, Supreme Court justices were arranged on a one-dimensional spectrum, and
animals were placed in a tree structure. Bayesian model comparison techniques were
similarly used to model the learning of other forms of abstract structure, such as
causal structure (Goodman et al., 2009) and language (Perfors et al., 2011). Pianta-
dosi et al. (2012) showed that the structure of the natural numbers could be inferred
from small amounts of observational data using Bayesian model comparison with a
generic prior over programs.

Interestingly, in those studies, it was often possible to identify the correct struc-
ture with far fewer observations than were needed to fill in the details of the structure.
I.e., even when only a subset of the attributes were observed, animals were grouped
into a tree structure, but many of the animals were placed in odd locations within
the tree. Goodman et al. (2009) dubbed this phenomenon the blessing of abstraction.

In principle, therefore, one way to approach machine learning would be to define
a prior over a large number of probabilistic models, and simply condition on the
observed data. If the blessing of abstraction idea is correct, such an approach would
find a near-optimal predictor after a small number of observations, and then proceed
to make nearly the same predictions as the optimal one. This is the idea behind
Solomonoff induction (Solomonoff, 1964; Li and Vitanyi, 1997), an idealized model
of inductive inference. The idea is to use a universal prior, or one which assigns
positive probability mass to all computable generative models. (For instance, gen-
erating and executing random Turing machines is one example of a universal prior.)
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In principle, Solomonoff induction is able to learn any computable generative model.
Unfortunately, the posterior is itself intractable. Even the more constrained structure
discovery systems outlined above each required a significant amount of implementa-
tional work, since they required developing probabilistic inference algorithms which
were both generic and efficient. Furthermore, the approach of exhaustively evaluat-
ing every model in a given set is unlikely to scale to a large number of models, since
evaluating a model is at least comparable in difficulty to fitting the model.

1.3 Recursive structure discovery

If it is infeasible to exhaustively evaluate a large set of models, how is it that humans
are able to make scientific progress? While we undoubtedly use a wide array of
heuristics, one strategy we often adopt is to look for meaningful representations
underlying the data. These may correspond to hidden causes, or may simply be
succinct ways of summarizing the observations. Then, by looking for patterns in these
representations, additional structure often becomes apparent. This section outlines
several examples where this recursive structure discovery strategy has successfully
been applied computationally.

1.3.1 Equation discovery

One form of structure discovery is equation discovery, where one desires a simple set
of equations to describe a (usually scientific) phenomenon. An early example was
BACON, a system developed by Langley et al. (1984) as a computational model of
the formulation of scientific theories. The system was equipped with operators for
detecting constant functions, linear relationships, and inverse relationships. By ap-
plying these operators recursively, it was able to uncover some complex relationships.
In particular, after fitting a law to a subset of the variables, it would postulate theo-
retical quantities corresponding to the parameters of that law. It would then attempt
to uncover patterns relating the theoretical quantities to the existing variables and
to each other.

Consider the example of discovering the ideal gas law, which can be stated as
PV = 8.32N(T − 273), where P is the pressure on the gas, V is the volume, T is the
temperature in degrees Celsius, and N is the quantity of gas in moles. Assume the
system is able to run experiments where it chooses the values of enough variables to
determine the equation, and then observes the value of the remaining variable. It
begins by fixing N and T to arbitrary values and measuring V as a function of P .
For each setting of N and T , it finds an inverse relationship between P and V , which
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can be written as:
V = α(N, T )P−1.

It then treats α as a theoretical quantity, and it attempts to find relationships be-
tween α and the other variables the same way that it looks for relationships between
observables. I.e., holding N fixed, it varies T and measures α. It finds the linear
relationship

α(N, T ) = b(N)T + c(N).

Repeating this process again, it finds b(N) = 8.32N and c(N) = −2271.4N , so
α(N, T ) = 8.32NT − 2271.4N = 8.32N(T − 273). Rearranging terms recovers the
ideal gas law. (In principle, the recursion goes deeper: while BACON treated quanti-
ties like pressure and temperature as observables, they began as theoretical quantities
postulated to explain other scientific observations.)

This heuristic was taken a step further by the FAHRENHEIT system (Koehn and
Zytkow, 1987; Langley and Zytkow, 1989), which attempted to determine the range
in which a given law holds. The endpoints of the interval were treated as theoreti-
cal quantities. The algorithm recursively looked for laws which held between these
quantities, and determined the range of values for which those laws held. What is re-
markable about both systems is how much could be accomplished through recursive
application of a handful of simple and seemingly innocuous rules.

1.3.2 Graphical model structure learning

In modern machine learning, the phrase “structure learning” is most closely asso-
ciated with structure learning in graphical models. In the most basic formulation,
one is given a set of variables and some samples from a distribution, and the task
is to determine the pattern of edges in the graphical model which best matches the
distribution. Equivalently, one wishes to determine the conditional independence
structure of the model. When all of the variables are fully observed, it is possible
to define a score function, such as the marginal likelihood of the graph structure,
and optimize the score function. For tree-structured graphical models, the Chow-
Liu algorithm (Chow and Liu, 1968) returns the optimal tree structure. For more
general structures, a search procedure is required. For instance, in fully observed
directed models, one can sample from the posterior over graph structures by sam-
pling orderings of the variables (Teyssier and Koller, 2005). In the undirected case,
a sparse pattern of edges can be recovered by optimizing the model likelihood with
an `1 regularization penalty on the edge weights (Lee et al., 2006). When some of
the variables are missing some of the time, they can be imputed using the structural
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EM algorithm (Friedman, 1997).
The situation is more difficult when some variables are latent, or never observed.

Structural EM is not applicable, since if a latent variable starts out disconnected
from the rest of the network, the E step will leave it uncorrelated with the rest
of the variables. Most of the focus has been on heuristics for postulating latent
causes; these heuristics can also be used to initialize the structural EM algorithm
(Elidan et al., 2000). One particularly relevant instance is the work of Harmeling
and Williams (2011), who used a recursive procedure to incrementally grow forest-
structured directed models. In each step, they would take the current set of root
variables, and add a common parent to the pair of variables with the highest mutual
correlation. This greedy approach to structure learning performed as well as a pre-
vious system which had a full set of search operators. Thus, as with BACON and
FAHRENHEIT, the learned latent variables were treated on equal footing with the
original observables.

1.3.3 Deep learning

Training deep neural networks is difficult because the responses of the network are
highly nonlinear in the network parameters. If one applies gradient descent naively
using backpropagation, the gradients can explode or die off as the error signals are
backpropagated (Bengio et al., 1994). A major advance in applying neural networks
was the idea of generative pre-training (Hinton and Salakhutdinov, 2006): first learn-
ing a neural network which models the data distribution, and then using that network
as an initialization for the discriminative model.

Generative pre-training has been shown to have two advantages: it serves as a
regularizer which attenuates overfitting, and it helps with the optimization (Erhan
et al., 2009). We focus on the latter effect. It was observed by Hinton et al. (2006)
that a particular kind of generative neural net, called deep belief nets (DBN), could be
trained in a layerwise manner. First, one fits a single-layer generative neural network
called a restricted Boltzmann machine (RBM) to the observed data. The hidden units
of the RBM are then treated as input data, and a higher-level RBM is fit to those.
By fitting RBM models recursively, one obtains a deep belief network, where the
higher layers capture increasingly abstract properties of the data. The same strategy
has been used to train other deep generative architectures, such as deep Boltzmann
machines (DBMs) (Salakhutdinov and Hinton, 2009) and hierarchical-deep models
(Salakhutdinov et al., 2013). For training the latter model, one first trains a DBM,
and then fits a hierarchical Dirichlet process using the top layer representations as
the inputs. It is a composition of two compositional models!
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1.3.4 Discussion

The preceding examples are cases where one can find surprisingly complex struc-
tures purely through the recursive application of simpler pattern discovery methods.
Taken separately, they likely appear to be one-off tricks for exploring particular
search spaces. But in combination, the similarity is striking: if one is able to find
meaningful representations of the data, one can often find additional patterns in
those representations. We would argue that much of modern machine learning re-
search follows the same pattern. One researcher may fit a simple model, with the
aim of uncovering meaningful parameters and latent variables (the machine learn-
ing analogues of theoretical quantities). Then somebody else may notice additional
structure in the parameters or latent variables and add that to the model, possi-
bly uncovering additional meaningful representations in the process. The recursive
nature of probabilistic modeling research is less obvious than in the preceding exam-
ples, because complex generative models are often built incrementally by multiple
research teams over the course of many conference publications. However, Chapter 4
will show that an analogous recursive procedure can successfully identify many of
the models currently used in the field of machine learning.

1.4 A toy example

We now discuss a toy example where the “obvious” set of reasoning steps can be
viewed as recursive structure discovery in a compositional model space using marginal
likelihood as the criterion. This is not a computationally challenging example, and
we don’t claim that a purely recursive approach would solve all problems of this
form. Still, the intuitions should extend to those cases where the individual steps are
difficult enough to require a computer. (Tenenbaum (1999) discussed the modeling
of sequences using Bayesian model comparison in are more systematic way.)

Suppose we are given the number sequence

4, 13, 38, 87, 208, . . . ,

and we wish to predict the next term in the sequence. In the absence of an obvious
pattern, one common trick is to take successive differences. If we include the first
term, this gives us

4, 9, 25, 49, 121
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All of these terms are squares! When we take square roots, we get:

2, 3, 5, 7, 11.

These are the first five prime numbers. So there we have it. The nth term in the
sequence is simply the sum of squares of the first n primes. The next term is 377.

We can describe this search process as exploring a sequence of expressions of
increasing specificity. If we use MATLAB-like notation and let R denote “I don’t
know where this came from,” the models can be written as:

R

cumsum(R)

cumsum(square(R))

cumsum(square(nthprime(R)))

cumsum(square(nthprime(1:5)))

If we were to define a contex-free grammar for this language, it may include
productions such as the following:

R −→ cumsum(R)

R −→ square(R)

R −→ nthprime(R)

R −→ 1:N

(The implementation of a programming language would not include particular func-
tion names in the CFG itself. Conceptually, however, we can think of these as
rules in the grammar.) Each step of reasoning above is licensed by one of these
productions. Each production corresponds to an explanation of where a particular
sequence came from. Applying the production may yield a new sequence, analogous
to latent variables or theoretical quantities, and one can then look for patterns in
that sequence.

How do we know if we are “getting warmer?” Maybe experience plays a role,
but our intuitive judgments can be explained from basic principles. If we attach
a probabilistic semantics to the expressions, each step can be viewed as refining a
generative model to one with higher marginal likelihood. Since the functions in our
mini-language are all deterministic, we simply need to describe a generative process
corresponding to the ignorance term R. We will let R denote the following procedure:
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1. Sample two integers a and b between 1 and 1000 independently from the dis-
tribution Pr(a = n) = Pr(b = n) ∝ 1/n. (This is commonly used as an
uninformative prior over integers.)

2. Sample N numbers uniformly between a and b, inclusive (where N is the length
of the sequence).

This distribution captures the intuition that explanations involving small numbers
are better than ones involving large numbers, and explanations involving a small
range of numbers are better than those involving a wide range. The prior over
expressions is a probabilistic context-free grammar (PCFG) where in each step, the
choice is uniform over all four productions, plus stopping.

We can score each expression E with p(E ,S) = p(E) p(S |E), where S is the
observed sequence. The term p(S |E) is the marginal likelihood of the expression,
and the random choices to be marginalized out are the bounds a and b.

The prior probability of the trivial expression R is 1/5, and the marginal likelihood
p(S |E) is 3.94 × 10−14, for a total score of 7.87 × 10−15. In the second step, 3 of
the 4 possible successor expressions cannot generate the data, so their scores are
all zero. The expression cumsum(R) generates the data if the R process generates
the values 4, 9, 25, 49, 121. The probability of this happening is 6.05 × 10−13, and
when combined with the prior probability of 1/52, the score for this expression is
2.42× 10−14. This is only a moderate improvement in the score, which corresponds
with the intuition that taking differences wasn’t obviously the right thing to do.

In the next step, there are two successor expressions which generate S with
nonzero probability. The first one, cumsum(cumsum(R)), corresponds to taking differ-
ences again. Using the same calculations as before, the score for this expression
is 6.73 × 10−14, roughly a factor of 3 improvement. Now consider the alterna-
tive expression, cumsum(square(R)), which corresponds to noticing that the inte-
gers were all perfect squares. In this case, the “uniformly generated” sequence is
2, 3, 5, 7, 11, which is much more probable than the previous one, i.e. 9.72 × 10−8,
as compared with 6.05 × 10−13. (Recall that our generative process for R favors
numbers that are small and/or clumped together.) The total score of this expression
is 1/53 (9.72× 10−8) = 7.77 × 10−10, roughly a 3200-fold improvement. This cor-
responds to how we considered reaching a sequence of perfect squares to be a very
promising find.

This process continues until we arrive at the final answer, cumsum(square(nthprime(1:5))),
in two more steps. For convenience, The following table reflects the expressions con-
sidered, as well as their score and the improvement over the previous step:
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Expression Score Improvement
R 7.88× 10−15 —

cumsum(R) 2.42× 10−14 3.07
cumsum(square(R)) 7.77× 10−10 3213.04

cumsum(square(nthprime(R))) 5.84× 10−9 7.51
cumsum(square(nthprime(1:5))) 0.0016 274186.18

This example illustrates how recursively looking for patterns can be interpreted
as applying productions in a grammar in order to increase the marginal likelihood
of the model. While this was a contrived example, the rest of the thesis will focus
on algorithms for carrying out this sort of reasoning in a more realistic setting.

1.5 Outline

We now outline the overall structure of this thesis. Chapter 2 provides some general
background on several topics which are needed throughout the thesis. It introduces
a variety of latent variable models which can be viewed as matrix decompositions
and well as some MCMC algorithms which can be used to perform inference in
these models. Finally, the chapter gives an overview of the problem of estimating
partition functions and summarizes a variety of algorithms which have been applied
to the problem.

In this introduction, we’ve spoken in general terms about the compositional struc-
ture of probabilistic models. Chapter 3 makes this notion more concrete by intro-
ducing a space of matrix decomposition models, where an observation matrix is
represented in terms of sums and products of matrices drawn from a few simple pri-
ors. All of the models in this space can be written as algebraic expressions generated
by a context-free grammar whose production rules correspond to simple motifs of
probabilistic modeling. This grammar yields a concise notation for describing a wide
variety of probabilistic models. We discuss a number of models from the literature
which can be represented in this framework.

The main idea of the thesis, compositional structure search, is described in Chap-
ter 4. We present a method for performing inference across a wide variety of matrix
decomposition models using a handful of specialized inference algorithms correspond-
ing to the productions of the grammar. We introduce a recursive structure search
procedure where, in each step, the current best models are expanded by applying all
production rules. Empirically, this procedure was typically able to determine the cor-
rect structure on synthetic data in low noise settings, and fell back to simpler models
under heavy noise. It also recovered known or plausible structures on a variety of
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real-world datasets, all using exactly the same code with no hand-tuned parameters.
While most of this thesis focuses on matrix decompositions, Chapter 5 discusses

another case where compositional structure search can recover meaningful structures:
Gaussian process (GP) covariance kernels. (This chapter is taken from a paper on
which I was the third author, but I include it with permission of the primary authors
because it fits nicely with the overall theme.) We define a grammar over GP kernel
structures where kernels are constructed as sums and products of a few simple base
kernels. A structure search procedure analogous to the one from Chapter 4 was able
to recover the kernel structures for synthetic data. The kernels learned from a variety
of time series datasets yielded interpretable additive decompositions into structure
occurring at different scales, and often allowed for more accurate extrapolation com-
pared to simpler kernels.

The structure search procedure of Chapter 4 includes compositional approaches to
inference, but predictive likelihood estimation requires an ad-hoc procedure. Chap-
ter 6 introduces compositional importance sampling (CIS), a purely compositional
approach for estimating the marginal likelihood of a model. CIS requires only black
box algorithms for posterior inference and marginal likelihood estimation in models
corresponding to the production rules. We give a theoretical analysis of the perfor-
mance of the estimator in the case of finding additional structure within a low-rank
factorization. Under certain conditions, CIS yields accurate marginal likelihood es-
timates and posterior samples. This analysis should hopefully lead to criteria for
determining which spaces of models are efficiently searchable using recursive infer-
ence and model selection procedures.

Implementing CIS requires algorithms for estimating marginal likelihoods of mod-
els corresponding to the production rules. This by itself is a difficult task, since it
requires integrating out both the parameters and the latent variables. Compounding
this difficulty, it is difficult even to measure the performance of the algorithms, since
they return estimates of a scalar quantity whose true value is unknown. Chapter 7
introduces a novel method for obtaining ground truth marginal likelihood values for
simulated data from a generative model. We use this method to evaluate a wide
variety of marginal likelihood estimators for three production rules of the grammar.
These experiments should inform the choice of algorithms in the context of compo-
sitional structure search and model selection more generally.

Two of the three algorithms which were found to be competitive at marginal
likelihood estimation—annealed importance sampling (AIS) and sequential Monte
Carlo (SMC)—are homotopy methods which pass through a sequence of distribu-
tions bridging from a tractable initial distribution to an intractable target distribu-
tion. Drawing upon ideas from information geometry, Chapter 8 gives a framework
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for choosing alternative sequences of distributions. We propose a novel sequence of
intermediate distributions for exponential family models, defined by averaging the
moments of the initial and target distributions. This method performs well at esti-
mating the partition functions of restricted Boltzmann machines, the building block
of deep belief networks and deep Boltzmann machines.

This thesis is a first step towards a general model selection procedure which
exploits the compositional nature of probabilistic models, but it opens up more
questions and avenues of research than it closes off. Chapter 9 ties together the
different threads of this thesis and outlines a variety of ways to build upon the work
presented here.

1.6 Notation

For reference, we list some notational conventions which are adopted throughout
the thesis. Matrices are denoted by boldface capital letters (e.g. A), vectors by
boldface lowercase letters (e.g. a), and scalars by plain letters (e.g. a). Symbols in
the grammar are denoted with a sans-serif font (e.g. G).

Unless otherwise specified, we adopt the following conventions for matrix decom-
position models. Y represents the observation matrix, and X denotes a matrix of
latent Gaussian variables to which some operation is applied to produce Y. (For
instance, Y may be a binary matrix obtained by thresholding X at zero.) The let-
ters N , D, and K denote the numbers of data points, input dimensions, and latent
dimensions, respectively. For instance, a matrix decomposition X ≈ UV, U is an
N ×K matrix and V is an K ×D matrix. The variables i, j, and k index the data
points, input dimensions, and latent components, respectively.

In models based on importance sampling, p denotes the normalized target distri-
bution and q denotes the normalized proposal distribution. The respective unnor-
malized distributions are denoted f and g.
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Chapter 2

Background

In this chapter, we introduce several models and algorithms which are used through-
out the thesis. This chapter is not intended to be read linearly; references are given
throughout the text to particular sections as they are needed.

2.1 Motifs of probabilistic modeling

In this section, I outline some examples of motifs which are commonly used to con-
struct probabilistic models. All of the models described in this section are sometimes
used as stand-alone models, but their power lies in the fact that they can be combined
to construct even richer models.

What all of these models have in common is that the aim is to learn a reprsen-
tation of the data, i.e. a mapping from observations to a space on which various
mathematical operations can be performed. For instance, one might like to encode
data points as integers, real vectors, or binary vectors. There are a vast number of
choices beyond what we cover here; for instance, in hierarchical clustering, the goal
is to represent the data in terms of a tree structure.

2.1.1 Linear dimensionality reduction

Often, one has a collection of high-dimensional data points and wants to find a lower
dimensional representation of the data. This may be motivated by computational or
statistical considerations: high-dimensional models may be computationally expen-
sive to fit, or there may not be enough data to fit them accurately. Alternatively,
one may believe that there are a small number of factors explaining most of the
variation in the data, and that it is inherently interesting to figure out what those
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factors are. In other situations, such as recommendation systems, one might have
a large, sparsely observed matrix and desire to make predictions about the missing
entries. These situations motivate the use of a dimensionality reduction algorithm,
where the data matrix is approximated with a low rank one.

Perhaps the simplest such algorithm is principal component analysis (PCA). In
PCA, we try to find a low-dimensional subspace such that the projection of the data
onto the subspace captures as much of the variance as possible. A basis for the
optimal K-dimensional subspace is given in terms of the top K eigenvectors of the
empirical covariance matrix Σ. Because Σ is symmetric, the eigendecomposition
is equivalent to the singular value decomposition SVD of Ỹ, which denotes the
observation matrix Y with the mean of each column subtracted out. Recall that the
SVD is a decomposition

Ỹ ≈ UDVT ,

where U and V have orthogonal columns and D is diagonal. The optimal subspace
is obtained by keeping only the rows or columns corresponding to the K largest
singular values. In this way, the SVD yields a low-rank approximation of the data
matrix. Since the rows of U correspond to the data points, each row of U can be
interpreted as a representation of that data point as a real-valued K-dimensional
vector.

PCA has also been formulated as a probabilistic model where the maximum
likelihood parameters can be computed in terms of an SVD (Tipping and Bishop,
1999; Roweis, 1998). Another closely related model is factor analysis (Basilevsky,
1994), which is similar to PCA, except that the Gaussian noise is assumed to be
diagonal rather than spherical. This is advantageous, because the noise variance may
differ for different input dimensions. Furthermore, if different inputs are expressed in
different (arbitrary) units, it is meaningless to assume the variance is shared between
different dimensions. Still another variant is probabilistic matrix factorization (PMF;
Salakhutdinov and Mnih, 2008), a low rank approximation of a sparsely observed
input matrix, which was a strong contender in the Netflix competition.

It should be noted that the algorithms listed above are linear dimensionality
reduction algorithms. There has also been much work on nonlinear dimensionality
reduction algorithms, which fit low-dimensional embeddings of the data points which
are not constrained to be linear. Notable examples include multidimensional scaling
(Shepard, 1980), the Gaussian process latent variable model (Lawrence, 2005), and
deep autoencoders (Hinton and Salakhutdinov, 2006). In this thesis, dimensionality
reduction will always refer to linear dimensionality reduction.
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2.1.2 Clustering

One of the most common tasks in machine learning is clustering: dividing a set of
data points into groups, where the data points within a group are somehow more
similar than data points in different groups. In other words, each data point is
assigned a discrete label zi ∈ {1, . . . , K}, where K is the number of clusters, and the
ordering of the cluster indices is arbitrary.

Within probabilistic modeling, the most common approach to clustering is mix-
ture modeling. Each cluster k is assumed to have an associated distribution p(yi|θ, zi =
k) = pθk(yi), where pθ is a parametric family of distributions parameterized by a
vector θ. If the data are real-valued, pθ is often taken to be a Gaussian distribution,
while if the data are binary valued, it is often taken to be the parameters of inde-
pendent Bernoulli distributions, one for each input dimension. Fitting a clustering
model involves fitting both the cluster parameters θk and the mixture probabilities
πk = p(zi = k). An approximate maximum likelihood solution can be found using
the Expectation-Maximization (EM) algorithm (Dempster et al., 1977).

In the Bayesian modeling approach, we place priors over both π = (π1, . . . , πK)T

and θ. Most commonly, the priors are chosen to be conjugate: the posterior distri-
bution given the data and the latent assignments should have the same form as the
prior. The prior over mixture probabilities p(π) is usually taken to be a Dirichlet
distribution because it is conjugate to the multinomial distribution. In the case of a
Gaussian mixture model, the Gaussian distributions are parameterized by a mean µ
and covariance Σ, and the corresponding conjugate prior is a normal-inverse-Wishart
distribution. For simplicity, in this thesis, the covariance matrices are assumed to be
diagonal, and the mean and variance parameters have Gaussian and inverse gamma
priors, respectively. The full generative model, then, is given by:

π ∼ Dirichlet(α)

s2 ∼ InverseGamma(a, b)

µk ∼ N (0, s2I)

σ2
kj ∼ InverseGamma(a, b)

zi ∼ Multinomial(π)

yi ∼ N (µzi , diag(σ2
zi1
, . . . , σ2

ziD
))

The hyperparameters α, a, and b need to be either specified or fit.
The above discussion assumes the number of clusters K is specified in advance.

Bayesian nonparametrics (Ghahramani, 2012) is a branch of Bayesian statistics which
places distributions on structures of unbounded complexity, so that the complexity of
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the model can be adjusted automatically to match the data. The Bayesian nonpara-
metric analogue of the Dirichlet-multinomial distribution is the Chinese restaurant
process (CRP; Aldous, 1985), a prior over partitions of a set. (A partition is like a
labeling, except that all permutations of the labels are treated as equivalent). The
distribution is given in terms of the following analogy: consider a Chinese restaurant
with an infinite number of tables. The customers enter the restaurant one at a time.
If there are K tables with custoemers seated at them, the next customer chooses a
given table k with probability Nk/(N +α), and sits at an empty table with probabil-
ity α/(N + α), where N is the total number of customers, Nk is the number seated
at table k, and α is a concentration parameter. Larger values of α favor splitting
the people between a larger number of tables. While this is not obvious from the
culinary metaphor, the distribution is exchangeable: it does not matter in what order
the customers enter the restaurant.

2.1.3 Binary attributes

Clustering is a fairly restrictive model, because each data point is assumed to belong
to only one cluster, and the clusters are assumed to be unrelated to each other. In
many domains, the natural categories may overlap; for instance, in modeling a social
network, we may assume that individuals have multiple interests, such as tennis and
programming. In this case, we would want to model the data in terms of overlapping
subsets. Equivalently, each data point would be represented with a K-dimensional
binary vector, where each of the entries denotes membership in one of the categories.
A classic algorithm for learning binary vector representations is cooperative vector
quantization (Zemel and Hinton, 1994). Most commonly, the binary attributes are
assumed to be independent, so the vector describing each data point is a vector of
independent Bernoulli random variables with parameters π = (π1, . . . , πK).

Since data points which share a binary attribute may be similar in some ways
but not others, defining the full model requires specifying how the distribution over
observations depends on the binary attributes. If the observations yi are real-valued
vectors, the yi are most commonly assumed to depend linearly on zi. In other words,

yi ∼ N

(
b +

K∑
k=1

zikak, σ
2
nI

)
,

where b is a bias vector, ak is a real-valued feature vector associated with component
k, and σ2

n is a noise parameter. While linearity is a fairly strong assumption, it is a
convenient assumption algorithmically because it ensures conjugacy.
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To build a Bayesian model, we place priors on the model parameters. The con-
jugate prior for the Bernoulli parameter πk is a beta distribution. It is common to
assume that the features ak are all Gaussian distributed with spherical covariance.
The Bayesian model, then, is given by:

πk ∼ Beta(α, β)

σ2
f , σ

2
n, σ

2
b ∼ InverseGamma(a, b)

b ∼ N (0, σ2
b I)

ak ∼ N (0, σ2
fI)

zik ∼ Bernoulli(πk)

yi ∼ N

(
b +

K∑
k=1

zikak, σ
2
nI

)

If we regard the binary attribute vectors zi as rows of a matrix Z and the real-valued
features ak as rows of a matrix A, the observation model can be written in terms of
a matrix factorization:

Y ≈ ZA.

As with clustering, when the true number of components K is not known in
advance, it is possible to use a Bayesian nonparametric analogue of the above model.
The Indian Buffet Process (IBP; Griffiths and Ghahramani, 2005) is a prior over
infinite sparse binary matrices. This model can be obtained as the limit of a sequence
of distributions over binary matrices by letting K →∞ and simultaneously varying
the parameters of the beta prior over πk so that the expected number of nonzero
entries in each row is held fixed. In order for the prior to be meaningful, the columns
need to be reordered into a canonical order.

As with the CRP, the IBP can be described using a restaurant analogy. There
is a buffet with an infinite number of dishes. When each customer enters the buffet,
for each of the dishes sampled by previous customers, he samples it with probability
N+/(N+ + N− + 1), where N+ is the number of previous customers who chose the
dish and N− is the number of previous customers who did not. He then samples
Poisson(α) new dishes. The customers correspond to rows of Z and the dishes cor-
respond to columns, and the entry zik = 1 if customer i samples the kth dish. As
in the CRP, the model is exchangeable, in that it does not matter in what order the
customers entered the buffet.
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2.1.4 Linear dynamics

All of the models discussed so far have been exchangeable: the distribution over
datasets is invariant to permuting the order of the data points. When analyzing time
series data, however, the system often evolves continuously through time, and one de-
sires to model the dynamics. One basic model which can be used is a linear-Gaussian
state space model, or linear dynamical system. Each data point is associated with a
real-valued state zt which evolves through time:

zt = Atzt−1 + εt,

where εt is Gaussian distributed system noise. Similarly to the models discussed
previously, the observations at each time step are taken to be a Gaussian distribution
whose mean is a linear function of the state variables:

yt = Ctzt + δt,

where δt is Gaussian distributed observation noise. Even though the linearity as-
sumption is not always realistic, linear dynamical systems are commonly used be-
cause if the model parameters are known, inference can be performed efficiently and
exactly using Kalman filtering and smoothing. If the parameters are not known,
they can be fit using an EM procedure.

2.1.5 Sparsity

One drawback of linear dimensionality reduction algorithms such as PCA (Section
2.1.1) is that the individual coordinates of the real-valued vector representation may
not correspond to anything meaningful. The reason is that PCA searches for a
subspace which approximates the data, and there are many possible bases for the
subspace. In particular, any rotation of the coordinate system is equally good at
explaining the data. (In PCA, to break symmetry, it is common to use the top
eigenvectors as the basis, which leads to meaningful coordinates in the case where
one factor dominates the others. Only the first few coordinates are likely to be mean-
ingful, though.) One way to find meaningful coordinates is to encourage sparsity : to
encourage most of the components in the representation to be exactly zero, or close
to zero. Unlike PCA, such a representation would not be rotationally invariant, since
rotation destroys sparsity.

A heuristic motivation for sparse models is that in many domains, the causal
structure is sparse: only a small subset of the causes are active in any particular
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instance. For instance, in explaining a visual scene, only a small fraction of all
possible edges are likely to be present. We may hope, therefore, that by learning
a sparse representation of the inputs, we can find a representation which reveals
something about the underlying causes.

The sparse coding model of Olshausen and Field (1996) was an early instantiation
of this idea. They argued that an natural image patch x could be represented as a
linear combination

x =
K∑
k=1

skak + ε, (2.1)

where the ak are dictionary elements, the sk are coefficients which have a sparse dis-
tribution, and ε is a Gaussian noise term. The prior p(sk) is taken to be a distribution
which is heavy-tailed and peaked around zero, such as the Laplacian distribution or
the student-t distribution. Depending on the choice of distributions and on how one
infers the sk, the representation may be exactly or approximately sparse. If p(sk) is
any continuous distribution and the sk are sampled from the posterior, the samples
are all nonzero almost surely, but hopefully most are close to zero. On the other
hand, if one computes the MAP estimate and p(sk) is nondifferentiable at zero, some
of the coefficients may be exactly zero.

In the case of linear dimensionality reduction, one has to choose K < min(N,D),
because otherwise the model can simply memorize the data. However, with sparse
coding, it is possible, and often desirable, to learn an overcomplete representation,
where K > D. As a heuristic motivation, in vision, the number of possible image
events is larger than the number of pixels, since each one can appear in any location
within the patch. Even though the representation is higher dimensional than the
original data, it can still be more compact, because most of the coefficients are zero
or close to zero, and therefore it takes fewer bits on average to approximate them.

When Olshausen and Field (1996) fit this model to natural image patches, they
obtained a dictionary whose elements corresponded to localized, oriented edges simi-
lar to the receptive fields in the primary visual cortex. Since then, sparse models have
been successful at uncovering meaningful representations of sensory data. Sparse
restricted Boltzmann machines (RBMs; Lee et al., 2008) find more interpretable rep-
resentations than standard RBMs, and a convolutional extension of sparse coding
(Grosse, 2007) learns semantically meaningful features from speech spectrograms.
The role of overcompleteness is still controversial: Berkes et al. (2008) showed that,
in a Bayesian framework, highly overcomplete representations failed to assign higher
likelihood to image patches.
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2.1.6 Gaussian scale mixtures

The sparse coding model of Section 2.1.5 assumes the linear reconstruction coeffi-
cients are independent, but this assumption does not hold in natural images. While
related coefficients are uncorrelated, their magnitudes are correlated: when one coef-
ficient is far from zero, the other is more likely to be far from zero (Simoncelli, 1997).
A class of models called Gaussian scale mixture (GSM) models (Wainwright et al.,
2001) simultaneously captures both this effect and the sparse marginal distributions
of the reconstruction coefficients.

In a single dimension, a GSM is a mixture of Gaussians with different scales, all
centered at zero:

p(s) =

∫
p(σ)N (s; 0, σ) dσ,

where p(σ) is any distribution over the positive reals. The Gaussian distribution is a
special case of GSMs where p(σ) is a delta function. However, by placing a broader
prior over σ, we obtain a heavy-tailed distribution, since large values of σ correspond
to s being far from zero. An equivalent representation of GSMs takes s = rz, where
r ∼ N (0, 1) and z is a random variable known as a scale variable. This alternative
representation has the advantage that unlike σ, z need not be positive.

Surprisingly, any symmetric, zero-centered heavy-tailed distribution can be repre-
sented as a GSM (Wainwright et al., 2001), so GSMs are an alternative representation
of a sparse coding model. If the coefficients sk in (2.1) are independent GSMs, the
model is exactly ordinary sparse coding. However, we can place a prior or a con-
straint on the corresponding scale variables zk in order to model dependencies. In
such a model, different coefficients sk are uncorrelated, but their magnitudes may be
correlated (or anticorrelated). Portilla et al. (2003) placed a (fixed) tree-based prior
on the zk to obtain a highly effective denoising algorithm for natural images. Karklin
and Lewicki (2005) went a step further and learned the dependencies between the
zk, assuming there was an underlying low-dimensional representation. When they
fit the resulting model to natural images, they found components which captured
higher-level textural properties of a scene.

2.2 Markov chain Monte Carlo

With the exception of PCA (Section 2.1.1), none of the models described above can
be fit in closed form, and some sort of approximation is required. In this thesis,
we restrict ourselves to Bayesian models, and for the most part, inference is done
using Markov chain Monte Carlo (MCMC). MCMC is a broad class of techniques
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for approximately sampling from (unnormalized) probability distributions. In this
section, we use x to denote a generic state variable and p(x) = f(x)/Z to denote a
generic distribution we are interested in sampling from. In most of this thesis, the
particular task is posterior inference, i.e. the goal is to sample from the posterior
p(θ, z |y), where θ denotes the model parameters, z denotes latent variables, and y
denotes the observed data.

The idea behind MCMC is to iteratively apply any number of transition operators
T , each one of which preserves the stationary distribution p, i.e.∑

x

p(x) T (x′ |x) = p(x′). (2.2)

Under certain regularity conditions, the distribution is guaranteed to converge to the
stationary distribution p in the limit. Most often, MCMC transition operators are
constructed out of reversible operators, i.e. ones which satisfy the detailed balance
conditions

p(x) T (x′ |x) = p(x′) T (x |x′) for all x,x′. (2.3)

Intuitively, any reversible transition operator satisfies (2.2) because under p, the
probability mass flowing in both directions between x and x′ is equal. Not all MCMC
transition operators are reversible, but most of the practical ones are constructed
from sequences of reversible operators. While MCMC transition operators such as
the ones described below are often presented as stand-alone algorithms, they are
better thought of as operators which can be strung together in sequence to perform
posterior inference. (If all transition operators in a set preserve a distribution p, then
any sequence of them, or linear combination of them, must preserve it as well.)

The Metropolis-Hastings (M-H) procedure is a general formua for constructing
reversible transition operators. In particular, assume we have a proposal operator
q(x′ |x). The M-H procedure first proposes a new state x′ from q, and then computes
the following acceptance probability:

r = min

{
1,

p(x′) q(x |x′)
p(x) q(x′ |x)

}
. (2.4)

With probability r, the proposal is accepted, i.e. x′ is taken to be the new state;
otherwise, the proposal is rejected and x is kept. M-H is extremely general, and most
practical MCMC algorithms are special cases. Unfortunately, for many problems,
unless the proposal distribution q is chosen very carefully, M-H is too slow to be
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practical. Either the proposals take too small a step, or the acceptance probability
is too small, or both.

Gibbs sampling is a special case of M-H which is often much more practical. In
the proposal distribution, one variable xi is sampled from its conditional distribution
p(xi |x−i) given the remaining variables x−i. Because the proposal itself is reversible,
the M-H acceptance ratio is 1, so the proposal is always accepted. Gibbs sampling
is widely used in probabilistic modeling because it has no tunable parameters and is
often pretty effective.

2.2.1 Block Gibbs sampling

Sampling a single variable at a time from its conditional distribution can be inef-
ficient, especially if the variables are tightly coupled. If two variables xi and xj
are tightly coupled, one solution is to resample jointly from their conditional distri-
bution p(xi, xj |x−ij). For instance, consider the probabilistic matrix factorization
model (Salakhutdinov and Mnih, 2008), which has the factorization Y ≈ UV where
U and V each have Gaussian priors. Each of the two factors can be sampled from its
posterior as a block, because the conditional decomposes into independent factors for
each row of U or column of V. Computing these updates requires computing a dot
product with dimensions N ×K×K, and another with dimensions D×K×K, and
inverting a single K×K matrix (shared between all rows of U or V). Therefore, the
time for computing the update is O((N+D)K2). This is desirable for the motivating
application of PMF, collaborative filtering, where K � min(N,D), and the matrix
is sparse, which allows the dot products to be computed efficiently.

2.2.2 Collapsed Gibbs sampling

Another solution to the problem of tightly coupled variables is to collapse out, or
marginalize out, some of them analytically. When collapsed Gibbs sampling is feasi-
ble, it can often dramatically improve the mixing rate of the sampler. The drawback
is that the collapsed updates can be trickier to implement and more computationally
expensive. (Collapsed Gibbs sampling is sometimes called Rao-Blackwellized Gibbs
sampling, but the name is somewhat misleading because typically, the primary ben-
efit is improved mixing rather than the increased statistical efficiency that results
from the Rao-Blackwell Theorem.)

An important example of collapsed Gibbs sampling is collapsing out the parame-
ters θ of a latent variable model. With θ collapsed out, the goal is to sample z from
the posterior p(z |y). Each zi is sampled from its conditional distribution given the
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remaining latent variables:

p(zi |z−i,y) ∝ p(zi,yi |z−i,y−i)
= p(zi |z−i) p(yi |zi, z−i,y−i). (2.5)

Each of these terms may require integrating out parameters:

p(zi |z−i) =

∫
p(θ(z) |z−i) p(zi |θ(z)) dθ(z) (2.6)

p(yi |zi, z−i,y−i) =

∫
p(θ(y |z) |z−i,y−i) p(yi |zi,θ(y |z)) dθ(y |z), (2.7)

where θ(z) and θ(y |z) are the parameters which determine the distribution over latent
variables and the observation model, respecitvely.

If the update (2.5) is applied näıvely, the two predictive distributions (2.6) and
(2.7) need to be recomputed for each zi. This is problematic, because each predic-
tive distribution depends on all N data points, so recomputing it from scratch for
each data point requires O(N2) time, which is impractical except for small datasets.
Fortunately, for many models, the posteriors over θ(z) and θ(y |z) are given in terms
of sufficient statistics which can be updated during Gibbs sampling. The resulting
algorithm often depends only linearly on N .

For example, in the finite clustering model of Section 2.1.2, θ(z) corresponds to
the mixture probabilities π, and the posterior is given by p(π |z−i) = Dirichlet(π;α+
N1, . . . , α+NK), where Nk is the number of data points assigned to cluster k. Sim-
ilarly, the posterior over the cluster center µk is given by:

p(µkj |z−i,y−i) = N

(
µkj;

σ−2kj Skj

s−2 +Nkσ
−2
kj

,
(
Nkσ

−2
kj + s−2

)−1/2)
, (2.8)

where Skj =
∑

zi′=k
yi′j denotes the sum of the data points belonging to a given

cluster. Therefore, the statistics needed to compute the posteriors over π and µk
are the counts Nk for each cluster and the sums Skj.

Sometimes implementing collapsed Gibbs sampling efficiently requires additional
tricks. For instance, consider the binary attribute model of Section 2.1.3. In this
case, θ(z) corresponds to the Bernoulli parameters π, whose posterior can be updated
analogously to the clustering case. The model parameters θ(y |z), in particular the
feature matrix A and the bias vector b, are trickier. For simplicity, we leave out b in
the following discussion, but it is easy to extend the following approach to collapse
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out A and b jointly. The posterior over A decomposes into independent terms
by column aj (i.e. one for each dimension of the input matrix), and the individual
distributions are given by:

p(aj |Z−i,:,Y−i,j) = N (aj;σ
−2
n Λ−1ZT

−i,:Y−i,j,Λ
−1),

where

Λ = σ−2f I + σ−2n ZT
−i,:Z−i,:.

We see that the posterior requires the quantities ZT
−i,:Z−i,: and ZT

−i,:Y−i,j, which
are a K ×K matrix (shared between all dimensions j) and a K-dimensional vector
(for each dimension j), and these need only be updated once for each row of Z.
Unfortunately, the K ×K matrix Λ needs to be inverted once per row, for a total
cost of DK3.

This cost is still considerably faster than the O(N3) algorithm of the original
IBP collapsed Gibbs sampler of Griffiths and Ghahramani (2005), but is still fairly
inefficient. Doshi-Velez and Ghahramani (2009) pointed out that because resampling
a single row of Z causes only a rank-one update to Λ, the inverses can be updated
efficiently using the Woodbury formula for a cost of O(K2) per update, or O(NK2)
total. Because another step of the algorithm was O(NKD), the total cost per Gibbs
sweep was O(NK(K + D)), far more efficient than the original O(N3). This exem-
plifies how implementing a collapsed Gibbs sampler efficiently can take substantial
attention to what order to resample variables in, which statistics to update, and how
to update them efficiently.

A further benefit of collapsed Gibbs sampling beyond mixing speed is that it
can be extended naturally to Bayesian nonparametric models. For instance, if one
wants to sample from the posterior of a CRP clustering model, the number of cluster
parameters which need to be explicitly represented depends on how many clusters are
used to represent the data. Therefore, one must use MCMC techniques which allow
moves between spaces of varying dimensionality, such as reversible jump MCMC
(Green, 1995). On the other hand, if the cluster parameters are collapsed out, the
dimensionalities of the remaining variables are fixed. In such situations, a collapsed
Gibbs sampler can sometimes be easier to implement than an uncollapsed one.

2.2.3 Slice sampling

Gibbs sampling is an effective MCMC operator which requires no parameter tuning.
Unfortunately, it requires the ability to sample exactly from the conditional distribu-
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tions, something which is not always feasible. There are a variety of M-H operators
which enable sampling from more general distributions, but most of them are sen-
sitive to parameters of the proposal distribution, which makes them difficult to use
in a structure search setting. Slice sampling (Neal, 2003) is an MCMC transition
operator which is good for sampling from one-dimensional distributions, and which
requires no parameter tuning.

Suppose p(x) = f(x)/Z is an unnormalized distribution over a scalar x. We
can augment the distribution with an auxiliary scalar variable u, and rewrite the
distribution as follows:

f ′(x, u) =

{
1 if 0 ≤ u ≤ f(x)
0 otherwise

(2.9)

Since f ′(x) = f(x), we can sample from f ′ and ignore u. This can be done using
Gibbs sampling. In particular, sampling u ∼ p(u |x) simply requires sampling a real
value from the interval [0, f(x)]. (This is typically done on a log scale for numerical
stability.) Then, x is resampled from p(x |u), the uniform distribution over the
set {x : f(x) > u}. In this thesis, slice sampling is primarily used to resample
hyperparameters.

2.3 Estimating normalizing constants

Because this thesis concerns model selection, there are many instances where we need
to compute partition functions. This section gives an overview of some standard
approaches to the problem. Throughout this section, y denotes the observed data,
z the latent variables, and θ the parameters.

2.3.1 General principles

The marginal likelihood (ML) of a dataset can be viewed as a partition function.
Therefore, the same basic algorithms are relevant to ML estimation as to other
partition function estimation problems, such as held-out likelihood estimation in
directed and undirected models. However, these different problems present their
own challenges and have their own requirements. In this section, we outline various
criteria for evaluating partition function estimators and highlight ways in which ML
estimation differs from other partition function estimation problems.

First consider the general partition function estimation problem. For convenience,
assume the variables are discrete. Suppose we have a probability distribution p(x) =
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f(x)/Z defined in terms of an unnormalized pmf f and the partition function Z =∑
x f(x). A partition function estimator (possibly stochastically) returns an estimate

Ẑ of Z.
Most simply, we could evaluate the estimator in terms of its bias |E[Ẑ]−Z| and

variance Var(Ẑ), just like any other estimator of a scalar quantity. Many partition
function estimators, such as simple importance sampling (SIS) and annealed impor-
tance sampling (AIS; Neal, 2001a), are unbiased, i.e. E[Ẑ] = Z. In this context,
unbiasedness can be misleading: because partition function estimates can vary over
many orders of magnitude, it’s common for an unbiased estimator to drastically un-
derestimate Z with overwhelming probability, yet occasionally return extremely large
estimates. (An extreme example is likelihood weighting (Section 2.3.3), which is un-
biased, but is extremely unlikely to give an accurate answer for a high-dimensional
model.) Unless the estimator is chosen very carefully, the variance is likely to be
extremely large, or even infinite.

Since Z can vary over many orders of magnitude, it is often more meaningful to
look at logZ. Estimators of Z can be equivalently viewed as estimators of logZ.
Unfortunately, unbiasedness does not carry over; unbiased estimators of Z may corre-
spond to biased estimators of logZ. In particular, they are stochastic lower bounds.
There are two arguments for this, neither of which subsumes the other. First, be-
cause ML estimators are nonnegative estimators of a nonnegative quantity, Markov’s
inequality implies that Pr(Ẑ > aZ) < 1/a. By taking the log, we find that

Pr(log Ẑ > logZ + b) < e−b. (2.10)

In other words, the estimator is exceedingly unlikely to overestimate logZ by more
than a few nats. This also implies that the underlying cause of large or infinite
Var(Ẑ)—that Ẑ occasionally takes on extremely large values—does not occur in the
log domain.

The other argument that log Ẑ is a stochastic lower bound of logZ follows from
Jensen’s inequality:

E[log Ẑ] ≤ logE[Ẑ] = logZ. (2.11)

Therefore, unbiased estimators can be compared in terms of their bias in the log
domain: logZ − E[log Ẑ]. One convenient feature of this metric is that unbiased
sampling-based estimators of logZ can be compared directly against variational in-
ference algorithms such as mean field, which also yield lower bounds on logZ. (As
discussed in Section 7.2.3, the bias of simple importance sampling (SIS) in the log
domain is closely related to the error in the variational approximation.)
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2.3.2 Use cases

There are several model selection criteria which often require estimating high-dimensional
integrals: held-out likelihood of directed models, held-out likelihood of undirected
models, and marginal likelihood of directed models. At an abstract level, all of these
problems are special cases of the general problem of computing partition functions,
and therefore the same methods should be relevant to each. However, these dif-
ferent problems have different requirements for the estimators, and we discuss the
differences in this section.

2.3.2.1 Held-out likelihood of directed models

The most basic way to evaluate a generative model is to fit the parameters θ to
training data and evaluate the model likelihood

Ntest∏
i=1

p(yi;θ) =
Ntest∏
i=1

∑
zi

p(zi;θ)p(yi |zi;θ). (2.12)

on held-out test data. For some models, such as factor analysis and Gaussian mixture
models, the sum in (2.12) can be computed exactly. In other cases, such as topic
models (Wallach et al., 2009), the integral is intractable and must be approximated.
If the method of approximating the integral is a stochastic lower bound, it will err on
the side of conservatism, assigning the model a lower likelihood score than it should.
Therefore, one is unlikely to be deceived into believing the model is better than it
actually is.

2.3.2.2 Held-out likelihood of undirected models

Held-out likelihood is also used to evaluate undirected models. In this case, the model
is defined as p(y, z;θ) , f(y, z;θ)/Z, where f is an unnormalized distribution and
Z =

∑
y,z f(y, z;θ) is a (generally unknown and intractable) partition function. In

this case, the quantity to be computed is:

Ntest∏
i=1

p(yi;θ) =
Ntest∏
i=1

∑
z f(yi, z;θ)∑
z,y f(y, z;θ)

. (2.13)

The numerator requires integrating over the latent variables. This is similar to
likelihood evaluation in directed models, and does not obviously raise any new issues.
Often, undirected models have a particular form which makes this integral tractable
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(Salakhutdinov and Murray, 2008) or easy to approximate using variational methods
(Salakhutdinov and Hinton, 2009).

What makes the undirected case different from the directed case is the parti-
tion function in the denominator. This is an intractable integral over all observed
and latent variables, and can be difficult to compute when the model distribution is
multimodal. Fortunately, the denominator is shared between all test examples, and
therefore only needs to be computed once after the parameters are fit. More prob-
lematically, because the integral appears in the denominator, underestimates of the
partition correspond to overestimates of the likelihood. Therefore, poor estimates
of the partition function can lead one to conclude that the model is far better than
it actually is. Evaluating a proposed undirected model generally requires extensive
experiments to test the accuracy of the partition function estimates.

2.3.2.3 Marginal likelihood of directed models

Marginal likelihood refers to the probability of the observed data with all of the
model parameters and latent variables integrated out:

p(y) =

∫
p(θ)

N∏
i=1

∑
zi

p(zi |θ) p(yi |zi,θ) dθ. (2.14)

Unlike in the case of held-out likelihood, only one integral needs to be computed.
Unfortunately, because this integral includes all parameters and all latent variables,
it can be more computationally demanding than computing held-out likelihood.

Like in the directed case, when variational methods and unbiased estimators give
poor approximations, they err on the side of pessimism. Compared to the case
of held-out likelihood, the accuracy requirements can be substantially lower. For
instance, suppose an algorithm consistently underestimates the held-out likelihood
by 1 nat. Then each test example is seen as e times less probable than it actually
is; this is quite a significant difference. However, if an algorithm underestimates the
marginal likelihood of an entire dataset by 1 nat, the difference is probably not even
meaningful. Recall that in the above argument from Markov’s inequality, in principle
the estimator could overestimate the true value by a few nats with nonnegligible
probability. In the case of marginal likelihood, however, a difference of a few nats
is negligible, and we can therefore view unbiased estimators as lower bounds on the
marginal likelihood.
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2.3.3 Likelihood weighting

Partition function estimators are often constructed from simple importance sampling
(SIS). In particular, suppose we wish to compute the partition function Z =

∑
x f(x).

We generate a collection of samples x(1), . . . ,x(K) from a proposal distribution q(x)
whose support contains the support of p, and compute the estimate

Ẑ =
1

K

K∑
k=1

w(k) ,
1

K

K∑
k=1

f(x(k))

q(x(k))
. (2.15)

This is an unbiased estimator of Z, because of the identity

Ex∼q

[
f(x)

q(x)

]
= Z. (2.16)

Likelihood weighting is a special case of this approach where the prior is used as
the proposal distribution. In particular, for estimating the held-out likelihood of a
directed model, latent variables z(1), . . . , z(K) are sampled from p(z;θ). By inspec-
tion, the weight w(k) is simply the data likelihood p(y |z(k);θ). This method can
perform well if the latent space is small enough that the posterior can be adequately
covered with a large enough number of samples. Unfortunately, likelihood weighting
is unlikely to be an effective method for estimating marginal likelihood, because the
model parameters would have to be sampled from the prior, and the chance that a
random set of parameters happens to model the data well is vanishingly small.

2.3.4 The harmonic mean of the likelihood

The harmonic mean estimator of Newton and Raftery (1994) is another estimator
based on SIS. Here, the posterior is used as the proposal distribution, and the prior
as the target distribution. By plugging these into (2.16), we obtain:

Eθ,z∼p(θ,z |y)

[
p(θ, z)

p(θ, z,y)

]
=

1

p(y)
. (2.17)

This suggests the following estimator: draw samples θ(k), z(k) from the posterior
p(θ, z |y), and compute weights w(k) = p(θ(k), z(k))/p(θ(k), z(k),y) = p(y |θ(k), z(k)).
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The ML estimate, then, is computed from the harmonic mean of the likelihood values:

p̂(y) =
K∑K

k=1 1/w(k)
=

K∑K
k=1 1/p(y |θ(k), z(k))

. (2.18)

Note that the weights w(k) are unbiased estimators of the reciprocal of the marginal
likelihood. Following the discussion of Section 2.3.1, this implies that they generally
underestimate the reciprocal, or equivalently, overestimate the marginal likelihood.
Therefore, unlike most of the other estimators discussed in this section, the harmonic
mean estimator is generally overly optimistic. Neal (2008) recommended against us-
ing the estimator for this reason. (We emphasize that the harmonic mean estimator
is only a stochastic upper bound if exact posterior samples are used. In practice,
one must rely on an approximate sampler, and the estimator can still underestimate
p(y) if the sampler fails to explore an important mode.)

2.3.5 Annealed importance sampling

The problem with both likelihood weighting and the harmonic mean estimator is
that each one is based on a single importance sampling computation between two
very different distributions. A more effective method is to bridge between the two
distributions using a sequence of intermediate distributions. Annealed importance
sampling (AIS; Neal, 2001a) is one algorithm based on this idea, and is widely used
for evaluating partition functions. Mathematically, the algorithm takes as input a
sequence of T distributions p1, . . . , pT , with pt(x) = ft(x)/Zt, where pT is the tar-
get distribution and p1 is a tractable initial distribution, i.e. one for which we can
efficiently evaluate the normalizing constant and generate exact samples. Most com-
monly, the intermediate distributions are taken to be geometric averages of the initial
and target distributions: ft(x) = f1(x)1−βtfT (x)βt , where the βt are monotonically
increasing parameters with β1 = 0 and βT = 1.

The AIS procedure, shown in Algorithm 1, involves applying a sequence of MCMC
transition operators T1, . . . , TT , where Tt leaves pt invariant. The result of the algo-
rithm is a weight w which is an unbiased estimator of the ratio of partition functions
ZT/Z1. Since Z1 is typically known, Z1w can be viewed as an unbiased estimator of
ZT = Z.

For purposes of evaluating marginal likelihood, f1 is the prior distribution p(θ, z),
and fT is the joint distribution p(θ, z,y) (viewed as a function of θ and z). Because y
is fixed, this is proportional to the posterior p(θ, z |y). The intermediate distributions
are given by geometric averages of the prior and the posterior, which is equivalent
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Algorithm 1 Annealed Importance Sampling

for k = 1 to K do
x1 ← sample from p1(x)
w(k) ← Z1

for t = 2 to T do
w(k) ← w(k) ft(xt−1)

ft−1(xt−1)

xt ← sample from Tt (x |xt−1)
end for

end for
return Ẑ =

∑K
k=1w

(k)/K

to raising the likelihood term to a power less than 1:

ft(θ, z) = p(θ, z) p(y |θ, z)βt . (2.19)

Note that this form of annealing can destroy the directed factorization structure
which is present in the prior and the joint distribution. Conditional independen-
cies satisfied by the original model may not hold in the intermediate distributions.
Unfortunately, this can make the implementation of MCMC operators for the in-
termediate distributions considerably more complicated compared to the analogous
operators applied to the posterior.

AIS can be justified as an instance of SIS over an extended state space. In partic-
ular, the full set of states x1, . . . ,xT visited by the algorithm has a joint distribution
represented by:

qfor(x1, . . . ,xT ) = p1(x1) T2(x2 |x1) · · · TT−1(xT−1 |xT−2). (2.20)

We can also postulate a reverse chain, where xT−1 is first sampled exactly from the
distribution pT , and the transition operators are applied in the reverse order. (Note
that the reverse chain cannot be explicitly simulated in general, since it requires
sampling from pT .) The joint distribution is given by:

qback(x1, . . . ,xT ) = pT (xT−1) TT−1(xT−2 |xT−1) · · · T2(x1 |x2). (2.21)

If qfor is used as a proposal distribution for qback, the importance weights come out
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to:

qback(x1, . . . ,xT )

qfor(x1, . . . ,xT )
=
pT (xT−1)

p1(x1)

T2(x1 |x2)

T2(x2 |x1)
· · · TT−1(xT−2 |xT−1)
TT−1(xT−1 |xT−2)

(2.22)

=
pT (xT−1)

p1(x1)

f2(x1)

f2(x2)
· · · fT−1(xT−2)

fT−1(xT−1)
(2.23)

=
Z1

ZT
w, (2.24)

where (2.23) follows from the reversibility of Tt. Since this quantity corresponds to
an importance weight between normalized distributions, its expectation is 1, and
therefore E[w] = ZT/Z1.

Note also that qback(xT−1) = pT (xT−1). Therefore, AIS can also be used as an
importance sampler for pT :

Eqfor [wh(xT−1)] =
ZT
Z1

EpT [h(x)] (2.25)

for any statistic h. (The partition function estimator corresponds to the special case
where h(x) = 1.)

2.3.6 Sequential Monte Carlo

Observe that the marginal distribution p(y) can be decomposed into a series of
predictive distributions:

p(y1:N) = p(y1) p(y2 |y1) · · · p(yN |y1:N−1). (2.26)

Since the predictive likelihood terms can’t be computed exactly, approximations
are required. Sequential Monte Carlo (SMC) methods (del Moral et al., 2006) use
particles to represent the parameters and/or the latent variables. In each step, as a
new data point is observed, the particles are generally updated to take into account
the new information. While SMC is most closely associated with filtering problems
where there are explicit temporal dynamics, it has also been successfully applied to
models with no inherent temporal structure, such as the ones considered in this work.
This is the setting that we focus on here.

SMC is a very broad family of algorithms, so we cannot summarize all of the
advances. Instead, we give a generic implementation in Algorithm 2 where several
decisions are left unspecified. In each step, the latent variables are sampled according
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to a proposal distribution q, which may optionally take into account the current data
point. (More details are given below.) The weights are then updated according to
the evidence, and the model parameters (and possibly latent variables) are updated
based on the new evidence.

This procedure corresponds the most closely to the particle learning approach of
Carvalho et al. (2010), where z is approximated in the typical particle filter frame-
work, and θ is resampled from the posterior after each update. Our formulation is
slightly more general: since it may not be possible to sample θ exactly from the
posterior, we allow any MCMC operator to be used which preserves the posterior
distribution. Furthermore, we allow z to be included in the MCMC step as well. Car-
valho et al. (2010) do not allow this, because it would require revisiting all of the data
after every sampling step. However, we consider it because it may be advantageous
to pay the extra cost in the interest of more accurate results.

Algorithm 2 leaves open the choice of q(zi |yi,θ(k)), the proposal distribution for
the latent variables at the subsequent time step. The simplest method is to ignore
the observations and sample z

(k)
i from the predictive distribution, i.e.

q(zi |yi,θ(k)) = p(zi |θ(k)). (2.27)

The particles are then weighted according to the observation likelihood:

w(k) ← w(k)p(yi |z(k)
i ,θ(k)). (2.28)

A more accurate method, used in the posterior particle filter, is to sample z
(k)
i from

the posterior:

q(zi |yi,θ(k)) = p(zi |yi,θ(k)). (2.29)

In this case, the weight update corresponds to the predictive likelihood:

w(k) ← w(k)p(yi |θ(k)) (2.30)

= w(k)
∑
zi

p(zi |θ(k))p(yi |zi,θ(k)). (2.31)

Posterior particle filtering can result in considerably lower variance of the weights
compared to standard particle filtering, and therefore better marginal likelihood
estimates. For some models, such as clustering (Section 2.1.2) and factor analysis
(Section 2.1.1), these computations can be performed exactly. For other models,
such as binary attribute models (Section 2.1.3), it is intractable to sample exactly
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Algorithm 2 Particle learning
for k = 1 to K do
θ(k) ← sample from p(θ)
w(k) ← 1

end for
for i = 1 to T do

for k = 1 to K do
z
(k)
i ← sample from q(zi |yi,θ(k))
w(k) ← w(k)p(z

(k)
i |θ)p(yi |z(k)i ,θ(k))/q(zi |yi,θ(k))

(z
(k)
1:i ,θ

(k))← MCMC transition which leaves p(z1:i,θ |y1:i) invariant
end for
if resampling criterion met then

Sample (z
(k)
1:i ,θ

(k)) proportionally to w(k)

S ←
∑K

k=1w
(k)

for k = 1 to K do
w(k) ← S/K

end for
end if

end for

return Ẑ = 1
K

∑K
k=1w

(k)

from the posterior or to compute the sum in (2.31).
For simplicity of notation, Algorithm 2 explicitly samples the model parameters

θ. However, for models where θ has a simple closed form depending on certain
sufficient statistics of y and z, it can be collapsed out analytically, giving a Rao-
Blackwellized particle filter. The algorithm is the same as Algorithm 2, except that
steps involving θ are ignored and the updates for z and w are modified:

z
(k)
i ← sample from q(z

(k)
i |y1:i, z

(k)
1:i−1) (2.32)

w(k) ← w(k)p(z
(k)
i |z

(k)
1:i−1) p(yi |z

(k)
1:i ,y1:i−1)

q(z
(k)
i |y1:i, z

(k)
1:i−1)

(2.33)

2.3.6.1 Relationship with AIS

While SMC is based on a different intuition from AIS, the underlying mathematics
is equivalent. In particular, we discuss the unifying view of del Moral et al. (2006).
For simplicity, assume there is only a single particle, i.e. K = 1. While Algorithm
2 incrementally builds up the latent representation one data point at a time, we
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Figure 2-1: The intermediate distribution f2(y, z) = p(θ) p(z |y) p(y1:2 |θ, z).

can imagine that all of the latent variables are explicitly represented at every step.
Recall that AIS was defined in terms of a sequence of unnormalized distributions ft
and MCMC transition operators Tt which leave each distribution invariant. In this
section, t ranges from 0 to T , rather than 1 to T as in Section 2.3.5.

The intermediate distributions are constructed by including only a subset of the
data likelihood terms:

ft(θ, z) = p(θ)
N∏
i=1

p(zi)
t∏
i=1

p(yi |θ, zi). (2.34)

This distribution is shown in Figure 2-1. Since each distribution in the sequence
differs from its predecessor simply by adding an additional observation likelihood
term,

ft(θ, z)

ft−1(θ, z)
= p(yt |θ, zt). (2.35)

The transition operator first samples θ from the conditional distribution p(θ |y1:t, z1:t),
and then resamples zt+1:N from p(zt+1:N |θ).

At an abstract level, all of the latent variables are represented throughout the
algorithm. However, by inspection, the latent variables corresponding to unobserved
data points have no effect on any of the other values which are sampled, and therefore
they need not be explicitly computed. The algorithm, therefore, is equivalent to
Algorithm 2 for the case of one particle.
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2.3.7 Variational Bayes

All of the methods described above are sampling-based estimators. Variational Bayes
is an alternative set of techniques based on optimization. In particular, the aim is
to approximate the intractable posterior distribution p(z,θ |y) with a tractable ap-
proximation q(z,θ), i.e. one whose structure is simple enough to represent explicitly.
Typically, z and θ are assumed to be independent, i.e. q(z,θ) = q(z)q(θ), and the in-
dividual terms may have additional factorization assumptions as well. The objective
function being optimized is the following:

F(q) , Eq(z,θ) [log p(θ, z,y)] +H [q(z,θ)] , (2.36)

where H denotes entropy. This functional is typically optimized using a coordinate
ascent procedure, whereby each factor of q is optimized given the other factors.
Assuming the factorization given above, the update rules which optimize (2.36) are:

q(z) ∝ exp
(
Eq(θ) [log p(z,θ,y)]

)
(2.37)

q(θ) ∝ exp
(
Eq(z) [log p(z,θ,y)]

)
(2.38)

Variational Bayes is used for both posterior inference and marginal likelihood
estimation, and the two tasks are equivalent, according to the following identity:

logF(q) = log p(y)−DKL(q(z,θ) ‖ p(z,θ |y)). (2.39)

I.e., variational Bayes underestimates the true log marginal likelihood, and the gap
is determined by the KL divergence from the true posterior.

2.3.8 Chib-style estimators

Another estimator which is popular because of its simplicity is Chib’s method (Chib,
1995). This method is based on the identity

p(y) =
p(z?,θ?,y)

p(z?,θ? |y)
(2.40)

for any particular values (z?,θ?) of the latent variables and parameters. While (2.40)
holds for any choice of (z?,θ?), they are usually taken to be high probability locations,
such as the maximum a posteriori (MAP) estimate. The numerator can generally be
computed in closed form. The denominator is based on a Monte Carlo estimate of the
conditional probability obtained from posterior samples (z(1),θ(1)), . . . , (z(K),θ(K)).
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In particular, let T represent an MCMC operator which leaves p(z,θ |y) invariant;
the basic version of the algorithm assumes a Gibbs sampler. For models where
the Gibbs transitions can’t be computed exactly, another variant uses Metropolis-
Hastings instead (Chib and Jeliazkov, 2001). (The posterior samples may be obtained
from a Markov chain using T , but this is not required.) The denominator is estimated
as:

p̂(z?,θ? |y) =
1

K

K∑
k=1

T (z?,θ? |z(k),θ(k),y). (2.41)

How should the estimator be expected to perform? Observe that if exact samples
are used, (2.41) is an unbiased estimate of the denominator of (2.40). Therefore, fol-
lowing the analysis of Section 2.3.1, it would tend to underestimate the denominator,
and therefore overestimate the true marginal likelihood value. If approximate poste-
rior samples are used, nothing can be said about its relationship with the true value.
In this review, we focus on latent variable models, which generally have symmetries
corresponding to relabeling of latent components or dimensions. Since transition
probabilities between these modes are very small, the estimator could drastically
overestimate the marginal likelihood unless the posterior samples happen to include
the correct mode. Accounting for the symmetries in the algorithm itself can be tricky,
and can cause subtle bugs (Neal, 1999).

Murray and Salakhutdinov (2009) proposed a variant on Chib’s method which
yields an unbiased estimate of the marginal likelihood. We will refer to the modified
version as the Chib-Murray-Salakhutdinov (CMS) estimator. The difference is that,
rather than allowing an arbitrary initialization for the Markov chain over (z,θ), they
initialize the chain with a sample from T̃ (z,θ |z?,θ?), where

T̃ (z′,θ′ |z,θ) ,
T (z,θ |z′,θ′) p(z′,θ′ |y)∑
z′,θ′ T (z,θ |z′,θ′) p(z′,θ′ |y)

(2.42)

is the reverse operator of T .
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Chapter 3

A grammar for matrix
decompositions

Matrix decompositions are a class of models where an input matrix is represented
in terms of sums and products of matrices with simple priors or constraints. This
chapter presents a compact notation for matrix decomposition models in terms of
algebraic expressions. The models are organized into a context-free grammar, where
the productions correspond to simple probabilistic modeling motifs such as clustering
or dimensionality reduction. Complex structures are generated through the iterated
application of these productions. We discuss several examples of existing models
which can be (approximately) represented in this framework.

3.1 Motivation

As a motivating example, consider a matrix where the rows correspond to 50 different
kinds of mammals, and the columns correspond to individual features they might
have, such as “can swim” or “has teeth” (Osherson et al., 1991). Each entry has
a binary label depending on the presence of the attribute. (In this chapter, we
follow the machine learning convention where rows of the matrix correspond to data
points or entities, and the columns correspond to feature dimensions. However,
the model space we present is symmetric with respect to rows and columns.) We
may be interested in modeling the underlying structure in order to understand the
relationships between different mammals or to make predictions about unknown
attributes.

One way to analyze this dataset is to cluster the animals into meaningful groups,
such as herbivores or predators. (See Section 2.1.2.) We could model such structure
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using a mixture of Bernoullis model, where each mammal is drawn from a mixture
of K components with probabilities π, and each cluster has a vector of probabilities
pk for each of the features. In other words, the distribution over features y for a new
mammal is given by:

z ∼ Multinomial(π)

yj ∼ Bernoulli(pzj).

When talking about matrix decomposition models, it is more convenient to work
with real-valued matrices than binary ones, so we model the observation matrix Y
in terms of a real-valued latent matrix X and an observation model connecting X to
Y. To model binary observations, we can suppose Y was generated by thresholding
X at zero:

z ∼ Multinomial(π)

xj ∼ N (µzj, 1)

yj = 1xj>0.

This model allows us to perform certain kinds of inferences. For instance, if we
spot a new mammal which is large and has claws and sharp teeth, we may conclude
it is a predator, and be able to make some further predictions about its attributes.
However, if we see a new kind of mammal which doesn’t appear to fit into any of
the previously seen categories, we’re unable to draw any conclusions at all. A more
structured model known as co-clustering, or biclustering, clusters both the rows and
the columns of the matrix, allowing us to model the relationships between different
dimensions (Kemp et al., 2006). For instance, “has claws” and “has sharp teeth”
probably cluster together, so an animal in a previously unknown category which has
one attribute is likely to have the other as well.

Both the clustering and co-clustering models can be represented as matrix de-
compositions. In the clustering model of Figure 3-1 (left), the latent matrix X is
decomposed into a product of a binary matrix representing the cluster assignments
and a real-valued matrix representing the cluster centers, and another real-valued ma-
trix is added to the result to capture the within-cluster variation. The co-clustering
model of Figure 3-1 (right) is similar, except that the matrix of cluster centers is
decomposed further into a real-valued matrix and a binary matrix representing the
cluster assignment of each feature dimension. We can think of this as a recursive
decomposition: a matrix decomposition model is applied to one of the components
of a matrix decomposition model. The rest of this chapter makes this notion more
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Figure 3-1: Left: a flat clustering model fit to the mammals dataset. Rows = animals,
columns = attributes. Y is the observation matrix, and X are the latent variables pos-
tulated to explain the observations. The three matrices at the top denote cluster assign-
ments, cluster centers, and within-cluster variability. M and G are component priors (see
Section 3.2). Right: a co-clustering model fit to the same data. The four matrices at
the top denote the row cluster assignments, block parameters, column cluster assignments,
and within-block variability.
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Figure 3-2: Visualizations of the animals data by sorting the rows and columns according
to learned structure. Left: the raw observation matrix. Middle: Rows are sorted by the
cluster assignment in a flat clustering model. Right: Rows and columns are each sorted
by cluster assignment in a co-clustering model.

precise.
In addition to making predictions, probabilistic models can be used to look for

patterns in a dataset. Figure 3-2 shows visulizations of the animals dataset corre-
sponding to the clustering and co-clustering models, where the rows and columns of
the input matrix are sorted according to the learned structure. The co-clustering
model gives a block structure, where entries within a block are likely to share the
same value.

One advantage of viewing this model as a matrix decomposition is that it suggests
ways to generalize the model. For instance, why should we restrict ourselves to
discrete, non-overlapping categories? Perhaps the animals are better described as
binary vectors representing membership in overlapping categories. Or perhaps the
feature dimensions are more compactly described using low-dimensional real-valued
vectors. The rest of this chapter defines an open-ended space of matrix decomposition
models, with the goal of making such decisions automatically.

3.2 A notation for matrix decompositions

So far, we have discussed decomposing a matrix into sums and products of sim-
pler matrices, either real-valued or binary-valued. In order to specify a probabilistic
model, we need to specify distributions over each of these component matrices. Sur-
prisingly, a handful of distributions suffice to specify a wide range of powerful matrix
decomposition models. In this section, we describe the set of component priors and
how they can be combined. We denote the matrix as U, with entries uij. Bold-
face letters (e.g. A) represent matrices, whereas sans-serif letters (e.g. G) represent
component priors.
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1. Gaussian (G). In probabilistic modeling, when we want to avoid assuming
any particular structure for a set of real-valued variables, we often model them
as independent Gaussians. This motivates our first component prior, where
the entries are all independent Gaussians:

uij ∼ N (0, σiσj).

This equation assumes each row and column has an associated scale param-
eter, denoted σi and σj, respectively. Whether these parameters are shared
between different columns is a modeling choice. For simplicity, in our frame-
work, we assume the variances are shared between all dimensions corresponding
to dimensions of the input matrix, but each latent dimension has its own vari-
ance parameter. In this way, the variances can be generalized to new rows
and columns, while the variances of individual latent dimensions can be esti-
mated.1 We place an inverse gamma prior on σ2

i and σ2
j where applicable. This

component is represented with the letter G, for “generic” or “Gaussian.”

2. Multinomial (M). When we fit mixture models, we often assume the as-
signments are drawn independently from a multinomial distribution, and the
parameters of the multinomial are shared between all rows. This can be rep-
resented with a Dirichlet-Multinomial distribution:

π ∼ Dirichlet(α)

ui ∼ Multinomial(π)

Here ui is represented as a binary vector with exactly one 1, which repre-
sents the cluster assignment. This component is denoted M, for “mixture” or
“multinomial.”

3. Binary (B). The next component is a distribution over binary matrices where
the entries are independent Bernoullis, and the mean parameters are shared
between different rows. Specifically, we assume a beta-Bernoulli distribution:

πj ∼ Beta(a, b)

uij ∼ Bernoulli(πj)

1A more flexible approach, which we have not implemented, would be to give every row or
column its own scale parameter, but learn the prior over scale parameters, so that the scales can
be generalized to new rows or columns.
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This component is used to build binary attribute models. We denote it B, for
“binary” or “Bernoulli.”

4. Integration matrix (C). Finally, we include an integration matrix, which is
a deterministic matrix with ones below the diagonal:

uij = 1i≥j.

This is useful for modeling temporal structure, as multiplying by this matrix
has the effect of cumulatively summing the rows. This component is denoted
C, for “chain” or “cumulative.”

In our experiments, the parameters α, a, and b are all fixed to reasonable defaults.
We write matrix decomposition models using algebraic expressions containing

these four symbols. The operations we allow are addition, matrix multiplication,
matrix transpose, elementwise product (denoted ◦), and elementwise exponentiation
(denoted exp(·)). The generative model is simple: generate each of the matrices from
its corresponding prior, and evaluate the expression. For instance, the clustering
model of Figure 3-1 (left) would be denoted MG + G, and the co-clustering model
of Figure 3-1 (right) would be denoted MGMT + G. Note that each occurrence of a
given letter in the formula represents a different matrix drawn from that prior.

So far, we have not specified the dimensions of the component matrices. How
do we know, for instance, that the matrices in MG + G represent a tall matrix, a
fat matrix, and a matrix the same size as the observation matrix Y? Some of the
dimensions are determined by the dimensions of Y. The remaining dimensions need
to be fit to the data; we defer discussion of this to Section 4.1, which discusses the
procedure for inferring the latent component matrices. For now, we simply note that
an algebraic expression, combined with the sizes of all component matrices, defines
a generative model over Y.

3.3 Grammar

In the previous section, we introduced a notation for matrix decomposition models.
However, fitting models corresponding to arbitrary expressions is difficult. Further-
more, the set of expressions of a given size grows exponentially, precluding exhaustive
search. In order to perform posterior inference and structure search, we must further
restrict the space of models.

Observe that our notation for matrix decompositions is recursive: expressions
can be broken down into subexpressions, each of which is itself a matrix decompo-
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sition model. Context-free grammars are a useful formalism for capturing this sort
of recursive structure. We define a context free grammar whose starting symbol is
G, the structureless model where the entries are assumed to be independent Gaus-
sians. Other models (expressions) are generated by iteratively applying the following
production rules:

low-rank approximation G→ GG + G (1)

clustering G→ MG + G | GMT + G (2)
M→ MG + G (3)

binary attributes G→ BG + G | GBT + G (4)
B→ BG + G (5)
M→ B (6)

linear dynamics G→ CG + G | GCT + G (7)

sparsity G→ exp(G) ◦ G (8)

For instance, any occurrence of G in a model may be replaced by GG+G or MG+G.
Iterated application of these productions allows us to build hierarchical models by
specifying additional dependencies between variables which were previously modeled
as independent.

Each of the productions corresponds to a motif of probabilistic modeling. With
the exception of the sparsity rule, they can each be viewed as stand-alone models.
We describe all of the production rules as factorizations of an N ×D matrix X. The
production rules are as follows:

• Low-rank approximation. The rule G → GG + G takes a Gaussian matrix
X and approximates it as the product UV, where U and V are two Gaussian
matrices of sizes N×K and K×D. Typically, K < min(N,D), so the product
has rank K. This factorization corresponds to a linear dimensionality reduction
model, such as PCA, factor analysis, or probabilistic matrix factorization.2

Each of the latent dimensions has an associated variance parameter, with an
inverse Gamma prior. Therefore, as part of fitting the model, we can infer the

2The precise model depends on the variance model; see Section 3.2. If the variances are shared
between input rows and columns but not latent dimensions, it corresponds to probabilistic PCA
(Tipping and Bishop, 1999). If each feature dimension also has its own variance parameter, it cor-
responds to factor analysis (Basilevsky, 1994). If variances are shared between all input dimensions
and all latent dimensions, it corresponds to probabilistic matrix factorization (Salakhutdinov and
Mnih, 2008).

55



effective dimensionality by learning small variances for the unused dimensions.
Low rank approximations are described in Section 2.1.1 of the background.

• Clustering. The rule G → MG + G replaces a Gaussian matrix with a mix-
ture of Gaussians. This corresponds to an approximation X ≈ ZA, where
Z represents the cluster assignments and A represents the cluster centers, as
described in Section 3.1. The mirror image G→ GMT + G is the same, except
that columns are clustered rather than rows. Clustering models are discussed
further in Section 2.1.2. The rule M→ MG+G replaces a Multinomial matrix
with a mixture of Gaussians. The intuition is that if we’ve previously modeled
a dataset in terms of a hard clustering, we may decide that a soft clustering is
more appropriate. This production rule adds that extra flexibility.

• Binary attributes. The next production rule, G → BG + G, replaces a
Gaussian matrix with a binary attribute model X ≈ ZA, where Z is a binary
matrix and A is a real-valued matrix. Each row of Z can be thought of as
the binary vector representation of one data point, and the kth row of A can
be thought of as a feature vector which is added to the data vector if the
kth attribute is present. The rule G → GBT + G is the same, except that
it fits a binary vector representation of columns rather than rows. The rules
B → BG + G and M → B add more flexibility to a model. Binary attribute
models are discussed in Section 2.1.3 of the background chapter.

• Linear dynamics. So far, all of the production rules have been exchangeable:
they are invariant to the ordering of rows and columns. If we wish to capture
temporal continuity in the data, where the rows correspond to time steps, we
can apply the rule G → CG + G, which models the columns as independent
Markov chains. Recall that multiplying by the lower triangular matrix C has
the effect of cumulatively summing the rows. In this representation, the first G
matrix gives the innovations, or the differences in values between consecutive
time steps. Linear dynamical systems are discussed in Section 2.1.4 of the
background.

• Sparsity. Sometimes we would like real-valued matrices with heavy-tailed dis-
tributions. This can be achieved with the production rule G → exp(G) ◦ G.
As discussed in Section 2.1.5 of the background, symmetric heavy-tailed dis-
tributions centered at 0 can be represented as Gaussian scale mixtures, where
a Gaussian variable r is multiplied by a scale variable z. Here, exp(G) corre-
sponds to the scale variables, and the second G corresponds to the Gaussian
variables. Since these are multiplied elementwise, this construction corresponds
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Figure 3-3: Examples of existing machine learning models which fall under our framework.
Arrows represent models reachable using a single production rule. Only a small fraction of
the 2496 models reachable within 3 steps are shown, and not all possible arrows are shown.

to independent draws from a heavy-tailed distribution. This is often referred
to as a sparse distribution, since the values are unlikely to be far from 0. The
degree of sparsity can be controlled by setting the variance of the scale vari-
ables; if the variance is small, the distribution will be nearly Gaussian, whereas
if the variance is large, it will be very heavy-tailed.

3.4 Examples

We now turn to several examples in which our simple components and production
rules give rise to a rich variety of models from unsupervised learning. While the
model space is symmetric with respect to rows and columns, we adopt the convention
that the rows of Y correspond to data points and columns corresponds to observed
features. For simplicity, we assume that Y = X, i.e. that the matrix decomposition
model directly generates the observed data. (For binary data, one could instead
assume Y results from applying a threshold to X, as in Section 3.1.) Figure 3-3
gives several additional examples of matrix decomposition models and highlights the
relationships between them.

57



We note that we omit certain design choices which were significant in the original
presentation of some of these models. Our aim is not to reproduce the existing
models exactly, but to capture their overall structure in a compact framework which
highlights the relationships between the models. One particular way in which our
grammar differs from previous work is that many models we discuss were originally
formulated as Bayesian nonparametric models, whereas we limit ourselves to finite
models. (However, as discussed in Section 4.1.1, we use Bayesian nonparametric
techniques as a heuristic to infer the latent dimensions.)

3.4.1 Clustering

We always begin with the structureless model G, which assumes the entries of the
matrix are i.i.d. Gaussian. By applying the rule G→ MG+G, we obtain the clustering
model MG+G discussed in Section 3.1, which groups the rows (entities) into clusters.

Our grammar does not license the co-clustering model MGM + G of Section 3.1.
However, by applying the rule G → GMT + G to the matrix of cluster centers,
we obtain another model which captures the same structure, M(GMT + G) + G.3

Specifically, the model clusters both the rows and the columns of X. The difference
is that MGM + G requires a hard clustering of the columns, while M(GMT + G) + G
allows a soft clustering. If a hard clustering is in fact a better match to the data,
this can be learned by fitting a small variance parameter for the inner factorization.
The decision to use a soft clustering will be further explained in Section 4.1, where
we discuss algorithms for inference.

There may be additional structure not captured by the co-clustering model. For
instance, there may be correlations within the blocks, or the mean parameters of
the blocks may themselves have structure. Bayesian clustered tensor factorization
(BCTF) (Sutskever et al., 2009) is a model intended to capture these correlations.
While the original model was proposed for general tensors, we focus on the special
case of matrices. BCTF assumes the matrix has a low-rank representation, and the
low-rank factors each have a mixture of Gaussians distribution. In our grammar,
we obtain this model by applying the rule M → MG + G to the first M matrix in
the co-clustering model to get (MG + G)(GMT + G) + G. This rule replaces the hard
clustering with a soft clustering.

Graphical model representations are shown in Figure 3-4. The graphical models
leave implicit the forms of the distributions, which are one of the most important

3We note that in our grammar, a co-clustering model can alternatively be obtained starting from
a clustering of columns: first apply G→ GMT +G, followed by G→ MG+G to get (MG+G)MT +G.
We will not distinguish these models even though they are not strictly identical.
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Figure 3-4: Representations of some models from our grammar as graphical models. From
left to right: the flat clustering model MG+G, the co-clustering model M(GMT +G)+G, and
Bayesian clustered tensor factorization, (MG+G)(GMT+G)+G. The graphical models show
which variables directly influence each other, but obscure much of the relevant structure.

pieces of information about a given model. Our algebraic expression notation, while it
leaves out some details of the original models, is compact and highlights the relevant
structure.

The data points or attributes may be better represented in terms of overlapping
clusters. This can be represented using binary attribute models, where M components
are replaced with B components in the above models. In particular, by starting
with the production rule G → BG + G, we obtain a finite version of the IBP linear-
Gaussian model (Griffiths and Ghahramani, 2005), where data points are represented
using binary vectors. By applying G → GBT + G to the feature matrix, we obtain
B(GBT +G) +G, where both the rows and the columns have binary representations.
This is similar to the binary matrix factorization (BMF) model (Meeds et al., 2006),
which can be represented as BGBT + G. While it might not be obvious from the
original formulations, the matrix decomposition representation highlights the fact
that BMF is essentially the binary analogue of co-clustering.

This framework immediately suggests ways to extend these models. For instance,
B(GMT + G) + G represents rows as binary vectors and columns as discrete clusters.
Alternatively, (BG + G)(GBT + G) + G would be the analogue of BCTF which uses
binary vectors rather than clusters.
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3.4.2 Linear dynamics

As discussed in Section 3.3, the production rule G → CG + G gives a model where
the columns of X are independent Markov chains. Features are often correlated,
however, and this can be captured with a linear dynamical system. Specifically,
by starting with the production rule G → GG + G and applying G → CG + G, we
arrive at the model (CG + G)G + G, where the data are explained in terms of a low-
dimensional representation which evolves over time. The model can be written in
the more familiar form:

zt = zt−1 + εt

yt = Ctzt + δt.

See Section 2.1.4 of the background for more information on linear dynamical sys-
tems.

3.4.3 Statistics of natural images

For an example from vision, suppose each row of Y corresponds to a small (e.g. 12×
12) patch sampled from an image and vectorized. Image patches can be viewed
as lying near a low-dimensional subspace spanned by the lowest frequency Fourier
coefficients (Bossomaier and Snyder, 1986). This can be captured by the low-rank
model GG+G, which is analogous to probabilistic PCA (Tipping and Bishop, 1999).
(See Section 2.1.1 of the background for more details.)

In a landmark paper, Olshausen and Field (1996) found that image patches are
better modeled as a linear combination of a small number of components drawn
from a larger dictionary. In other words, Y is approximated as the product WA,
where each row of A is a basis function, and W is a sparse matrix giving the linear
reconstruction coefficients for each patch. By fitting this “sparse coding” model, they
obtained a dictionary of oriented edges similar to the receptive fields of neurons in
the primary visual cortex. (See Section 2.1.5 for more details.) If we apply the rule
G → exp(G) ◦ G, we obtain a Bayesian version of sparse coding, (exp(G) ◦ G)G + G.
This is similar to the model proposed by Berkes et al. (2008). Intuitively, the latent
Gaussian coefficients are multiplied elementwise by “scale” variables to give a heavy-
tailed distribution.

Many researchers have designed models to capture the dependencies between
these scale variables, and such “Gaussian scale mixture” models represent the state-
of-the art for low-level vision tasks such as denoising (Portilla et al., 2003) and texture
synthesis (Portilla and Simoncelli, 2000). (See Section 2.1.6 for more details.) One
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such GSM model is that of Karklin and Lewicki (2008), who fit a low-rank model
to the scale variables. By applying Rule (1) to the sparse coding structure, we can
represent their model in our framework as (exp(GG + G) ◦ G)G + G. This model
has been successful at capturing higher-level textural properties of a scene and has
properties similar to complex cells in the primary visual cortex.

3.4.4 Deep learning

The previous sections have all discussed models which were implemented as part of
the system described in the following chapter. In this section, we consider how the
grammar could be extended with a handful of additional productions in order to
capture models from deep learning. These models also help motivate the inference
procedure described in Section 4.1.

The specific grammar presented in Section 3.3 is not quite powerful enough to
represent deep learning models. With the exception of the GSM production rule, all
of the rules in the grammar involve only addition, matrix multiplication, and matrix
transpose, so each component contributes linearly to the final reconstruction. In
order to capture nonlinear structure, we can add a threshold operator T:

[T(A)]ij =

{
1 if Aij > 0
0 otherwise

Suppose we add production rules to our grammar which use the threshold operator
to expand binary matrices:

B→ T(GG + G)

B→ T(MG + G)

B→ T(BG + G)

Suppose we’re given a binary input matrix; for instance, each row might represent
an image of a handwritten digit. The structureless model can be represented as a
Bernoulli matrix, B. Applying the binary features production rule, we get the model
T(BG + G). Call the left factor H, the right factor W, and the input matrix V.
To see how this relates to belief networks, hold W fixed and consider the predictive
distribution over subsequent rows, p(v |W). This corresponds to a sigmoid belief
network with a single hidden layer, as shown in Figure 3-5. H can be seen as a
binary representation, and W can be seen as a weight matrix. The probability of
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(a) (b)

Figure 3-5: A sigmoid belief network with one hidden layer, represented as T(BG + G).
(a) The factorization of the input matrix. (b) The predictive distribution over rows, rep-
resented as a graphical model.

the visible units given the hidden units is given by:

p(v |h,W) = Φ(WTh),

where Φ is the probit function. Hence, the generative model for digits is as follows:
the activations of h are sampled as independent Bernoullis, they send messages to the
visible units v using the connection weights W, and each vi activates independently
with a probability that’s sigmoidal in its inputs.

We can add another hidden layer by applying the production rule B → T(BG +
G), which yields the model T(T(BG + G)G + G), shown in Figure 3-6. This is a
deep sigmoid belief network: it is similar to the shallow network, except there is
an additional hidden layer to capture the dependencies between the hidden units.
Clearly, this process can be iterated indefinitely until there’s no more exploitable
structure between the top layer’s hidden units. Interestingly, the greedy initialization
procedure presented in the following chapter parallels Hinton et al. (2006)’s greedy
training procedure for deep belief nets.

There is no reason to limit ourselves to adding layers of binary features. It might
turn out, for instance, that a good model of the MNIST handwritten digits dataset
(LeCun et al., 1998) is to have two layers of binary features, followed by a clustering
model. This would correspond to the structure T(T(T(MG + G)G + G)G + G).
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(a) (b)

Figure 3-6: A deep sigmoid belief network with one hidden layer, represented as T(T(BG+
G)G + G). (a) The factorization of the input matrix. (b) The predictive distribution over
rows, represented as a graphical model.

3.5 Discussion

We note that many of the above models are not typically viewed as matrix decompo-
sition structures. Describing them as such results in a compact notation and makes
clearer the relationships between the different models. The above examples have in
common that complex models can be derived by incrementally adding structure to
a sequence of simpler models (in a way that parallels the path researchers took to
discover them). This observation motivates our proposed procedures for inference
and structure learning, which are discussed in the following chapter.
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Chapter 4

Compositional structure search

Chapter 3 introduced a grammar for matrix decomposition models where the pro-
ductions correspond to simple probabilistic models. In this chapter, we describe
algorithms for inference and model selection in this space of models inspired by the
recursive structure discovery work outlined in Section 1.3. Inference is performed
in composite decomposition models using efficient samplers specialized to each of
the productions. A best-first search over the grammar was empirically successful at
determining the correct structures for synthetic data and plausible structures for a
variety of real-world datasets, all using exactly the same code and with no hand-tuned
parameters.

4.1 Posterior inference of component matrices

Searching over matrix decomposition structures requires a generic and unified ap-
proach to posterior sampling of the latent matrices. Unfortunately, for most of the
structures we consider, the posterior is complicated and multimodal, and escaping
from local modes requires carefully chosen special-purpose sampling operators. En-
gineering such operators for thousands of different models would be undesirable.

Fortunately, the compositional nature of our model space allows us to focus the
engineering effort on the relatively small number of production rules. In particular,
observe that in a realization of the generative process, the value of an expression
depends only on the values of its sub-expressions. This suggests the following ini-
tialization procedure: when applying a production rule P to a matrix S, sample
from the posterior for P ’s generative model conditioned on it evaluating (exactly)
to S. Many of our production rules correspond to simple machine learning models
for which researchers have already expended much time developing efficient inference
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algorithms:

1. Low rank. To apply the rule G → GG + G, we fit the probabilistic matrix
factorization (Salakhutdinov and Mnih, 2008) model using block Gibbs sam-
pling over the two factors (see Section 2.2.1). While PMF assumes a fixed
latent dimension, we choose the dimension automatically by placing a Poisson
prior on the dimension and moving between states of differing dimension using
reversible jump MCMC (Green, 1995).

2. Clustering. To apply the clustering rule to rows: G→ MG+G, or to columns:
G → GMT + G, we perform collapsed Gibbs sampling over the cluster assign-
ments in a Dirichlet process mixture model (see Section 2.2.2).

3. Binary factors. To apply the rule G→ BG+G or G→ GBT +G, we perform
accelerated collapsed Gibbs sampling (Doshi-Velez and Ghahramani, 2009) over
the binary variables in a linear-Gaussian Indian Buffet Process (Griffiths and
Ghahramani, 2005) model, using split-merge proposals (Meeds et al., 2006) to
escape local modes. (Also see Section 2.2.2.)

4. Markov chains. The rule G → CG + G is equivalent to estimating the state
of a random walk given noisy observations, which is done using Rauch-Tung-
Striebel (RTS) smoothing.

The remaining production rules begin with a random decomposition of S. The ini-
tialization step is followed by generic Gibbs sampling over the entire model. We note
that our initialization procedure generalizes “tricks of the trade” whereby complex
models are initialized from simpler ones (Kemp et al., 2006; Miller et al., 2009).

In addition to simplifying the engineering, this procedure allows us to reuse com-
putations between different structures. Most of the computation time is in the ini-
tialization steps. Each of these steps only needs to be run once on the full matrix,
specifically when the first production rule is applied. Subsequent initialization steps
are performed on the component matrices, which are considerably smaller. This al-
lows a large number of high level structures to be fit for a fraction of the cost of
fitting them from scratch.

4.1.1 Determining the latent dimensions

While some of the above algorithms involve fitting Bayesian nonparametric models,
once the dimensionality is chosen, the model is converted to a finite model of fixed
dimensionality (as defined in Section 3.3). This does not necessarily yield a correct
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or optimal number of components: Miller and Harrison (2013) showed that the
Dirichlet process tends to overestimate the number of clusters underlying a dataset
generated from a finite clustering model. There is also a bias in the opposite direction:
when the model is misspecified, marginalizing out the model parameters tends to
overpenalize model complexity (Kass and Raftery, 1995), causing a bias towards too
few components. In the context of compositional structure search, the lower level
models are overly simplified by design, so misspecification effects are likely to be
significant. We emphasize that converting a Bayesian nonparametric model to a
finite model is merely a heuristic, and should not be relied upon to determine the
“true” number of components.

4.2 Scoring candidate structures

Performing model selection requires a criterion for scoring individual structures which
is informative yet tractable. To motivate our method, we first discuss two popular
choices: marginal likelihood of the input matrix and entrywise mean squared error
(MSE). Marginal likelihood (Section 1.2) is widely used in Bayesian model com-
parison. Unfortunately, this requires integrating out all of the latent component
matrices, whose posterior distribution is highly complex and multimodal. While el-
egant solutions exist for particular models, generic marginal likelihood estimation
remains extremely difficult. (Chapters 6 and 7 discuss ongoing work towards com-
puting marginal likelihoods of matrix decomposition models.) At the other extreme,
one can hold out a subset of the entries of the matrix and compute the mean squared
error for predicting these entries. MSE is easier to implement, but we found that it
was unable to distinguish many of the the more complex structures in our grammar.

As a middle ground between these two approaches, we chose to evaluate predictive
likelihood of held-out rows and columns. That is, for each row (or column) y of the
matrix, we evaluate p(y |Yobs), where Yobs denotes an “observed” sub-matrix. Like
marginal likelihood, this tests the model’s ability to predict entire rows or columns.
However, it can be efficiently approximated in our class of models using a small
but carefully chosen toolbox corresponding to the component matrix priors in our
grammar. We discuss the case of held-out rows; columns are handled analogously.

First, by expanding out the products in the expression, we can write the decom-
position uniquely in the form

Y = U1V1 + · · ·+ UnVn + E, (4.1)

where E is an i.i.d. Gaussian “noise” matrix and the Ui’s are any of the following:
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(1) a component matrix G, M, or B, (2) some number of Cs followed by G, (3) a
Gaussian scale mixture. The held-out row y can therefore be represented as:

y = VT
1 u1 + · · ·+ VT

nun + e. (4.2)

The predictive likelihood is given by:

p(y |Yobs) =

∫
p(Uobs,V |Yobs)p(u |Uobs)p(y |u,V) dUobs dU dV (4.3)

where Uobs is shorthand for (Uobs 1, . . . ,Uobs n) and u is shorthand for (u1, . . . ,un).
In order to evaluate this integral, we generate samples from the posterior p(Uobs,V |Y)

using the techniques described in Section 4.1, and compute the sample average of

ppred(y) ,
∫
p(u |Uobs)p(y |u,V) du (4.4)

If the term Ui is a Markov chain, the predictive distribution p(ui |Uobs) can be
computed using Rauch-Tung-Striebel smoothing; in the other cases, u and Uobs

are related only through the hyperparameters of the component prior. Either way,
each term p(ui |Uobs) can be summarized as a Gaussian, multinomial, Bernoulli, or
Gaussian scale mixture distribution.

It remains to marginalize out the latent representation u of the held-out row.
While this can be done exactly in some simple models, it is intractable in general
(for instance, if u is Bernoulli or a Gaussian scale mixture). It is important that
the approximation to the integral be a lower bound, because otherwise an overly
optimistic model could be chosen even when it is completely inappropriate.

Our approach is a hybrid of variational and sampling techniques. We first lower
bound the integral (4.4) in an approximate model p̃pred where the Gaussian scale
mixture components are approximated as Gaussians. This is done using using the
variational Bayes bound

log p̃pred(y) ≥ Eq[log p̃pred(y,u)] +H(q).

The approximating distribution q(u) is such that all of the discrete components
are independent, while the Gaussian components are marginalized out. The ratio
ppred(y)/p̃pred(y) is then estimated using annealed importance sampling (AIS) (Neal,
2001a). Because AIS is an unbiased estimator which always takes positive values,
by Markov’s inequality we can regard it as a stochastic lower bound. Therefore, this
small toolbox of techniques allows us to (stochastically) lower bound the predictive
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likelihood across a wide variety of matrix decomposition models.

4.3 Search over structures

We aim to find a matrix decomposition structure which is a good match to a dataset,
as measured by the predictive likelihood criterion of Section 4.2. Since the space of
models is large and inference in many of the models is expensive, we wish to avoid
exhaustively evaluating every model. Instead, we adopt a greedy search procedure
inspired by the process of scientific discovery and by the recursive structure discov-
ery approaches outlined in Section 1.3. In particular, consider a common heuristic
researchers use to build probabilistic models: we begin with a model which has al-
ready been applied to a problem, look for additional dependencies not captured by
the model, and refine the model to account for those dependencies.

In our approach, refining a model corresponds to applying one of the productions.
This suggests the following greedy search procedure, which iteratively “expands”
the best-scoring unexpanded models by applying all possible production rules and
scoring the resulting models. In particular we first expand the structureless model
G. Then, in each step, we expand the K best-performing models from the previous
step by applying all possible productions. We then score all the resulting models.
The procedure stops when no model achieves sufficient improvement over the best
model from the previous step. We refer to the models reached in i productions as
the Level i models; for instance, GG + G is a Level 1 model and (MG + G)G + G is a
Level 2 model.

The effectiveness of this search procedure depends whether the score of a simple
structure is a strong indicator of the best score which can be obtained from the
structures derived from it. In our experiments, the scores of the simpler structures
turned out to be a powerful heuristic: while our experiments used K = 3, in most
cases, the correct (or best-scoring) structure would have been found with a purely
greedy search (K = 1). This results in enormous savings because of the compositional
nature of our search space: while the number of possible structures (up to a given
level) grows quickly in the number of production rules, the number of structures
evaluated by this search procedure is merely linear.

The search procedure returns a high-scoring structure for each level in our gram-
mar. There remains a question of when to stop. Choosing between structures of
differing complexity imposes a tradeoff between goodness of fit and other factors
such as interpretability and tractability of inference, and inevitably the choice is
somewhat subjective. In practice, a user may wish to run our procedure up to a
fixed level and analyze the sequence of models chosen, as well as the predictive likeli-
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hood improvement at each level. However, for the purposes of evaluating our system,
we need it to return a single answer. In all of our experiments, we adopt the following
arbitrary but consistent criterion: prefer the higher level structure if its predictive
log-likelihood score improves on the previous level by at least one nat per row and
column.1

4.4 Experiments

4.4.1 Synthetic data

We first validated our structure learning procedure on synthetic data where the
correct model was known. We generated matrices of size 200 × 200 from all of the
models in Figure 3-3, with 10 latent dimensions. The noise variance σ2 was varied
from 0.1 to 10, while the signal variance was fixed at 1.2 The structures selected by
our procedure are shown in Table 4.1.

— Increasing noise −→
σ2 = 0.1 σ2 = 1 σ2 = 3 σ2 = 10

low-rank GG+ G GG+ G GG+ G 1 G
clustering MG+ G MG+ G MG+ G MG+ G

binary latent features 1 (BG+ G)G+ G BG+ G BG+ G BG+ G
co-clustering M(GMT + G) + G M(GMT + G) + G M(GMT + G) + G 1 GMT + G

binary matrix factorization 1 (BG+ G)(GBT + G) + G (BG+ G)BT + G 2 GG+ G 2 GG+ G
BCTF (MG+ G)(GMT + G) + G (MG+ G)(GMT + G) + G 2 GMT + G 3 G

sparse coding (exp(G) ◦ G)G+ G (exp(G) ◦ G)G+ G (exp(G) ◦ G)G+ G 2 G
dependent GSM 1 (exp(G) ◦ G)G+ G 1 (exp(G) ◦ G)G+ G 1 (exp(G) ◦ G)G+ G 3 BG+ G

random walk CG+ G CG+ G CG+ G 1 G
linear dynamical system (CG+ G)G+ G (CG+ G)G+ G (CG+ G)G+ G 2 BG+ G

Table 4.1: The structures learned from 200×200 matrices generated from various distribu-
tions, with signal variance 1 and noise variance σ2. Incorrect structures are marked with
a 1, 2, or 3, depending how many decisions would need to be changed to find the correct
structure. We observe that our approach typically finds the correct answer in low noise
settings and backs off to simpler models in high noise settings.

1More precisely, if Si−Si−1

N+D > 1, where Si is the total predictive log-likelihood for the level i
model summed over all rows and columns, and N and D are the numbers of rows and columns,
respectively. We chose to normalize by N + D because the predictive likelihood improvements
between more abstract models tend to grow with the number of rows and columns in the input
matrix, rather than the number of entries.

2Our grammar generates expressions of the form · · ·+G. We consider this final G term to be the
“noise” and the rest to be the “signal,” even though the models and algorithms do not distinguish
the two.
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We observe that seven of the ten structures were identified perfectly in both
trials where the noise variance was no larger than the data variance (σ2 ≤ 1). When
σ2 = 0.1, the system incorrectly chose (BG+G)G+G for the binary latent feature data,
rather than BG+G. Similarly, it chose (BG+G)(GBT+G)+G rather than (BG+G)BT+
G for binary matrix factorization. In both cases, the sampler learned an incorrect
set of binary features, and the additional flexibility of the more complex model
compensated for this. This phenomenon, where more structured models compensate
for algorithmic failures in simpler models, has also been noted in the context of deep
learning (Salakhutdinov and Murray, 2008).

Our system also did not succeed in learning the dependent Gaussian scale mixture
structure (exp(GG+G) ◦G)G+G from synthetic data, instead generally falling back
to the simpler sparse coding model (exp(G) ◦ G)G + G. For σ2 = 0.1 the correct
structure was in fact the highest scoring structure, but did not cross our threshold
of 1 nat improvement over the previous level. We note that in every case, there
were nearly 2500 incorrect structures to choose from, so it is notable that the correct
model structure can be recovered most of the time.

In general, when the noise variance was much larger than the signal variance,
the system gracefully fell back to simpler models, such as GMT + G instead of the
BCTF model (MG + G)(GMT + G) + G (see Section 3.4.1). At the extreme, in the
maximum noise condition, it chose the structureless model G much of the time.
Overall, our procedure reliably learned most of the model structures in low-noise
settings (impressive considering the extremely large space of possible wrong answers)
and gracefully fell back to simpler models when necessary.

4.4.2 Real-world data

Next, we evaluated our system on several real-world datasets. We first consider two
domains, motion capture and image statistics, where the core statistical assumptions
are widely agreed upon, and verify that our learned structures are consistent with
these assumptions. We then turn to domains where the correct structure is more
ambiguous and analyze the representations our system learns.

In general, we do not expect every real-world dataset to have a unique best
structure. In cases where the predictive likelihood score differences between multiple
top-scoring models were not statistically significant, we report the set of top-scoring
models and analyze what they have in common.

Motion capture. We first consider a human motion capture dataset (Hsu et al.,
2005; Taylor et al., 2007) consisting of a person walking in a variety of styles. Each
row of the matrix gives the person’s orientation and displacement in one frame, as
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Level 1 Level 2 Level 3
Motion capture CG + G C(GG + G) + G —
Image patches GG + G (exp(G) ◦ G)G + G (exp(GG + G) ◦ G)G + G

20 Questions MG + G M(GG + G) + G —
Senate votes GMT + G (MG + G)MT + G —

Table 4.2: The best performing models at each level of our grammar for real-world datasets.
These correspond to plausible structures for the datasets, as discussed in the text.

well as various joint angles. We used 200 frames (6.7 seconds), and 45 state variables.
In the first step, the system chose the Markov chain model CG + G, which assumes
that the components of the state evolve continuously but independently over time.
Since a person’s different joint angles are clearly correlated, the system next captured
these correlations with the model C(GG + G) + G. This is slightly different from the
popular linear dynamical system model (CG + G)G + G, but it is more physically
correct in the sense that the LDS assumes the deviations of the observations from
the low-dimensional subspace must be independent in different time steps, while our
learned structure captures the temporal continuity in the deviations.

Natural image patches. We tested the system on the Sparsenet dataset of
Olshausen and Field (1996), which consists of 10 images of natural scenes which were
blurred and whitened. The rows of the input matrix corresponded to 1,000 patches
of size 12 × 12. In the first stage, the model learned the low-rank representation
GG + G, and in the second stage, it sparsified the linear reconstruction coefficients
to give the sparse coding model (exp(G) ◦ G)G + G. In the third round, it modeled
the dependencies between the scale variables by recursively giving them a low-rank
representation, giving a dependent Gaussian scale mixture (GSM) model (exp(GG+
G) ◦ G)G + G reminiscent of Karklin and Lewicki (2008). A closely related model,
(exp(GBT +G) ◦G)G+G, also achieved a score not significantly lower. Both of these
structures resulted in a rank-one factorization of the scale matrix, similar to the
radial Gaussianization model of Lyu and Simoncelli (2009) for neighboring wavelet
coefficients.

Dependent GSM models (see Section 3.4.3) are the state-of-the-art for a variety of
image processing tasks, so it is interesting that this structure can be learned merely
from the raw data. We note that a single pass through the grammar reproduces an
analogous sequence of models to those discovered by the image statistics research
community as discussed in Section 3.4.3.

20 Questions. We now consider a dataset collected by Pomerleau et al. (2009) of
Mechanical Turk users’ responses to 218 questions from the 20 Questions game about
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1. Miscellaneous. key, chain, powder, aspirin, umbrella, quarter, cord, sunglasses

2. Clothing. coat, dress, pants, shirt, skirt, backpack, tshirt, quilt, carpet, pillow, clothing

3. Artificial foods. pizza, soup, meat, breakfast, stew, lunch, gum, bread, fries, coffee

4. Machines. bell, telephone, watch, typewriter, lock, channel, tuba, phone, fan, ipod, flute

5. Natural foods. carrot, celery, corn, lettuce, artichoke, pickle, walnut, mushroom, beet

6. Buildings. apartment, barn, church, house, chapel, store, library, camp, school

7. Printed things. card, notebook, ticket, note, napkin, money, journal, menu, letter, mail

8. Body parts. arm, eye, foot, hand, leg, chin, shoulder, lip, teeth, toe, eyebrow, feet, hair

9. Containers. bottle, cup, glass, spoon, pipe, gallon, pan, straw, bin, clipboard, carton

10. Outdoor places. trail, island, earth, yard, town, harbour, river, planet, pond, lawn

11. Tools. knife, chisel, hammer, pliers, saw, screwdriver, screw, dagger, spear, hoe, needle

12. Stuff. speck, gravel, soil, tear, bubble, slush, rust, fat, garbage, crumb, eyelash

13. Furniture. bed, chair, desk, dresser, table, sofa, seat, ladder, mattress, handrail, bench

14. Liquids. wax, honey, pint, disinfectant, gas, drink, milk, water, cola, paste, lemonade

15. Structural features. bumper, cast, fence, billboard, guardrail, axle, deck, dumpster

16. Non-solid things. surf, fire, lightning, sky, steam, cloud, dance, wind, breeze, tornado

17. Transportation. airplane, car, train, truck, jet, sedan, submarine, jeep, boat, tractor

18. Herbivores. cow, horse, lamb, camel, pig, hog, calf, elephant, cattle, giraffe, yak, goat

19. Internal organs. rib, lung, vein, stomach, heart, brain, smile, blood, lap, nerve, lips

20. Carnivores. bear, walrus, shark, crocodile, dolphin, hippo, gorilla, hyena, rhinocerous

Figure 4-1: The 20 largest clusters discovered by our Level 2 model M(GG + G) + G for
the 20 Questions dataset. Each line gives our interpretation, followed by random items
from the cluster.

1000 concrete nouns (e.g. animals, foods, tools). The system began by clustering
the entities using the flat clustering model MG + G. In the second stage, it found
low-rank structure in the matrix of cluster centers, resulting in the model M(GG +
G) + G. No third-level structure achieved more than 1 nat improvement beyond
this. The low-rank representation had 8 dimensions, where the largest variance
dimension corresponded to living vs. nonliving and the second largest corresponded
to large vs. small. The 39 clusters, the 20 largest of which are shown in Figure 4-
1, correspond to semantically meaningful categories. Visualizations of the learned
models are shown in Figure 4-2.

We note that two other models expressing similar assumptions, M(GBT +G) +G
and (MG + G)G + G, achieved scores only slightly lower. What these models have in
common is a clustering of entities (but not questions) coupled with low-rank structure
between entities and questions. The learned clusters and dimensions are qualitatively
similar in each case.
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(a) MG + G (b) M(GG + G) + G

Figure 4-2: Visualizations of the Level 1 representation MG+G and the Level 2 representa-
tion M(GG+G)+G. Rows = entities, columns = questions. 250 rows and 150 columns were
selected at random from the original matrix. Rows and columns are sorted first by clus-
ter, then by the highest variance dimension of the low-rank representation (if applicable).
Clusters were sorted by the same dimension as well. Blue = cluster boundaries.

Senate voting records. Finally, we consider a dataset of roll call votes from
the 111th United States Senate (2009-2010). Rows correspond to Senators, and the
columns correspond to all 696 votes, most of which were on procedural motions and
amendments to bills. Yea votes were mapped to 1, Nay and Present were mapped to
-1, and absences were treated as unobserved. In the first two stages, our procedure
clustered the votes and Senators, giving the clustering model GMT + G and the
co-clustering model (MG + G)MT + G, respectively. Senators clustered along party
lines, as did most of the votes, according to the party of the proposer. The learned
representations are all visualized in Figure 4-3.

In the third stage, one of the best performing models was Bayesian clustered
tensor factorization (BCTF) (see section 3.4.1), where Senators and votes are each
clustered inside a low-rank representation.3 This low-rank representation was rank
5, with one dominant dimension corresponding to the liberal-conservative axis. The
BCTF model makes it clearer that the clusters of Senators and votes are not inde-
pendent, but can be seen as occupying different points in a low-dimensional repre-
sentation. This model improved on the previous level by less than our 1 nat cutoff.4

3The other models whose scores were not significantly different were: (MG + G)MT + BG + G,
(MG+G)MT +GMT +G, G(GMT +G)+GMT +G, and (BG+G)(GMT +G)+G. All of these models
include the clustering structure but account for additional variability within clusters.

4BCTF results in a more compact representation than the co-clustering model, but our predic-
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(a) GMT + G (b) (MG + G)MT + G (c) (MG + G)(GMT + G) + G

Figure 4-3: Visualization of the representations learned from the Senate voting data. Rows
= Senators, columns = votes. 200 columns were selected at random from the original
matrix. Black = yes, white = no, gray = absence. Blue = cluster boundaries. Rows and
columns are sorted first by cluster (if applicable), then by the highest variance dimension
of the low-rank representation (if applicable). Clusters are sorted by the same dimension
as well. The models in the sequence increasingly reflect the polarization of the Senate.

The models in this sequence increasingly highlight the polarization of the Senate.

4.5 Discussion

We have presented an effective and practical method for automatically determin-
ing the model structure in a particular space of models, matrix decompositions,
by exploiting compositionality. However, we believe our approach can be extended
beyond the particular space of models presented here. Most straightforwardly, addi-
tional components can be added to capture other motifs of probabilistic modeling,
such as tree embeddings and low-dimensional embeddings. More generally, it should
be fruitful to investigate other model classes with compositional structure, such as
tensor decompositions.

In either case, exploiting the structure of the model space becomes increasingly
essential. For instance, the number of models reachable in 3 steps is cubic in the
number of production rules, whereas the complexity of the greedy search is linear.
For tensors, the situation is even more overwhelming: even if we restrict our attention
to analogues of GG+G, a wide variety of provably distinct generalizations have been
identified, including the widely used Tucker3 and PARAFAC decompositions (Kolda
and Bader, 2007).

What is the significance of the grammar being context-free? While it imposes

tive likelihood criterion doesn’t reward this except insofar as overfitting hurts a model’s ability to
generalize to new rows and columns. We speculate that a fully Bayesian approach using marginal
likelihood may lead to more compact structures.

74



no restriction on the models themselves, it has the effect that the grammar “over-
generates” model structures. Our grammar licenses some nonsensical models: for
instance, G(MG + G) + G, which attempts to cluster dimensions of a latent space
which is defined only up to affine transformation. Reassuringly, we have never ob-
served such models being selected by our search procedure — a useful sanity check
on the output of the algorithm. The only drawback is that the system wastes some
time evaluating meaningless models. Just as context-free grammars for English can
be augmented with attributes to enforce contextual restrictions such as agreement,
our grammar could be similarly extended to rule out unidentifiable models. Such
extensions may become important if our approach is applied to a much larger space
of models.

Our context-free grammar formalism unifies a wide variety of matrix decom-
position models in terms of compositional application of a few production rules.
We exploited this compositional structure to efficiently and generically sample from
and evaluate a wide variety of latent variable models, both continuous and discrete,
flat and hierarchical. Greedy search over our grammar allows us to select a model
structure from raw data by evaluating only a small fraction of all models. This
search procedure was effective at recovering the correct structure for synthetic data
and sensible structures for real-world data. More generally, we believe this work
is a proof-of-concept for the practicality of selecting complex model structures in a
compositional manner. Since many model spaces other than matrix factorizations
are compositional in nature, we hope to spur additional research on automatically
searching large, compositional spaces of models.
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Chapter 5

Learning composite covariance
kernels

This chapter is taken from Duvenaud et al. (2013). While David Duvenaud and
James Lloyd were the primary investigators in this work, I include it with the per-
mission of both authors because it is closely related to the main theme of this thesis.

So far, we have seen compositional structure search applied to a space of matrix
decomposition structures. We now turn our attention to Gaussian process covariance
kernels, another space where models can be constructed compositionally out of a
small number of operators and primitives. Similarly to Chapter 4, a recursive search
over the grammar yields correct decompositions on synthetic data and interpretable
structure on a variety of real-world datasets.

5.1 Introduction

Kernel-based nonparametric models, such as support vector machines and Gaussian
processes (gps), have been one of the dominant paradigms for supervised machine
learning over the last 20 years. These methods depend on defining a kernel function,
k(x, x′), which specifies how similar or correlated outputs y and y′ are expected to
be at two inputs x and x′. By defining the measure of similarity between inputs, the
kernel determines the pattern of inductive generalization.

Most existing techniques pose kernel learning as a (possibly high-dimensional)
parameter estimation problem. Examples include learning hyperparameters (Ras-
mussen and Williams, 2006), linear combinations of fixed kernels (Bach, 2009), and
mappings from the input space to an embedding space (Salakhutdinov and Hinton,
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2008).
However, to apply existing kernel learning algorithms, the user must specify the

parametric form of the kernel, and this can require considerable expertise, as well as
trial and error.

To make kernel learning more generally applicable, we reframe the kernel learning
problem as one of structure discovery, and automate the choice of kernel form. In
particular, we formulate a space of kernel structures defined compositionally in terms
of sums and products of a small number of base kernel structures. This provides an
expressive modeling language which concisely captures many widely used techniques
for constructing kernels. We focus on Gaussian process regression, where the kernel
specifies a covariance function, because the Bayesian framework is a convenient way
to formalize structure discovery. Borrowing discrete search techniques which have
proved successful in equation discovery (Todorovski and Dzeroski, 1997) and unsu-
pervised learning (Grosse et al., 2012), we automatically search over this space of
kernel structures using marginal likelihood as the search criterion.

We found that our structure discovery algorithm is able to automatically recover
known structures from synthetic data as well as plausible structures for a variety
of real-world datasets. On a variety of time series datasets, the learned kernels
yield decompositions of the unknown function into interpretable components that
enable accurate extrapolation beyond the range of the observations. Furthermore, the
automatically discovered kernels outperform a variety of widely used kernel classes
and kernel combination methods on supervised prediction tasks.

While we focus on Gaussian process regression, we believe our kernel search
method can be extended to other supervised learning frameworks such as classifi-
cation or ordinal regression, or to other kinds of kernel architectures such as kernel
SVMs. We hope that the algorithm developed in this chapter will help replace the
current and often opaque art of kernel engineering with a more transparent science
of automated kernel construction.

5.2 Expressing structure through kernels

Gaussian process models use a kernel to define the covariance between any two
function values: Cov(y, y′) = k(x, x′). The kernel specifies which structures are likely
under the gp prior, which in turn determines the generalization properties of the
model. In this section, we review the ways in which kernel families1can be composed
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0 0

Squared-exp (SE) local

variation

Periodic (Per) repeating structure

0

0

Linear (Lin) linear

functions

Rational-

quadratic (RQ)

multi-scale

variation

Figure 5-1: Visualizations of some simple kernels. (left) the kernel function k(·, 0). (right)
draws from a gp with each repective kernel. The x-axis has the same range on all plots.

to express diverse priors over functions.
There has been significant work on constructing gp kernels and analyzing their

properties, summarized in Chapter 4 of Rasmussen and Williams (2006). Commonly
used kernels families include the squared exponential (SE), periodic (Per), linear
(Lin), and rational quadratic (RQ). For scalar-valued inputs, these kernels are de-
fined as follows:

kSE(x, x′) = σ2 exp
(
− (x−x′)2

2`2

)
kPer(x, x′) = σ2 exp

(
−2 sin2(π(x−x′)/p)

`2

)
kLin(x, x′) = σ2

b + σ2
v(x− `)(x′ − `)

kRQ(x, x′) = σ2
(

1 + (x−x′)2
2α`2

)−α
See Figure 5-1 for visualizations of these kernel families.

Composing Kernels Positive semidefinite kernels (i.e. those which define valid
covariance functions) are closed under addition and multiplication. This allows one
to create richly structured and interpretable kernels from well understood base com-
ponents.

1When unclear from context, we use ‘kernel family’ to refer to the parametric forms of the
functions given in the appendix. A kernel is a kernel family with all of the parameters specified.
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Figure 5-2: Examples of structures expressible by composite kernels. (left) composite
kernel function k(·, 0). (right) samples from the respective gp.

All of the base kernels we use are one-dimensional; kernels over multidimensional
inputs are constructed by adding and multiplying kernels over individual dimensions.
These dimensions are represented using subscripts, e.g. SE2 represents an SE kernel
over the second dimension of x.

Summation By summing kernels, we can model the data as a superposition of
independent functions, possibly representing different structures. Suppose functions
f1, f2 are draw from independent gp priors, f1 ∼ GP(µ1, k1), f2 ∼ GP(µ2, k2).
Then f := f1 + f2 ∼ GP(µ1 + µ2, k1 + k2).

In time series models, sums of kernels can express superposition of different pro-
cesses, possibly operating at different scales. In multiple dimensions, summing ker-
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nels gives additive structure over different dimensions, similar to generalized additive
models (Hastie and Tibshirani, 1990). These two kinds of structure are demonstrated
in rows 2 and 4 of Figure 5-2, respectively.

Multiplication Multiplying kernels allows us to account for interactions between
different input dimensions or different notions of similarity. For instance, in multidi-
mensional data, the multiplicative kernel SE1 × SE3 represents a smoothly varying
function of dimensions 1 and 3 which is not constrained to be additive. In univariate
data, multiplying a kernel by SE gives a way of converting global structure to local
structure. For example, Per corresponds to globally periodic structure, whereas
Per×SE corresponds to locally periodic structure, as shown in row 1 of Figure 5-2.

Many architectures for learning complex functions, such as convolutional net-
works (LeCun et al., 1989) and sum-product networks (Poon and Domingos, 2011),
include units which compute AND-like and OR-like operations. Composite kernels
can be viewed in this way too. A sum of kernels can be understood as an OR-like op-
eration: two points are considered similar if either kernel has a high value. Similarly,
multiplying kernels is an AND-like operation, since two points are considered similar
only if both kernels have high values. Since we are applying these operations to the
similarity functions rather than the regression functions themselves, compositions of
even a few base kernels are able to capture complex relationships in data which do
not have a simple parametric form.

Example expressions In addition to the examples given in Figure 5-2, many
common motifs of supervised learning can be captured using sums and products of
one-dimensional base kernels:

Bayesian linear regression Lin

Bayesian polynomial regression Lin× Lin× . . .
Generalized Fourier decomposition Per + Per + . . .

Generalized additive models
∑D

d=1 SEd

Automatic relevance determination
∏D

d=1 SEd

Linear trend with local deviations Lin + SE

Linearly growing amplitude Lin× SE

We use the term ‘generalized Fourier decomposition’ to express that the periodic
functions expressible by a gp with a periodic kernel are not limited to sinusoids.
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5.3 Searching over structures

As discussed above, we can construct a wide variety of kernel structures composi-
tionally by adding and multiplying a small number of base kernels. In particular, we
consider the four base kernel families discussed in Section 5.2: SE, Per, Lin, and
RQ. Any algebraic expression combining these kernels using the operations + and
× defines a kernel family, whose parameters are the concatenation of the parameters
for the base kernel families.

Our search procedure begins by proposing all base kernel families applied to all
input dimensions. We allow the following search operators over our set of expressions:

(1) Any subexpression S can be replaced with S + B, where B is any base kernel
family.

(2) Any subexpression S can be replaced with S × B, where B is any base kernel
family.

(3) Any base kernel B may be replaced with any other base kernel family B′.

These operators can generate all possible algebraic expressions. To see this,
observe that if we restricted the + and × rules only to apply to base kernel families,
we would obtain a context-free grammar (CFG) which generates the set of algebraic
expressions. However, the more general versions of these rules allow more flexibility
in the search procedure, which is useful because the CFG derivation may not be the
most straightforward way to arrive at a kernel family.

Our algorithm searches over this space using a greedy search: at each stage, we
choose the highest scoring kernel and expand it by applying all possible operators.

Our search operators are motivated by strategies researchers often use to con-
struct kernels. In particular,

• One can look for structure, e.g. periodicity, in the residuals of a model, and
then extend the model to capture that structure. This corresponds to applying
rule (1).

• One can start with structure, e.g. linearity, which is assumed to hold globally,
but find that it only holds locally. This corresponds to applying rule (2) to
obtain the structure shown in rows 1 and 3 of Figure 5-2.

• One can add features incrementally, analogous to algorithms like boosting,
backfitting, or forward selection. This corresponds to applying rules (1) or (2)
to dimensions not yet included in the model.
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Scoring kernel families Choosing kernel structures requires a criterion for evalu-
ating structures. We choose marginal likelihood as our criterion, since it balances the
fit and complexity of a model (Rasmussen and Ghahramani, 2001). Conditioned on
kernel parameters, the marginal likelihood of a gp can be computed analytically.
However, to evaluate a kernel family we must integrate over kernel parameters.
We approximate this intractable integral with the Bayesian information criterion
(Schwarz, 1978) after first optimizing to find the maximum-likelihood kernel param-
eters.

Unfortunately, optimizing over parameters is not a convex optimization problem,
and the space can have many local optima. For example, in data with periodic
structure, integer multiples of the true period (i.e. harmonics) are often local optima.
To alleviate this difficulty, we take advantage of our search procedure to provide
reasonable initializations: all of the parameters which were part of the previous
kernel are initialized to their previous values. All parameters are then optimized
using conjugate gradients, randomly restarting the newly introduced parameters.
This procedure is not guaranteed to find the global optimum, but it implements the
commonly used heuristic of iteratively modeling residuals.

5.4 Related Work

Nonparametric regression in high dimensions Nonparametric regression meth-
ods such as splines, locally weighted regression, and gp regression are popular be-
cause they are capable of learning arbitrary smooth functions of the data. Unfortu-
nately, they suffer from the curse of dimensionality: it is very difficult for the basic
versions of these methods to generalize well in more than a few dimensions. Applying
nonparametric methods in high-dimensional spaces can require imposing additional
structure on the model.

One such structure is additivity. Generalized additive models (GAM) assume
the regression function is a transformed sum of functions defined on the individual
dimensions: E[f(x)] = g−1(

∑D
d=1 fd(xd)). These models have a limited compositional

form, but one which is interpretable and often generalizes well. In our grammar,
we can capture analogous structure through sums of base kernels along different
dimensions.

It is possible to add more flexibility to additive models by considering higher-order
interactions between different dimensions. Additive Gaussian processes (Duvenaud
et al., 2011) are a gp model whose kernel implicitly sums over all possible products of
one-dimensional base kernels. Plate (1999) constructs a gp with a composite kernel,
summing an SE kernel along each dimension, with an SE-ARD kernel (i.e. a product
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of SE over all dimensions). Both of these models can be expressed in our grammar.
A closely related procedure is smoothing-splines ANOVA (Wahba, 1990; Gu,

2002). This model is a linear combination of splines along each dimension, all pairs of
dimensions, and possibly higher-order combinations. Because the number of terms to
consider grows exponentially in the order, in practice, only terms of first and second
order are usually considered.

Semiparametric regression (e.g. Ruppert et al., 2003) attempts to combine in-
terpretability with flexibility by building a composite model out of an interpretable,
parametric part (such as linear regression) and a ‘catch-all’ nonparametric part (such
as a gp with an SE kernel). In our approach, this can be represented as a sum of
SE and Lin.

Kernel learning There is a large body of work attempting to construct a rich
kernel through a weighted sum of base kernels (e.g. Christoudias et al., 2009; Bach,
2009). While these approaches find the optimal solution in polynomial time, speed
comes at a cost: the component kernels, as well as their hyperparameters, must be
specified in advance.

Another approach to kernel learning is to learn an embedding of the data points.
Lawrence (2005) learns an embedding of the data into a low-dimensional space, and
constructs a fixed kernel structure over that space. This model is typically used
in unsupervised tasks and requires an expensive integration or optimisation over
potential embeddings when generalizing to test points. Salakhutdinov and Hinton
(2008) use a deep neural network to learn an embedding; this is a flexible approach
to kernel learning but relies upon finding structure in the input density, p(x). Instead
we focus on domains where most of the interesting structure is in f(x).

Wilson and Adams (2013) derive kernels of the form SE× cos(x− x′), forming a
basis for stationary kernels. These kernels share similarities with SE×Per but can
express negative prior correlation, and could usefully be included in our grammar.

Diosan et al. (2007) and Bing et al. (2010) learn composite kernels for support
vector machines and relevance vector machines, using genetic search algorithms.
Our work employs a Bayesian search criterion, and goes beyond this prior work by
demonstrating the interpretability of the structure implied by composite kernels, and
how such structure allows for extrapolation.

Structure discovery There have been several attempts to uncover the structural
form of a dataset by searching over a grammar of structures. For example, Schmidt
and Lipson (2009), Todorovski and Dzeroski (1997) and Washio et al. (1999) attempt
to learn parametric forms of equations to describe time series, or relations between
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quantities. Because we learn expressions describing the covariance structure rather
than the functions themselves, we are able to capture structure which does not have
a simple parametric form.

Kemp and Tenenbaum (2008) learned the structural form of a graph used to
model human similarity judgments. Examples of graphs included planes, trees, and
cylinders. Some of their discrete graph structures have continous analogues in our
own space; e.g. SE1 × SE2 and SE1 × Per2 can be seen as mapping the data to a
plane and a cylinder, respectively.

5.5 Structure discovery in time series

To investigate our method’s ability to discover structure, we ran the kernel search
on several time series.

As discussed in Section 2, a gp whose kernel is a sum of kernels can be viewed
as a sum of functions drawn from component gps. This provides another method of
visualizing the learned structures. In particular, all kernels in our search space can
be equivalently written as sums of products of base kernels by applying distributivity.
For example,

SE× (RQ + Lin) = SE×RQ + SE× Lin.

We visualize the decompositions into sums of components using the following formula
for the conditional distribution of one component given the sum:

f1|f ∼ N
(
µ1 + K1

T(K1 + K2)
−1 (f − µ1 − µ2) ,

K1 −K1
T(K1 + K2)

−1K1

)
.

The search was run to depth 10, using the base kernels from Section 5.2.

Mauna Loa atmospheric CO2 Using our method, we analyzed records of car-
bon dioxide levels recorded at the Mauna Loa observatory. Since this dataset was
analyzed in detail by Rasmussen and Williams (2006), we can compare the kernel
chosen by our method to a kernel constructed by human experts.

Figure 5-3 shows the posterior mean and variance on this dataset as the search
depth increases. While the data can be smoothly interpolated by a single base kernel
model, the extrapolations improve dramatically as the increased search depth allows
more structure to be included.

Figure 5-4 shows the final model chosen by our method, together with its de-
composition into additive components. The final model exhibits both plausible ex-
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Figure 5-3: Posterior mean and variance for different depths of kernel search. The dashed
line marks the extent of the dataset. In the first column, the function is only modeled as
a locally smooth function, and the extrapolation is poor. Next, a periodic component is
added, and the extrapolation improves. At depth 3, the kernel can capture most of the
relevant structure, and is able to extrapolate reasonably.

trapolation and interpretable components: a long-term trend, annual periodicity and
medium-term deviations; the same components chosen by Rasmussen and Williams
(2006). We also plot the residuals, observing that there is little obvious structure
left in the data.

Airline passenger data Figure 5-6 shows the decomposition produced by ap-
plying our method to monthly totals of international airline passengers (Box et al.,
1976). We observe similar components to the previous dataset: a long-term trend,
annual periodicity, and medium-term deviations. In addition, the composite kernel
captures the near-linearity of the long-term trend and the linearly growing amplitude
of the annual oscillations.

Solar irradiance Data Finally, we analyzed annual solar irradiation data from
1610 to 2011 (Lean et al., 1995). The posterior and residuals of the learned kernel
are shown in Figure 5-5. None of the models in our search space are capable of
parsimoniously representing the lack of variation from 1645 to 1715. Despite this,
our approach fails gracefully: the learned kernel still captures the periodic structure,
and the quickly growing posterior variance demonstrates that the model is uncertain
about long term structure.
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Figure 5-4: Top: The posterior on the Mauna Loa dataset, after a search of depth 10.
Bottom: The posterior decomposition into a sum of four components. The decomposi-
tions shows long-term, yearly periodic, medium-term anomaly components, and residuals,
respectively. In the top right plot, the scale has been changed in order to clearly show the
yearly periodic structure.
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Figure 5-5: Full posterior (left) and residuals (right) on the solar irradiance dataset.
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Figure 5-6: Top: The airline dataset and posterior after a search of depth 10. Bottom:
Additive decomposition of the posterior into long-term smooth trend, yearly variation, and
short-term deviations. Due to the linear kernel, the marginal variance grows over time,
making this a heteroskedastic model.
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True Kernel D SNR = 10 SNR = 1 SNR = 0.1

SE+RQ 1 SE SE× Per SE

Lin× Per 1 Lin× Per Lin× Per SE

SE1 +RQ2 2 SE1 + SE2 Lin1 + SE2 Lin1

SE1 + SE2 × Per1 + SE3 3 SE1 + SE2 × Per1 + SE3 SE2 × Per1 + SE3 -

SE1 × SE2 4 SE1 × SE2 Lin1 × SE2 Lin2

SE1 × SE2 + SE2 × SE3 4 SE1 × SE2 + SE2 × SE3 SE1 + SE2 × SE3 SE1

(SE1 + SE2)× (SE3 + SE4) 4 (SE1 + SE2)× (SE3 × Lin3 × Lin1 + SE4) (SE1 + SE2)× SE3 × SE4 -

Table 5.1: Kernels chosen by our method on synthetic data generated using known kernel
structures. D denotes the dimension of the functions being modeled. SNR indicates the
signal-to-noise ratio. Dashes - indicate no structure.

5.6 Validation on synthetic data

We validated our method’s ability to recover known structure on a set of synthetic
datasets. For several composite kernel expressions, we constructed synthetic data
by first sampling 300 points uniformly at random, then sampling function values at
those points from a gp prior. We then added i.i.d. Gaussian noise to the functions,
at various signal-to-noise ratios (SNR).

Table 5.1 lists the true kernels we used to generate the data. Subscripts indi-
cate which dimension each kernel was applied to. Subsequent columns show the
dimensionality D of the input space, and the kernels chosen by our search for differ-
ent SNRs. Dashes - indicate that no kernel had a higher marginal likelihood than
modeling the data as i.i.d. Gaussian noise.

For the highest SNR, the method finds all relevant structure in all but one test.
The reported additional linear structure is explainable by the fact that functions
sampled from SE kernels with long length scales occasionally have near-linear trends.
As the noise increases, our method generally backs off to simpler structures.

5.7 Quantitative evaluation

In addition to the qualitative evaluation in Section 5.5, we investigated quantitatively
how our method performs on both extrapolation and interpolation tasks.
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Mean Squared Error (MSE) Negative Log-Likelihood

Method bach concrete puma servo housing bach concrete puma servo housing

Linear Regression 1.031 0.404 0.641 0.523 0.289 2.430 1.403 1.881 1.678 1.052

GAM 1.259 0.149 0.598 0.281 0.161 1.708 0.467 1.195 0.800 0.457

HKL 0.199 0.147 0.346 0.199 0.151 - - - - -

gp SE-ARD 0.045 0.157 0.317 0.126 0.092 −0.131 0.398 0.843 0.429 0.207

gp Additive 0.045 0.089 0.316 0.110 0.102 −0.131 0.114 0.841 0.309 0.194

Structure Search 0.044 0.087 0.315 0.102 0.082 −0.141 0.065 0.840 0.265 0.059

Table 5.2: Comparison of multidimensional regression performance. Bold results are not
significantly different from the best-performing method in each experiment, in a paired
t-test with a p-value of 5%.
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Figure 5-7: Extrapolation performance on the airline dataset. We plot test-set MSE as a
function of the fraction of the dataset used for training.
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5.7.1 Extrapolation

We compared the extrapolation capabilities of our model against standard baselines2.
Dividing the airline dataset into contiguous training and test sets, we computed the
predictive mean-squared-error (MSE) of each method. We varied the size of the
training set from the first 10% to the first 90% of the data.

Figure 5-7 shows the learning curves of linear regression, a variety of fixed kernel
family gp models, and our method. gp models with only SE and Per kernels did not
capture the long-term trends, since the best parameter values in terms of gp marginal
likelihood only capture short term structure. Linear regression approximately cap-
tured the long-term trend, but quickly plateaued in predictive performance. The
more richly structured gp models (SE + Per and SE×Per) eventually captured
more structure and performed better, but the full structures discovered by our search
outperformed the other approaches in terms of predictive performance for all data
amounts.

5.7.2 High-dimensional prediction

To evaluate the predictive accuracy of our method in a high-dimensional setting,
we extended the comparison of Duvenaud et al. (2011) to include our method. We
performed 10-fold cross-validation on 5 datasets3 comparing 5 methods in terms of
MSE and predictive likelihood. Our structure search was run up to depth 10, using
the SE and RQ base kernel families.

The comparison included three methods with fixed kernel families: Additive gps,
Generalized Additive Models (GAM), and a gp with a standard SE kernel using
Automatic Relevance Determination (gp SE-ARD). Also included was the related
kernel-search method of Hierarchical Kernel Learning (HKL).

Results are presented in Table 5.2. Our method outperformed the next-best
method in each test, although not substantially.

All gp hyperparameter tuning was performed by automated calls to the GPML
toolbox4; Python code to perform all experiments is available on github5.

2In one dimension, the predictive means of all baseline methods in table 5.2 are identical to that
of a gp with an SE kernel.

3The data sets had dimensionalities ranging from 4 to 13, and the number of data points ranged
from 150 to 450.

4Available at www.gaussianprocess.org/gpml/code/
5github.com/jamesrobertlloyd/gp-structure-search
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5.8 Discussion

“It would be very nice to have a formal apparatus that gives us
some ‘optimal’ way of recognizing unusual phenomena and inventing new
classes of hypotheses that are most likely to contain the true one; but
this remains an art for the creative human mind.”

E. T. Jaynes, 1985

Towards the goal of automating the choice of kernel family, we introduced a space
of composite kernels defined compositionally as sums and products of a small number
of base kernels. The set of models included in this space includes many standard
regression models. We proposed a search procedure for this space of kernels which
parallels the process of scientific discovery.

We found that the learned structures are often capable of accurate extrapolation
in complex time-series datasets, and are competitive with widely used kernel classes
and kernel combination methods on a variety of prediction tasks. The learned kernels
often yield decompositions of a signal into diverse and interpretable components,
enabling model-checking by humans. We believe that a data-driven approach to
choosing kernel structures automatically can help make nonparametric regression
and classification methods accessible to non-experts.
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Chapter 6

Compositional importance
sampling

Chapter 4 presented a technique for greedily initializing the inference procedure
in matrix decomposition models. The initialization procedure was entirely composi-
tional: it required only writing special-purpose inference procedures for the individual
factorization models. However, other aspects of the algorithms were not composi-
tional. First, the recursive initialization was followed by full joint inference over
the entire model. Second, the models were evaluated in terms of predictive likeli-
hood computed on the raw observations, which required marginalizing over multiple
components jointly.

Aesthetically, it seems odd that these non-compositional operators should be
required. As people, we continually learn higher level abstractions, and we don’t
need to continually assess how these high-level abstractions relate to the light hitting
our retinas. Can we perform inference and structure learning using only algorithms
corresponding to the production rules?

Compositionality would have practical benefits when implementing a structure
search system. The compositional nature of the recursive initialization procedure
allowed samplers to be written independently for different production rules. By
contrast, implementing predictive likelihood scoring required considering combina-
tions of disparate models, such as Gaussian scale mixtures and Markov chains. We
speculate that predictive likelihood scoring would constitute the largest obstacle to
extending the grammar of Chapter 3 with additional production rules, or with non-
Gaussian observation models.

In this chapter, we present compositional importance sampling (CIS), an inference
and model scoring algorithm defined entirely in terms of recursive application of a
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handful of algorithms. CIS returns both a marginal likelihood estimate and an
approximate posterior sample from the model. Its implementation is modular: it
requires procedures which yield posterior samples and marginal likelihood estimates
for the individual production rules. (If one only requires posterior samples, CIS is
equivalent to the recursive initialization procedure of Chapter 4, and one need not
implement marginal likelihood estimators.)

The main technical contribution of this chapter is a theoretical analysis of the
performance of CIS in the case of a clustering-within-low-rank model similar to
G(GMT + G) + G. Using a Gaussian approximation to the posterior distribution,
we bound the bias of the marginal likelihood estimates and the KL divergence of
the samples from the true posterior. Under certain assumptions about the data, this
translates into consistency guarantees for inference and model selection.

In the context of this thesis, this chapter serves two purposes. First, it presents
a fully compositional procedure for posterior inference and marginal likelihood es-
timation. Second, the theoretical analysis also informs the accuracy of the greedy
initialization procedure of Chapter 4, and can therefore be seen as a theoretical
explanation for the empirical results of that chapter.

6.1 Compositional importance sampling

We begin by repeating the observation from Section 2.3.3 that importance sampling
yields an unbiased estimator of a partition function:

Ẑ ,
1

S

S∑
s=1

f(x(s))

q(x(s))
, (6.1)

where q is a normalized proposal distribution, f is the unnormalized target distri-
bution, and the x(s) denote samples from q. Compositional importance sampling
(CIS) is simply the special case of this estimator where the proposal and target dis-
tributions are two different models from the grammar which differ only through the
application of a single production rule.

For concreteness, consider the case where q denotes the low rank model GG + G
and p denotes the clustering-within-low-rank model G(GMT + G) + G. Let Y ≈ UV
denote the factorization of the input matrix, where U has a Gaussian prior, and V
has a Gaussian prior in q and a mixture of Gaussians prior in p. (This model is
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Figure 6-1: Estimating the marginal likelihood under the clustering-within-low-rank model
G(GMT + G) + G using CIS.

shown in Figure 6-1.) The two models q and p differ only in their prior over V:

q(U,V,Y) = p(U) q(V) p(Y |U,V)

p(U,V,Y) = p(U) p(V) p(Y |U,V) (6.2)

In order to evaluate the marginal likelihood p(Y), we apply the estimator (6.1) with
q(U,V |Y) as the proposal distribution:

p(Y) = q(Y)EU,V∼q(U,V |Y)

[
p(U,V,Y)

q(U,V,Y)

]
= q(Y)EU,V∼q(U,V |Y)

[
p(U) p(V) p(Y |U,V)

p(U) q(V) p(Y |U,V)

]
= q(Y)EU,V∼q(U,V |Y)

[
p(V)

q(V)

]
(6.3)

The CIS estimator is

p̂(Y) = q(Y)
1

S

S∑
s=1

p(V(s))

q(V(s))
, (6.4)

where the V(s) are posterior samples from q(V |Y).
Now consider how to compute this quantity. First, q(Y) is the marginal likelihood
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of Y under the low-rank model GG+G. We sample U and V from q(U,V |Y), which
entails performing posterior inference in the low rank model. q(V) is the probability
of V under an i.i.d. Gaussian prior, which has a closed-form solution. Finally, p(V)
is the marginal likelihood of V under the clustering model GMT + G. Hence, we
have reduced the problem of estimating marginal likelihood in the clustering-within-
low-rank model to that of inference and marginal likelihood computation in simple
factorization models. More generally, applying CIS to the models of Chapter 3
requires only inference and marginal likelihood estimation algorithms corresponding
to the production rules of the grammar.

Note that (6.4) represents an idealized version of the estimator where posterior
inference and marginal likelihood computation are performed exactly in the simple
models. In practice, one would use approximate algorithms for both. If annealed
importance sampling (AIS; Neal, 2001a) is used for both the inference and marginal
likelihood estimation, CIS remains an unbiased estimator of p(Y) even with the
approximation.

By itself, the fact that CIS is unbiased is a very weak guarantee. It is easy to con-
struct an unbiased estimator of the marginal likelihood; one example is importance
sampling from the prior. The important question is: how accurate are the results?
This question is analyzed in Section 6.2.

6.1.1 Relationship with model checking

One motivation for CIS is that it serves as a form of model checking. Specifically,
as discussed in Gelman et al. (2014, chap. 7), one heuristic for checking models
is to look at the estimated parameters, latent variables, or residuals, and look for
structure not already encoded by the model. If there is such structure, it suggests
that the original model is inadequate. The CIS estimator (6.4) can be thought of
as “looking for more structure” in V by comparing its marginal likelihood under a
structured prior p to the marginal likelihood under the original generic prior q. If
log p(V) exceeds log q(V) by more than a few nats, then p almost certainly1 achieves
a higher marginal likelihood on the original data. In this way, CIS could be part of
a model checking procedure which automatically suggests elaborations of a model.

1The ratio in CIS is an unbiased estimator of the ratio of the two marginal likelihoods. As
discussed in Section 2.3.1, unbiased estimators of positive quantities are unlikely to overestimate
the true value by very much.
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6.2 Theoretical analysis

As described in Section 6.1, CIS is an unbiased estimator of the marginal likelihood
p(Y). By the analysis of Section 2.3.1, it can therefore be viewed as a stochastic
lower bound on log p(Y):

E[log p̂(Y)] < log p(Y). (6.5)

A natural way to evaluate the estimator is in terms of the bias

δ , log p(Y)− E[log p̂(Y)]. (6.6)

The bias is relevant to model comparison: suppose we are interested in comparing
two models p and p′ such that log p(Y) and log p′(Y) differ by at least r nats. Then
a given estimator is able to distinguish them if δ < r for each model, assuming one
averages over enough trials.2 Therefore, the bias gives a measure of the resolution
of a model selection scheme. (See Section 2.3.1 for more background on evaluating
partition function estimators.)

The bias for a single sample (i.e. S = 1) is given by

δ = log p(Y)− Eq(U,V |Y) [log p(U,V,Y)− log q(U,V,Y) + log q(Y)]

= Eq(U,V |Y) [log q(U,V |Y)− log p(U,V |Y)]

= DKL(q(U,V |Y) ‖ p(U,V |Y)). (6.7)

Using multiple samples may improve the estimates, but our analysis assumes S = 1.
Due to (6.7), our analysis of the bias doubles as an analysis of the recursive

initialization procedure of Chapter 4. Specifically, suppose we first sample (U,V) ∼
q(U,V |Y), and then recursively sample a factorization F of V from p(F |V). The
joint distribution is given by q(U,V |Y) p(F |V), and

DKL (q(U,V,F |Y) ‖ p(U,V,F |Y)) = DKL (q(U,V |Y) p(F |V) ‖ p(U,V |Y) p(F |V))

= DKL (q(U,V |Y) ‖ p(U,V |Y))

= δ. (6.8)

Therefore, the KL divergence of the recursive initialization from the true posterior is
exactly the bias of the CIS estimator. The rest of this section is devoted to analyzing
δ for the case of a clustering-within-low-rank model.

2It is also necessary that the estimator not have infinite or unreasonably large variance. While
unbiased estimators of marginal likelihood typically have extremely large variance, this is not true
of the corresponding log marginal likelihood estimators, as discussed in Section 2.3.1.
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6.2.1 The model

For concreteness, we focus on the case of a clustering-within-low-rank model which
roughly corresponds to G(GMT +G) +G in the grammar of Chapter 3. Section 6.2.5
discusses the significance of the differences and speculates about how the analysis
could be extended to other models.

We define q to be a low rank factorization model which is a slight variant of
GG + G, and p to be a clustering-within-low-rank model which is a slight variant
of G(GMT + G) + G. Both q and p agree on the generative process for U: each
row is sampled independently from N (0, I). Under the prior q(V), the columns are
independent multivariate Gaussians:

1. Sample a precision matrix ΛV from the weakly informative prior

pwi(ΛV) ∝

{
|ΛV|−(K+1)/2 if εI � ΛV � ε−1I

0 otherwise,
(6.9)

where ε is small. (This choice of prior is motivated in Appendix A.3.1.)

2. Sample each column of V as vj ∼ N (0,Λ−1V ).

The prior p(V) is a clustering model:

1. Sample a parameter r from an inverse gamma distribution. This represents the
ratio of between-cluster to within-cluster variance.

2. Sample the within-cluster precision matrix ΛV from pwi.

3. Sample a cluster assignments vector z from a Dirichlet-multinomial distribution
with K ′ possible assignments.

4. Sample K ′ mean vectors µk i.i.d. from N (0, rΛ−1V ).

5. Sample each column vj from N (µzj
,Λ−1V ).

Finally, the observation model is spherical Gaussian noise with variance λ−1. As
a simplifying assumption, we assume that λ and the dimension K of the low rank
factorization are fixed. (All other parameters are sampled from the posterior.)

The distributions q and p are nearly the same as GG + G and G(GMT + G) + G,
respectively. The differences are:
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• U is assumed to have spherical, rather than diagonal, covariance. This does
not make the model any less expressive, because the variances of the latent
dimensions can be absorbed into ΛV. (This is analogous to factor analysis,
where the latent factors are assumed WLOG to have spherical covariance.)

• V has full, rather than diagonal, covariance.

• The within-cluster and between-cluster variances for V are constrained to be
identical up to a scale factor. By contrast, in the model of Chapter 3, the two
were independent.

The significance of these differences is discussed in Section 6.2.5.

6.2.2 Additional assumptions

We do not wish to assume the data was generated by the model, because in the
context of compositional model selection, the models are believed to be oversimpli-
fied. However, we do assume a weaker form of correctness: that the residuals are
uncorrelated. In particular, if (U,V) is a sample from the posterior p(U,V |Y), and
R = UV−Y is the matrix of residuals, then we assume that ‖R‖2 = O(

√
N +D),

where ‖ · ‖2 denotes the matrix 2-norm (largest singular value). This is the rate of
growth which obtains a.s. for random matrices with i.i.d. entries and a weak con-
dition on the moments (Geman, 1980). (If there were correlations, the growth rate
could be O(

√
ND).)

The assumption of uncorrelated residuals is not overly restrictive, because any
significant correlations in R can be explained by increasing K. We note that looking
for correlations in residuals is a common model checking heuristic. Beyond this, we
do not make any additional assumptions about the data. In particular, we don’t
assume that the fixed parameters λ or K are correct, and we don’t assume the data
were generated by the model of Section 6.2.1.

6.2.3 Bias of the estimator

We now state our main result; the derivation is given in the next section. For
the clustering-within-low-rank model given above, with the assumption about the
residuals, and using Gaussian approximations to the posterior distributions,

δ ≤ 3D

2λN
E[tr ΛV] + o(N−1D). (6.10)
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Here, N is the number of rows, D is the number of columns, λ is the precision of the
observation noise (in the model, rather than the data), and ΛV is the within-cluster
precision of the columns of V. (The expectation is with respect to the posterior
p(ΛV |Y).)

Consider the dependence on each of the factors. If N is increased, the number
of observations increases, while the number of unknowns remains fixed. Therefore,
we would expect the KL divergence to shrink with N . Similarly, if D is increased,
the number of unknowns grows, while the number of observations per unknown is
fixed. Therefore, we should expect the KL divergence to grow with D. Increasing λ
increases the weighting of the evidence relative to the prior. Because q and p share
the evidence term, increasing λ should increase the overlap between the posteriors.
Finally, a larger ΛV corresponds to higher demands on the accuracy of V. All of
these are reflected in (6.10).

To better understand this result, suppose ΛV is chosen such that:

• all K latent dimensions have equal variance

• the signal variance is fixed to 1

• the ratio of total variance to within-cluster variance is γ.

This corresponds to ΛV = γKI, and therefore tr ΛV = γK2. Under this assumption,
the bias is

3γK2D

2λN
. (6.11)

Is this accuracy sufficient for model selection? This depends on the difference
log p(Y)− log q(Y). Observe that the matrix V has KD entries. Therefore, if each
entry of V is explained better under p than under q, we would expect

log p(Y) = log q(Y) + Θ(KD).

Consider the following asymptotic regimes:

• N → ∞, D fixed. The bias decays to zero while the log marginal likelihood
difference approaches a constant. Therefore, CIS will be able to distinguish the
two models.

• N fixed, D →∞. The bound (6.11) and the log marginal likelihood difference
are both proportional to D, so it is not obvious from the analysis whether CIS
can distinguish the models in this case.
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• N → ∞, D → ∞, D/N constant. The bound (6.11) approaches a constant
while the log marginal likelihood difference is proportional to D. CIS is able
to distinguish the models.

Alternatively, we can ask whether the greedy initialization procedure yields good
top-level representations. Suppose that the inference procedure makes an error such
as merging two distinct clusters. Since the number of columns belonging to these
two clusters is proportional to D, the KL divergence would need to grow as Ω(D) for
this error to remain in the limit. However, in the regime where N → ∞, D → ∞,
and D/N is constant, the bound (6.11) approaches a constant. Therefore, in this
asymptotic regime, the greedy initialization procedure will learn the correct set of
clusters given a large enough input matrix.

6.2.4 Derivation

The derivation of (6.10) proceeds in four steps. First, we reduce the problem to
the case of fixed cluster assignments and variance parameters for p(V). Second, we
determine based on symmetries of the model that certain directions of variability
can be ignored when analyzing the KL divergence. Third, we compute the second-
order Taylor approximations of the log-posterior distributions around a posterior
sample from p(· |Y). Finally, we analyze the KL divergence in the second-order
approximation to derive the bound given above.

6.2.4.1 Reduction to fixed hyperparameters

Let η = (z,ΛV, r) denote all parameters and latent variables associated with p(V).
We find that:

DKL (q(U,V |Y) ‖ p(U,V |Y)) = Eq(U,V |Y) [log q(U,V |Y)− log p(U,V |Y)]

= Eq(U,V |Y)

[
log q(U,V |Y)− logEp(η |Y) [p(U,V |Y,η)]

]
≤ Eq(U,V |Y)

[
log q(U,V |Y)− Ep(η |Y) [log p(U,V |Y,η)]

]
= Ep(η |Y),q(U,V |Y) [log q(U,V |Y)− log p(U,V |Y,η)]

= Ep(η |Y) [DKL (q(U,V |Y) ‖ p(U,V |Y,η))]

Therefore, we can limit ourselves to considering a fixed η corresponding to a posterior
sample from p(η |Y).
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6.2.4.2 Model symmetries

Our immediate goal is to take a second-order Taylor approximation to log p(U,V |Y)
and log q(U,V |Y,η) around a sample (U0,V0). Typically, this is justified through
an asymptotic argument that for large N and D, most posterior mass is concentrated
near some pair (U0,V0). Unfortunately, this is not true in the present case, because
the model has a rotational symmetry. In particular, if Q is a rotation matrix, one
can apply a transformation of the form

U 7→ UQ

V 7→ QTV (6.12)

and obtain an equivalent explanation of the data, because UQQTV = UV. All
such explanations have equal probability under the prior. Therefore, the posterior
probability mass does not concentrate around a point.

However, q and p were chosen such that they agree on all transformations of this
form. In particular, for any invertible matrices T1 and T2,

p(UT1,T2V |Y)

q(UT1,T2V |Y)
=
p(U,V |Y)

q(U,V |Y)
. (6.13)

See Appendix A.2 for details. Recall that we are interested in determining δ =
Eq(U,V |Y)[log q(U,V |Y)− log p(U,V |Y)]. Eqn 6.13 implies that variations corre-
sponding to linear transformations of the representations do not contribute to the
KL divergence. Therefore, we “factor out” this variability when we compute the
second-order approximation.

In particular, let dV = V−V0. We can uniquely decompose dV into a component
dVrow whose rows lie in the row space of V0, and a component dV⊥ whose rows lie
in the null space of V0:

dVrow = dVV0
T (V0V0

T )−1V0

dV⊥ = dV − dVrow. (6.14)

From the definition of dVrow,

V0 + dVrow = V0 + dT2V0 = (I + dT2)V0

for some dT2. Therefore, dVrow corresponds to a linear transformation of the latent
space, and can therefore be ignored. The two components are visualized in Figure 6-
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Figure 6-2: Visualization of the components dVrow (left) and dV⊥ (right) for K = 2. Each
x represents one column of V0, and the corresponding arrows represent the columns of dV.
The component dVrow corresponds to linear transformations of the latent space, which can
be ignored because of the symmetry in the priors q(V) and p(V).

2. We now restrict V to vary only within the null space of V0, i.e. we constrain

(V −V0)V
T
0 = 0. (6.15)

6.2.4.3 Second-order Taylor approximation

In the true posterior, U and V interact nonlinearly, which makes them difficult to
analyze. In this section, we construct an approximation to the posterior where U
and V are jointly Gaussian. In particular, let (U0,V0,η) denote a posterior sample
from p. We take a second-order Taylor approximation around (U0,V0) with respect
to U and V, where η is held fixed. (See Section 6.2.4.1 for the justification for fixing
η to a posterior sample.)

As discussed in the previous section, we only allow V to vary within the null space
of V0. Let V⊥ = V−V0. We give some potentials in terms of V and some in terms
of V⊥, depending which is clearer in context; however, the Taylor approximation is
always with respect to U and V⊥.

In order to define the approximation, we need the Kronecker product notation.
In particular, vec(U) denotes stacking the columns of U into a vector, and U ⊗V
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is a matrix whose blocks are given by
u11V u12V u1KV

u21V u22V u2KV
. . .

uN1V uN2V uNKV


Let F denote the permutation matrix which implements matrix transpose in the
vectorized representation:

F vec(X) = vec(XT ). (6.16)

First, U is distributed as a spherical Gaussian:

q(U) = p(U) = N−1(vec(U); 0, I⊗ I). (6.17)

The second-order Taylor approximation to log q(V) is given by:

qso(V⊥) = N−1
(
vec(V⊥); 0, I⊗D(V0V

T
0 )−1

)
. (6.18)

The details are in Appendix A.3.1. Intuitively, this corresponds to all columns of V

being drawn i.i.d. from zero-mean Gaussians whose covariance Λ̂
−1
V = 1

D
VVT is the

empirical covariance of the columns of V. (Note, however, that this approximation
holds only in the null space of V0.)

As for p(V |η), we can write V as

V = ΞZT + E, (6.19)

where Ξ denotes the cluster centers, which have precision r−1ΛV, Z denotes the
cluster assignments (as a binary matrix), and E denotes the within-cluster varia-
tion, which has precision ΛV. The assignments Z are fixed as part of η (see Sec-
tion 6.2.4.1), while Ξ and E are marginalized out. The covariance of vec(V) is
S−1 ⊗Λ−1V , where S−1 = rZZT + I. I.e.,

p(V |η) = N−1 (vec(V); 0,S ⊗ΛV) . (6.20)

Written as a function of V⊥ (see Appendix A.3.1 for details),

p(V |η) ∝ N−1 (vec(V⊥); − vec(ΛVV0S), S ⊗ΛV) . (6.21)
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The observation term is given by

q(Y |U,V) = p(Y |U,V) ∝ exp

(
−λ

2
‖Y −UV‖2F

)
, (6.22)

with the second order approximation

log pso(Y |U,V) = const + λ tr YVT
0 UT

− λ

2

(
vec(U)T vec(V⊥)T

)( V0V
T
0 ⊗ I F(R⊗ I)

(RT ⊗ I)F I⊗UT
0 U0

)(
vec(U)

vec(V⊥)

)
(6.23)

where R = U0V0 − Y is the matrix of residuals and F is defined in (6.16). (See
Appendix A.3.2.)

Finally, we combine all of these terms into second-order approximations to the
log-posteriors with respect to U and V⊥. Take Ṽ⊥ = V⊥QT , where Q is a basis for
the null space of V0. The second-order approximations are as follows:

qpost(U,V) ∝ p(U) qso(V) pso(Y |U,V)

∝ N−1
((

vec(U)

vec(Ṽ⊥)

)
;

(
hu

0

)
,

(
A B

BT Cq

))
(6.24)

ppost(U,V) ∝ p(U) p(V |η) pso(Y |U,V)

∝ N−1
((

vec(U)

vec(Ṽ⊥)

)
;

(
hu

hv

)
,

(
A B

BT Cp

))
, (6.25)

where

hu , λ vec(YVT
0 )

hv , − vec(ΛVV0SQT )

A , (λV0V
T
0 + I)⊗ I

B , λF(R⊥ ⊗ I)

Cq , λI⊗UT
0 U0 + I⊗D(V0V

T
0 )−1

Cp , λI⊗UT
0 U0 + S⊥ ⊗ΛV. (6.26)

Here, R⊥ = RQT and S⊥ = QSQT are the projections of R and S onto the null
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space of V0.

6.2.4.4 Analyzing the Gaussian case

The second-order Taylor approximation to the log-posterior defines a multivariate
Gaussian distribution, as long as the Hessian is negative definite. This is verified
in Appendix A.4.2. We now analyze the KL divergences between the two Gaussian
approximations qpost and ppost. As shown in Appendix A.4.3, the KL divergence

decomposes as DKL

(
qpost(U, Ṽ⊥) ‖ ppost(U, Ṽ⊥)

)
= T1 + T2 + T3, where

T1 =
1

2
log
∣∣Cq −BTA−1B

∣∣− 1

2
log
∣∣Cp −BTA−1B

∣∣
T2 =

1

2
tr Σv(Cp −Cq)

T3 =
1

2
∆T

µ(Cp −BTA−1B)∆µ

Σv =
(
Cq −BTA−1B

)−1
∆µ = vec

(
Eppost [Ṽ⊥]− Eqpost [Ṽ⊥]

)
. (6.27)

These terms each have intuitive interpretations. T1 corresponds to the ratio of the
volumes of the two posteriors. (We would expect T1 to be negative, since ppost will
ordinarily be more peaked than qpost. However, for the present discussion, it suffices
to bound it.) T2 can be thought of as a variance term: some directions may have
higher variance under qpost than under ppost – likely those directions corresponding
to within-cluster variation. Finally, T3 can be thought of as a bias term: the two
posteriors have different means.

These three terms are analyzed in Appendices A.4.4 through A.4.6. Each term
is bounded above by

D

2λN
tr ΛV

plus smaller order terms, so the KL divergence is bounded by

3D

2λN
tr ΛV (6.28)

plus smaller order terms. The meaning of this result is elaborated in Section 6.2.3.
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6.2.5 Extension to other models

In this section, we have analyzed the accuracy of the CIS estimator, and the greedy
initialization procedure of Chapter 4, for a particular clustering-within-low-rank
model. This model corresponds to a slightly modified version of G(GMT + G) + G.
However, we would ultimately like a way to determine, for a given model, whether
these techniques are likely to give good results. While we don’t have a formal state-
ment of this, we informally discuss all of the modeling assumptions that were used in
the analysis, and why they were required. Based on this, we speculate about what
models CIS can be applied to.

• Fixed latent dimension K and noise variance λ−1. We assumed both
of these quantities were fixed, whereas in the work of Chapter 4, they were
sampled from the posterior. When these parameters are sampled, there may be
additional error if q systematically underestimates K. However, even with fixed
K, the sampler implicitly fits the latent dimension by inferring the precision
matrix ΛV. Therefore, systematic biases in the inferred dimension may already
be accounted for by our analysis.

• q(V) and p(V) are invariant to linear transormation. (See Section 6.2.4.2).
Instead of the diagonal covariance model from Chapter 3, we assumed a full
covariance model for V, and carefully chose a weakly informative prior for ΛV

so that q(V) and p(V) would be invariant to linear transformations. This was
necessary for the analysis, because the low rank factorization has a rotational
symmetry, and therefore the rotation of the latent space is not identifiable.
Essentially, the priors on V were chosen to be insensitive to such rotations.
We note that an invariance assumption such as this one is needed to rule out
models such as G(MG + G) + G where the prior over V is sensitive to rotation.

• Fully observed Y with spherical Gaussian noise. We assumed that the
model (but not necessarily the data) had spherical Gaussian noise, and that
Y was fully observed. This was needed to express the posterior in terms of
Kronecker products. We don’t know if this assumption is required for CIS to
perform well.

• Within-cluster and between-cluster variance of V are scalar multi-
ples. As with the previous assumption, this one was needed in order to express
the posterior in terms of Kronecker products.

• Clustering model for V. Our derivation used almost no structure specific
to the clustering model. Section 6.2.4.1 reduced the problem to the case of
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fixed assignments and variance parameters sampled from the posterior, so that
p(V |η) was Gaussian. Therefore, the analysis works without modification for
any prior over V which is Gaussian conditioned on its latent representation,
such as GBT + G (if analogously modified to have full, rather than diagonal,
covariance).

• q is a low-rank factorization. This assumption is somewhat more signifi-
cant, in that we needed U and V to be continuous in order to approximate
the posterior as Gaussian. Could we extend our analysis to models such as
M(GG+G) +G? One step of our derivation (Appendix A.4.1) was to eliminate
U by showing that U and V could be approximated as independent in the pos-
terior; from this point on, the analysis involved only V. Proving approximate
independence could be a strategy for extending the analysis to other models.

Our analysis suggests the following thumb for designing model classes to be
searched using the procedure of Chapter 4: the prior p(V) must be insensitive to
variation along any dimensions which are not identifiable under q.

6.3 Discussion

We have presented CIS, a fully compositional procedure for inference and marginal
likelihood estimation in compositional models. We gave a theoretical analysis of
the algorithm in the case of a clustering-within-low-rank model. Using a Gaussian
approximation to the posterior, we derived a bound on the bias of the marginal
likelihood estimates and on the KL divergence from the true posterior.

There is one obvious roadblock to proving that any algorithm can perform effi-
cient inference in a compositional model: in most cases, even performing posterior
inference in the simple models is NP-hard. While there are some recent results show-
ing provably efficient algorithms for matrix factorization (Arora et al., 2012) and deep
learning (Arora et al., 2013), these algorithms make strong assumptions about the
process which generated the data and would not necessarily find the global optimum
in practice. Assumptions about the data are especially problematic the context of
compositional structure search, because the simpler models are believed to be wrong,
and are fit only as a step towards fitting more complex models.

We adopted a different strategy for circumventing the NP-hardness barrier: we
asked whether inference and model scoring for compositional models are any harder
than inference and model scoring for the production rules. More precisely, we as-
sumed oracles which compute exact posterior samples and marginal likelihoods for
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each of the production rules. While there are no exact posterior inference algorithms
for the production rules, there are approximate methods which work well in practice,
and practical marginal likelihood estimators are plausibly within reach. Thus, CIS
may turn out to be a practical algorithm.

While the analysis is limited to a small subset of the models in the grammar, the
analysis should hopefully serve as a template for analyzing CIS applied to a wider
variety of models. In general, this should inform a variety of broader questions, such
as:

• When should we expect the greedy initialization approach of Chapter 4 to
perform well?

• A common heuristic for model checking is to look at the latent variables and
see if there is additional structure not captured by the model. When does this
heuristic work?

• Why does layerwise training (Hinton et al., 2006) work well for learning deep
representations?

• Which probabilistic inference problems are fundamental, and which can be
performed compositionally in terms of simpler algorithms?

• How can one design a space of model structures which can be explored com-
positionally?

In the next chapter, we turn to algorithms for estimating marginal likelihood for the
productions of the grammar.
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Chapter 7

Evaluating marginal likelihood
estimators

Chapter 6 introduced compositional importance sampling, a method for estimating
marginal likelihood in compositional models which requires only marginal likelihood
estimators corresponding to the productions in the grammar. Unfortunately, esti-
mating marginal likelihood even for simple factorization models remains a difficult
problem. This chapter and the next attempt to tackle the problem of marginal likeli-
hood estimation in matrix factorizations and related models. This chapter introduces
a novel technique for obtaining ground truth marginal likelihood values against which
to evaluate estimators. Using this technique, we compare a wide variety of marginal
likelihood estimators on three production rules from our grammar.

7.1 Motivation

A major obstacle to developing effective marginal likelihood (ML) estimators is that
it is difficult even to know whether one’s approximate ML estimates are accurate.
The output of an ML estimator is a scalar value, and typically one has no independent
way to judge the correctness of that value. Subtle implementation errors can lead to
extremely inaccurate estimates with little indication that anything is amiss. Most
estimators are based on sampling or optimization algorithms, and a failure to explore
important modes of the posterior can also lead to highly inaccurate estimates. It is
common for a particular algorithm to consistently under- or overestimate the true
ML, even when the variance of the estimates appears to be small (e.g. Neal, 2008).
Section 2.3.1 provides general background on the problems of ML estimation and
partition function estimation more generally.
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In this chapter, we present a framework for evaluating ML estimators for latent
variable models. Our main contribution is a method for obtaining accurate ground
truth estimates of ML for synthetic data generated from a model. This method
can be used to test the correctness of implementations of ML estimators, measure
their accuracy, and choose between different estimators for a given model. We use
our method to rigorously compare ML estimators for several production rules of our
grammar on realistic-sized datasets: a clustering model, a low rank approximation,
and a binary attribute model. This highlights strengths and weaknesses of a variety
of estimators, and should help inform the choice of ML estimators more generally.
Since ML estimation is closely related to posterior inference, our approach also gives
a novel quantitative criterion for comparing posterior inference algorithms.

7.1.1 Caveats

While the focus of this work is on the algorithmic issues involved in estimating ML,
we should mention several caveats concerning the ML criterion itself. First, the very
notion of a “correct” or “best” model may not be meaningful if none of the models
under comparison accurately describe the data. In such cases, different models may
better capture different aspects of the data, and the best choice is often application-
dependent. This situation is especially relevant to the methods of this chapter, since
the estimators are evaluated on synthetic data, and those results may not carry over
if the model is a poor match to the data. For these reasons, ML should not be applied
blindly, but should rather be used in conjunction with model checking methods such
as posterior predictive checks (Gelman et al., 2014, chap. 6).

A common criticism of ML is that it is overly sensitive to the choice of hyperpa-
rameters, such as the prior variance of the model parameters (Kass, 1993; Kass and
Raftery, 1995). Predictive criteria such as predictive likelihood and held-out error are
insensitive to these hyperparameters for large datasets, because with enough data,
the likelihood function will dominate the prior. However, a poor choice of hyperpa-
rameters can significantly affect the ML, even for arbitrarily large datasets. This can
lead to a significant bias towards overly simple models, since the more parameters
a model has, the stronger the effect of a poorly chosen prior. We note, however,
that this is a problem with posterior inference over models, even if the ML is not
computed explicitly. Techniques such as reversible jump MCMC (Green, 1995) and
Bayesian nonparametrics (Ghahramani, 2012) suffer from precisely the same bias
when the priors are misspecified.

There are several model selection criteria closely related to ML which alleviate the
hyperparameter sensitivity. Berger and Pericchi (1996) proposed the intrinsic Bayes
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factor, the probability of the data conditioned on a small number of data points. This
can be equivalently viewed as computing the ratio of marginal likelihoods of different
size datasets. Fractional Bayes factors (O’Hagan, 1995) have a similar form, but the
denominator includes all of the data points, and each likelihood term is raised to a
power less than 1. Another approach maximizes the ML with respect to the hyper-
parameters; this is known as empirical Bayes, the evidence approximation, or type-II
maximum likelihood (MacKay, 1999). The motivation is that we can optimize over a
small number of hyperparamters without overfitting too badly. Others suggest using
ML, but designing the priors such that a poor choice of hyperparameters doesn’t
favor one model over another (Heckerman et al., 1995; Neal, 2001b). We note that
all of these methods require computing high-dimensional integrals over model pa-
rameters and possibly latent variables much like the ones needed for ML. Therefore,
they raise the same computational issues, and some of the algorithms discussed here
can be directly used to estimate these other quantities as well.

For the remainder of the discussion, we will take as given that the goal is to
estimate ML, and we will focus on the algorithmic issues.

7.2 Obtaining ground truth marginal likelihood

As mentioned above, evaluating ML estimators is difficult because the true value
is not known. Sometimes, algorithms are tested on extremely small instances for
which the ML can be computed exactly. This is useful for checking the mathematical
correctness of an algorithm, but it gives little insight into how the algorithm performs
on realistic dataset sizes. In particular, many failure modes of ML estimators, such as
failure to mix, or large variance caused by importance sampling in high dimensions,
simply would not arise for small instances.

As discussed in Section 2.3.1, unbiased estimators of the ML can be viewed as
stochastic lower bounds in two senses:

1. By Jensen’s inequality, they underestimate the true value on average: E[log p̂(y)] ≤
log p(y).

2. By Markov’s inequality, they are unlikely to overestimate the true value by
very much: Pr(log p̂(y) > log p(y) + b) ≤ e−b.

Many commonly used ML estimators, such as annealed importance sampling (AIS)
and sequential Monte Carlo (SMC), are unbiased. One way to compare these esti-
mators is to suppose that whichever one returns a larger value is closer to the truth.
However, this doesn’t answer the question of how close to the true value they are.
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(A 1 nat difference is more significant if the estimates are close to the true value
than if they are far from it.) Even if multiple estimators give similar estimates, this
does not imply they are accurate, since multiple estimators can give the same wrong
answer if they fail to explore the same modes.

Our method for obtaining ground truth is based on computing both stochastic
upper bounds and stochastic lower bounds, such that the gap between the bounds is
small. It is already understood how to achieve accurate lower bounds: AIS provably
converges to the true value as the number of intermediate distributions is increased
(Neal, 2001a). Finding good upper bounds is harder. (From a theoretical standpoint,
we would expect it to be difficult to obtain good upper bounds, because these would
act as certificates that there isn’t any remaining unexplored mass in the posterior.)

As discussed in Section 2.3.4, the harmonic mean estimator is a stochastic upper
bound when exact posterior samples are used. Unfortunately, there are two problems:
first, if approximate samples are used, the estimator is not a stochastic upper bound,
and in fact suffers from the same mixing issues as the other methods. Second, as we
show in the experiments, even when exact samples are used, the bound is extremely
poor.

For synthetic data, it is possible to work around both of these issues. For the issue
of finding exact samples, observe that there are two different ways to sample from the
joint distribution p(θ, z,y) over parameters θ, latent variables z, and observations
y. We can forward sample by first sampling (θ, z) from p(θ, z), and then sampling y
from p(y |θ, z). Alternatively, we can first sample y from p(y), and then sample (θ, z)
from the posterior p(θ, z |y). Since these two processes sample from the same joint
distribution, the (θ, z) generated during forward sampling is also an exact sample
from the posterior p(θ, z |y). (The Geweke test (Geweke, 2004) is based on the same
identity.) In other words, for a synthetic dataset, we have available a single exact
sample from the posterior.1

The other problem with the harmonic mean estimator is that the bound is ex-
tremely poor even when one has exact samples. The reason is that it is an instance of
simple importance sampling between dissimilar distributions in a high-dimensional
space. Sections 2.3.5 and 2.3.6 discussed two ways to improve the performance of
the likelihood weighting estimator by breaking it down into a series of smaller steps:
annealed importance sampling (AIS) and sequential Monte Carlo (SMC). This sug-
gests that a series of distributions bridging from the posterior to the prior could yield
more accurate results. We now discuss two particular instantiations of this.

1More posterior samples can be obtained by running an MCMC algorithm starting from the
original one. However, the statistics would likely be correlated with those of the original sample.
We used a single exact sample for each of our experiments.
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7.2.1 Reverse AIS

In Section 2.3.5, we discussed an interpretation of AIS as simple importance sampling
over an extended state space, where the proposal and target distributions correspond
to forward and backward annealing chains. We noted that that the reverse chain
generally could not be sampled from explicitly because it required an exact sample
from pT (x) – in this case, the posterior distribution. However, for synthetic data,
the reverse chain can be run starting from an exact sample as described above. The
importance weights for the forward chain using the backward chain as a proposal
distribution are given by:

qfor(x1, . . . ,xT )

qback(x1, . . . ,xT )
=
ZT
Z1

w, (7.1)

where

w ,
fT−1(xT−1)

fT (xT−1)
· · · f1(x1)

f2(x1)
. (7.2)

As in Section 2.3.5, because this ratio represents the importance weights between two
normalized distributions, its expectation must be 1, and therefore E[w] = Z1/ZT .
Since p1 is chosen to be the prior, Z1 = 1, and we obtain the following estimate of
the ML:

p̂back(y) =
K∑K

k=1w
(k)
. (7.3)

As discussed in Section 2.3.5, the standard AIS estimator (denoted here as
p̂for(y)) is a stochastic lower bound, in that for any b, log p̂for(y) ≤ log p(y) + b
with probability 1− e−b. Similarly, because (7.3) is obtained from an unbiased esti-
mate of 1/p(y), it is a stochastic upper bound on p(y). Therefore, the true value is
sandwiched between two bounds:

log p̂for(y)− b ≤ log p(y) ≤ log p̂back(y) + b with probability 1− 2e−b. (7.4)

This is not an asymptotic result—it holds for any number of intermediate distribu-
tions. If we are fortunate enough to have forward and backward estimates which
differ by a nats, then log p(y) is known to within a + 2b nats with small probabil-
ity of error. No additional work needs to be done to determine the variance of the
estimators, or whether AIS has sufficiently explored the posterior.

In order for the method to be useful, it is also necessary that the gap between
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the lower and upper estimates be small. As discussed in Section 2.3.5, the bias and
variance of log p̂(y) both approach zero as the number of intermediate distributions
tends to infinity. The proof holds in the reverse direction as well. Therefore, if the
forward and reverse estimators are run with large numbers of intermediate distri-
butions, they will approach the same value from both sides, and the variance can
be made arbitrarily small. There is no theoretical guarantee that a small gap will
be achieved for any reasonable number of intermediate distributions, but our ex-
periments demonstrate the practicality of the technique on several different model
classes.

7.2.2 Sequential harmonic mean estimator

As discussed in Section 2.3.6.1, SMC with a single particle can be analyzed as a spe-
cial case of AIS. Therefore, starting from an exact posterior sample, we can run the
reverse chain for SMC as well. The resulting algorithm, which we call the sequential
harmonic mean estimator (SHME), corresponds to starting with full observations
and the exact posterior sample, and deleting one observation at a time. Each time
an observation is deleted, the weights are updated with the likelihood of the obser-
vations, exactly as in SMC. The difference is in how the weights are used: when the
resampling criterion is met, the particles are sampled proportionally to the reciprocal
of their weights. Also, while Algorithm 2 computed arithmetic means of the weights
in the resampling step and in the final partition function estimate, SHME uses the
harmonic means of the weights.

As in SMC, we leave open the choice of proposal distribution q(zi |yi,θ(k)). Pos-
sibilities include (2.27) and (2.29) of Section 2.3.6. Unlike in standard SMC, the
proposal distribution does not affect the states sampled in the algorithm—rather,
it is used to update the weights. Proposal distributions which better reflect the
posterior are likely to result in lower variance weights.

The harmonic mean estimator has been criticized for its instability (Neal, 2008),
so it is worth considering whether the same issues are relevant to SHME. One prob-
lem with the harmonic mean estimator is that it is equivalent to simple importance
sampling where the target distribution is more spread out than the proposal distribu-
tion. Therefore, samples corresponding to the tails of the distribution have extremely
large importance weights. The same problem is present here (though to a lesser de-
gree) because the posterior p(z1:i,θ |y1:i) is slightly more peaked than the posterior
given one less data point, p(z1:i,θ |y1:i−1). Therefore, we do not recommend using
this procedure to compute a particle approximation to the posterior.

However, despite this problem, the algorithm can still yield accurate estimates

114



Algorithm 3 Sequential harmonic mean estimator
for k = 1 to K do

(z(k),θ(k))← exact sample from p(z,θ |y)
w(k) ← 1

end for
for i = T to 1 do

for k = 1 to K do
(z

(k)
1:i ,θ

(k))← MCMC transition which leaves p(z1:i,θ |y1:i) invariant

w(k) ← w(k)p(z
(k)
i |θ)p(yi | z(k)i ,θ(k))/q(zi |yi,θ(k))

end for
if resampling criterion met then

Resample (z
(k)
1:i ,θ

(k)) proportionally to 1/w(k)

S ←
∑K

k=1 1/w(k)

for k = 1 to K do
w(k) ← K/S

end for
end if

end for

return Ẑ = K∑K
k=1 1/w

(k)

of the ML. To justify this theoretically, suppose we have a model for which θ and
z
(k)
i can both be integrated out analytically. (This is the case for the clustering

model.) We analyze the gap between the SMC (lower bound) and SHME (upper
bound) estimates. For simplicity, assume that only a single particle is used in each
algorithm, and that the MCMC transition operator yields perfect samples. In this
case, the expected SMC estimate of log p̂(y) is given by:

E[log p̂(y)] =
N∑
i=1

Ep(z1:i−1 |y1:i−1) [log p(yi | z1:i−1,y1:i−1)] . (7.5)

On the other hand, the SHME estimate is given by:

E[log p̂(y)] =
N∑
i=1

Ep(z1:i−1 |y1:i) [log p(yi | z1:i−1,y1:i−1)] . (7.6)

The only difference between these two expressions is that the posterior expectation
in (7.6) conditions on one more data point than that of (7.5). Intuitively, in the
context of the clustering model, seeing an additional data point may influence how
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the remaining data points are clustered. If the degree of influence is small, then the
upper and lower bounds are close to each other, and therefore close to log p(y).

7.2.3 Relationship with inference

As discussed in Section 2.3.7, the problems of inference and ML estimation are equiv-
alent for variational Bayes: the KL divergence from the posterior equals the gap
between the variational lower bound and the true ML. While we are not aware of
any general statement of this form for sampling-based methods, similar relationships
hold for particular estimators. In particular, the same identity holds in expectation
for the SIS estimator of Section 2.3.3. If q(z,θ) is the proposal distribution, then the
expectation of (2.15) with a single sample is given by:

Eq(z,θ) [log p(z,θ,y)− log q(z,θ)] = log p(y) + Eq(z,θ) [log p(z,θ |y)− log q(z,θ)]

= log p(y)−DKL(q(z,θ) ‖ p(z,θ |y)). (7.7)

Observe that this expectation is exactly the same as the variational lower bound
(2.39) when q is used as the variational approximation. This highlights a surprising
equivalence between variational and sampling-based ML estimators which makes it
possible to compare both on equal footing.

Furthermore, we have discussed two sampling-based estimators which can be seen
as importance sampling on an extended state space: AIS (Section 2.3.5) and SMC
with a single particle (Section 2.3.6.1). Let v denote all of the variables sampled
in one of these algorithms other than z and θ. (For instance, in AIS, it denotes all
of the states other than the final one.) In this case, the above derivation can be
modified:

E[log p̂(y)] = Eq(z,θ,v) [log p(z,θ,v,y)− log q(z,θ,v)]

= log p(y)−DKL(q(z,θ,v) ‖ p(z,θ,v |y))

≤ log p(y)−DKL(q(z,θ) ‖ p(z,θ |y)). (7.8)

This implies that the KL divergence from the true posterior is bounded by the bias
of the estimator. If either of these algorithms returns an accurate estimate of the
ML, it must also yield a good posterior sample. While the ML bounds can be used to
determine which of two inference algorithms is more accurate, it is hard to measure
the significance of the gap unless p(y) is known. (If algorithm A has a KL divergence
of 11 from the true posterior and algorithm B has a KL divergence of 1, this is a
large difference. If A has a KL divergence of 1010 and B has a KL divergence of
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1000, this has less practical relevance.)
However, in conjunction with the algorithms of this section, the above inequali-

ties can be used to measure the accuracy of posterior samples on synthetic datasets.
In particular, if we use an importance sampling based estimator to lower bound p(y)
and a (possibly different) algorithm to upper bound it, the gap between the estimates
serves as a stochastic bound on the KL divergence from the true posterior. There-
fore, for those algorithms which are based on importance sampling, our experiments
comparing ML estimates can also be seen as evaluations of posterior inference.

7.3 Experiments

In this section, we compare several ML estimation algorithms on simple matrix fac-
torization models: clustering (MG+G), low rank approximation (GG+G), and binary
attributes (BG + G). The following estimators are compared:

• the Bayesian information criterion (BIC)

• likelihood weighting (Section 2.3.3)

• the harmonic mean estimator (HME) (Section 2.3.4), using a Markov chain
starting from the exact sample

• annealed importance sampling (AIS) (Section 2.3.5)

• sequential Monte Carlo (SMC), using a single particle (Section 2.3.6)

• variational Bayes (Section 2.3.7). We report results both with and without the
symmetry coorection, where the ML lower bound is multiplied by the number
of equivalent relabelings (K! for all models we consider).

• the Chib-Murray-Salakhutdinov (CMS) estimator (Section 2.3.8)

• nested sampling (Skilling, 2006)

7.3.1 Implementation

In order to be fair to all algorithms, the implementations share the same MCMC
transition operators wherever possible. The implementations are not especially opti-
mized, and therefore all of the algorithms could likely be sped up considerably with
careful tuning. However, because the MCMC transition operators make up most
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of the running time and are shared between most of the algorithms, the running
times are directly comparable. The only exceptions are variational Bayes and nested
sampling, whose update rules are not shared with the other algorithms.

All of the estimators except for BIC, likelihood weighting, and variational Bayes
require an MCMC transition operator which preserves the posterior distribution. In
addition, some of the algorithms required implementing some additional computa-
tions:

• AIS requires MCMC operators for each of the intermediate distributions.

• SMC requires the ability to compute or approximate the likelihood of a data
point under the predictive distribution.

• The CMS estimator requires implementing the reverse transition operators and
requires the ability to compute the probability of transitioning between any
given pair of states. The latter is a nontrivial requirement, in that it disallows
operators which compute auxiliary variables.

• Nested sampling requires an MCMC operator for the prior subject to the con-
straint on the likelihood.

• Variational Bayes is an optimization, rather than sampling, algorithm. In our
implementation, the updates all involved optimizing one of the component
distributions given the others.

The operators implemented for the specific models are as follows:

• Clustering. The transition operator was collapsed Gibbs sampling (see Sec-
tion 2.2.2). The cluster centers were collapsed out wherever possible in all com-
putations. The predictive likelihood can be computed exactly given the cluster
assignments and variance parameters, with the cluster centers collapsed out.

• Low rank. The transition operator was block Gibbs sampling (see Sec-
tion 2.2.1). For computing predictive likelihood, the right factor was sampled
from the posterior, and the left factor was marginalized out analytically.

• Binary attributes. The transition operator was collapsed Gibbs sampling.
For all computations, the feature matrix was collapsed out analytically wher-
ever possible, and the tricks of Doshi-Velez and Ghahramani (2009) (discussed
in Section 2.2.2) were used to update the posterior efficiently.
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In general, we face a tradeoff between performance and difficulty of implemen-
tation. Therefore, it is worth discussing the relative difficulty of implementation of
different estimators. In general, BIC, likelihood weighting, and the harmonic mean
estimator required almost no work to implement beyond the MCMC sampler. Of
the sampling based estimators, AIS and nested sampling required the most work to
implement, because they each required implementing a full set of MCMC transition
operators specific to those algorithms.2 SMC and the CMS estimator were in be-
tween: they required only a handful of additional functions beyond the basic MCMC
operators.

Compared with the sampling methods, variational Bayes typically requires some-
what more math to derive the update rules. However, it is considerably simpler to
test (see Section 7.3.2). For the low rank and clustering models, implementing vari-
ational Bayes required a comparable amount of effort to implementing the MCMC
transitions. For the binary attribute model, variational Bayes was considerably easier
to implement than the efficient collapsed sampler.

7.3.2 Testing

ML estimators are notoriously difficult to implement correctly. The problem is that
an ML estimator returns a scalar value, and there is little obvious indication if
the value is wrong. Furthermore, buggy MCMC transition operators often yield
seemingly plausible posterior samples, yet lead to bogus ML estimates when used
in an algorithm such as AIS. For these reasons, it is worth discussing methods for
testing mathematical correctness of ML estimator implementations. We used several
strategies, which we recommend following in any work involving ML estimation:

1. Most of the MCMC operators were implemented in terms of functions which
returned conditional probability distributions. (The distributions were classes
which knew how to sample from themeslves and evaluate their density func-
tions.) The conditional probability distributions can be “unit tested” by check-
ing that they are consistent with the joint probability distribution. In partic-
ular,

p(x |u)

p(x′ |u)
=
p(x, u)

p(x′, u)

2AIS is most often used in the undirected setting, where the transition operators for the model
itself are easily converted to transition operators for the intermediate distributions. In the directed
setting, however, raising the likelihood to a power can destroy the directed structure, and therefore
implementing collapsed samplers can be more involved.
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must hold for any triple (x, x′, u). This form of unit testing is preferable to
simulation-based tests, because the identity must hold exactly, and fails with
high probability if the functions computing conditional probabilities are incor-
rect.

Analogously, the updates for variational Bayes were tested by checking that
they returned local maxima of the variational lower bound.

2. To test the MCMC algorithms themselves, we used the Geweke test (Geweke,
2004). This can be thought of as an “integration test,” since it checks that
all the components of the sampler are working together correctly. This test
is based on the fact that there are two different ways of sampling from the
joint distribution over parameters θ, latent variables z, and data y. First, one
can sample forwards from the model. Second, one can begin with a forwards
sample and alternate between (a) applying the MCMC transition operator,
which preserves the posterior p(θ, z |y), and (b) resampling y from p(y |θ, z).
If the implementation is correct, these two procedures should yield samples
from exactly the same distribution. One can check this by checking P-P plots
of various statistics of the data.

The Geweke test is considered the gold standard for testing MCMC algorithms.
It can detect surprisingly subtle bugs, because the process of resampling the
data tends to amplify small biases in the sampler. (E.g., if the MCMC operator
slightly overestimates the noise, the data will be regenerated with a larger
noise, and the bias will be amplified over many iterations.) The drawback of
the Geweke test is that it gives no indication of where the bug is. Therefore,
it is recommended that one run it only after all of the unit tests pass.

3. The ML estimators were tested on toy distributions, where the ML could be
computed analytically, and on very small instances of the clustering and binary
models, where it could be computed through brute force enumeration of all
latent variable configurations.

4. Because we had implemented a variety of ML estimators, we could check that
they agreed with each other on at least some easy problem instances, such as
those with extremely small or large single-to-noise ratios (SNR), or with small
numbers of data points. (Because steps 1 and 2 strenuously test the parts of the
implementation that are shared between different estimators, any further bugs
will hopefully cause the estimates returned by different estimators to differ.)

The vast majority of bugs that we caught were caught in step 1, only a handful in
steps 2 and 3, and none in step 4. We would recommend using 1, 2, and 3 for any work
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which depends on ML estimation. (Steps 1 and 3 are applicable to partition function
estimation more generally, while the Geweke test is specific to directed models.) Step
4 may be overkill for most applications because it requires implementing multiple
estimators, but it provides an additional degree of reassurance in the correctness of
the implementation.

The techniques of this section test only the mathematical correctness of the im-
plementation, and do not guarantee that the algorithm returns an accurate answer.
The algorithm may still return inaccurate results because the MCMC sampler fails
to mix or because of statistical variability in the estimator. These are the factors
that the experiments of this chapter are intended to measure.

7.3.3 Algorithm parameters

Each of the ML estimators provides one or more knobs which control the tradeoff
between accuracy and computation time. In order to investigate the accuracy as a
function of running time, we varied one knob for each algorithm and set the rest to
reasonable defaults. The following parameters were varied for each algorithm:

• Likelihood weighting and harmonic mean: The independent variable was
the number of proposals.

• Annealed importance sampling: The annealing path consisted of geometric
averages of the initial and target distributions. Because AIS is sometimes
unstable near the endpoints of a linear path, we used the following sigmoidal
schedule which allocates more intermediate distributions near the endpoints:

β̃t = σ

(
δ

(
2t

T
− 1

))
βt =

β̃t − β̃1
β̃T − β̃1

,

where σ denotes the logistic sigmoid function and δ is a free parameter. (We
used δ = 4.) In our experiments, the independent variable was T , the number
of intermediate distributions.

• Sequential Monte Carlo: We used only a single particle in all experiments,
and the independent variable was the number of MCMC transitions per data
point.
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• Chib-Murray-Salakhutdinov: We used a single sample (θ∗, z∗) and varied
the number of MCMC transitions starting from that sample.

• Variational Bayes: The independent variable was the number of random
restarts in the optimization procedure. Specifically, in each attempt, optimiza-
tion was continued until the objective function improved by less than 0.01
nats over 50 iterations, at which point another random restart was done. The
highest value obtained over all random restarts was reported.

• Nested sampling: The algorithm has three parameters: the number of steps,
the number of particles, and the number of MCMC transitions per step. The
number of steps was chosen automatically by stopping when the (multiplica-
tive) likelihood updates dropped below 1 + e−10. We found that using only 2
particles (the smallest number for which the algorithm is defined) consistently
gave the most accurate results for modest computation time. Therefore, the
independent variable was the number of MCMC transitions per step.

When applying algorithms such as AIS or SMC, it is common to average the
estimates over multiple samples, rather than using a single sample. For this set of
experiments, we ran 25 independent trials of each estimator. We report two sets of
results: the average estimates using only a single sample, and the estimates which
combine all of the samples.3 As discussed in Section 7.3.5, there was little qualitative
difference between the two conditions.

7.3.4 How much accuracy is required?

What level of accuracy do we require from an ML estimator? At the very least, we
would like the errors in the estimates to be small enough to detect “substantial”
log-ML differences between alternative models. Kass and Raftery (1995) offered the
following table to summarize significance levels of ML ratios:

3For algorithms which are unbiased estimators of the marginal likelihood (AIS, SMC, CMS, and
likelihood weighting), the arithmetic mean of the individual estimates was taken. For algorithms
which are unbiased estimators of the reciprocal (harmonic mean, reverse AIS, SHME), the harmonic
mean was used. For variational inference, the max over all trials was used. For nested sampling,
the average of the log-ML estimates was used.
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log10 p1(y)− log10 p2(y) p1(y)/p2(y) Strength of evidence against p2

0 to 1/2 1 to 3.2 Not worth more than a bare mention

1/2 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

> 2 > 100 Decisive

This table serves as a reference point if one believes one of the models is precisely
correct. However, in most cases, all models under consideration are merely simplifi-
cations of reality.

Concretely, suppose we have a dataset consisting of N = 1000 data points, and
we are considering two models, M1 and M2. If M1 achieves an average predic-
tive likelihood score which is 0.1 nats per data point higher than that of M2, this
translates into a log-ML difference of 100 nats. Interpreted as a log-odds ratio, this
would be considered overwhelming evidence. However, the difference in predictive
likelihood is rather small, and in practice may be outweighed by other factors such as
computation time and interpretability. Roughly speaking, 1 nat is considered a large
difference in predictive likelihood, while 0.1 nats is considered small. Therefore, we
may stipulate that an ML estimation error of 0.1N nats is acceptable, while one of
N nats is not.

Alternatively, we can judge the errors against the resolution necessary to compare
different model classes. For instance, if one is comparing the flat clustering model
MG+G against the structureless model G, the former should yield better predictions
about every entry of the N × D observation matrix. Therefore, its log-ML score
should be higher by O(ND) nats. Similarly, if one is comparing MG + G and the
co-clustering model M(GMT + G) + G, the latter would give a better prior for the
K ×D matrix of cluster centers, so it should improve the log-ML by O(KD) nats.
A model which finds additional structure in the parameters for each block would
improve the log-ML by a further O(KK ′) nats, where K and K ′ are the number
of row and column clusters. Thus, in a sense, the accuracy of an ML estimator
determines the depth of the structures it is able to distinguish.

Finally, there is an empirical yardstick we can use, namely comparing the ML
scores of different models fit to the same datasets. Table 7.1 shows the ML estimates
for all three models under consideration, on all three of the synthetic datasets. The
estimates were obtained from AIS with 30,000 intermediate distributions.4 These

4We are guaranteed accurate results only for the diagonal entries, for which upper bounds were
available. However, AIS with 30,000 intermediate distributions yielded accurate estimates in all
comparisons against ground truth (see Section 7.3.5).
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Clustering Low rank Binary

Clustering -2377.5 -2390.6 (13.1) -2383.2 (5.7)

Low rank -2214.2 (69.1) -2145.1 -2171.4 (26.3)

Binary -2268.6 (49.2) -2241.7 (22.3) -2219.4

Table 7.1: Marginal likelihood scores for all three models evaluated on synthetic data drawn
from all three models. Rows: the model used to generate the synthetic data. Columns:
the model fit to the data. Each entry gives the marginal likelihood score estimated using
AIS, and (in parentheses) the log-ML difference from the correct model.

numbers suggest that, for a dataset with 50 data points and 25 dimensions, the ML
estimators need to be accurate to within tens of nats to distinguish different Level 1
factorization models.

7.3.5 Results

All of the ML estimation algorithms were run on all three of the models. A synthetic
dataset was generated for each model with 50 data points and 25 input dimensions.
There were 10 latent components for the clustering and binary models and 5 for the
low rank model. In all cases, the “ground truth” estimate was obtained by averaging
the log-ML estimates of the forward and reverse AIS chains with the largest number
of intermediate distributions. In all cases, the two estimates agreed to within 1 nat.
Therefore, by the analysis of Section 2.3.1, the ground truth value is accurate to
within a few nats with high probability.

As mentioned in Section 7.3.3, each algorithm was run independently 25 times,
and the results are reported both for the individual trials and for the combined
estimates using all 25 trials. We plot the average log-ML estimates as a function of
running time in order to visualize the bias of each estimator. In addition, we plot
the root mean squared error (RMSE) values as a function of running time. We do
not report MSE values for the AIS runs with the largest number of intermediate
distributions because the estimates were used to compute the ground truth value.

Section 7.3.4 argued, from various perspectives, that the log-ML estimates need to
be accurate on the order of 10 nats to distinguish different model classes. Therefore,
for all models, we report which algorithms achieved RMSE of less than 10 nats, and
how much time they required to do so.

Clustering. The results for the clustering model MG+G are shown in Figures 7-
1 and 7-2. Figure 7-1 shows the log-ML estimates for all estimators, while Figure 7-2
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shows the RMSE of the log-ML estimates compared to the ground truth. Of the
algorithms which do not require an exact posterior sample, only three achieved this
level of accuracy: AIS, SMC, and nested sampling (NS). SMC gave accurate results
the fastest, achieving an RMSE of 4.6 nats in only 9.7 seconds. By comparison, AIS
took 37.8 seconds for an RMSE of 7.0 nats, and NS took 51.2 seconds for an RMSE
of 5.7 nats.

We are not aware of any mathematical results concerning whether NS is an upper
or lower bound on the log-ML. Our results suggest that it tends to underestimate the
log-ML, similarly to the other algorithms. However, it significantly overestimated the
log-ML on many individual runs, suggesting that it is not truly a stochastic lower
bound.

The most naive ML estimator, likelihood weighting (LW), vastly underestimated
the true value. Its mirror image, the harmonic mean estimator (HME), vastly over-
estimated it. The Bayesian information criterion (BIC) gave by far the least accurate
estimate, with MSE dwarfing even that of LW. This is remarkable, since the BIC
requires fitting the model, while LW is simply a form of random guessing. This
suggests that the BIC should be treated cautiously on small datasets, despite its
asymptotic guarantees. The CMS estimator was more accurate than LW and HME,
but still far from the true value. The MSE values for LW, HME, and CMS were
nearly constant over at least 2 orders of magnitude in running time, suggesting that
they cannot be made more accurate simply by running them longer.

A single run of the variational Bayes optimization took only 0.1 seconds, after
which it returned a log-ML lower bound which was better than LW achieved after
many samples. However, even after many random restarts, the best lower bound it
achieved was still 15 nats below the true value, even with the symmetry correction.
According to our earlier analysis, this suggests that it would not be accurate enough
to distinguish different models. In order to determine if the gap was due to local
optima, we ran the optimization starting from a point estimate on the sample which
generated the data. In this experiment (and for the other two models as well), VB
with random initializations was able to find the same optimum, or a slightly better
one, suggesting that the gap is due to an inherent limit in the approximation rather
than to local optima.

For parameter settings where individual samples of AIS and SMC gave results
accurate to within 10 nats, combining the 25 samples gave quantitatively more ac-
curate estimates. However, for all of the other algorithms and parameter settings,
combining 25 trials made little difference to the overall accuracy, suggesting that
an inaccurate estimator cannot be made into an accurate one simply by using more
samples. (The same effect was observed for the other two models.) Roughly speak-
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Figure 7-1: Comparison of marginal likelihood estimators on the clustering model MG+G.
Top: average log-ML estimates for each of the 25 individual trials. (The right-hand figure
is zoomed in.) Bottom: average log-ML estimates combined between the 25 trials. (The
right-hand figure is zoomed in.) Note that there is little qualitative difference from the
individual trials. HME = harmonic mean estimator. rev AIS = reverse AIS. SHME
= sequential harmonic mean estimator. SMC = sequential Monte Carlo. NS = nested
sampling. AIS = annealed importance sampling. VB+sym = variational Bayes with
symmetry correction. CMS = Chib-Murray-Salakhutdinov estimator. VB = variational
Bayes. LW = likelihood weighting.
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Figure 7-2: Mean squared error relative to ground truth for individual trials (left) and com-
bined estimates (right) for the clustering model MG+G. See Figure 7-1 for the abbreviation
key.

ing, it appears that one would rather spend a given amount of computation time to
compute a handful of accurate estimates rather than a large number of sloppy ones.
(Note that this is not true for all partition function estimation problems; for instance,
in some of the experiments of Chapter 8, high-accuracy results were often obtained
by averaging over many AIS runs, while some individual runs were inaccurate.)

Low rank. The results on the low rank factorization GG + G overwhelmingly
favor AIS: its accuracy after only 1.6 seconds (RMSE = 8.6) matched or surpassed
all other algorithms with up to 20 minutes of running time. In fact, AIS was the
only algorithm to achieve an RMSE of less than 10.
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Figure 7-3: Comparison of marginal likelihood estimators on the low rank model GG + G.
Left: average log-ML estimates across the 25 trials. Middle: same as left, but zoomed
in. Right: average MSE of individual samples. See Figure 7-1 for the abbreviation key.
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Figure 7-4: Comparison of marginal likelihood estimators on the binary attribute model
BG + G. Left: average log-ML estimates across the 25 trials. Middle: same as left, but
zoomed in. Right: average MSE of individual samples. See Figure 7-1 for the abbreviation
key.

One reason that NS did not perform as well on this model as it did on the
clustering model is that it took more steps to reach the region with high posterior
mass. E.g., with 5 MCMC transitions per step, it required 904 steps, as compared
with 208 for clustering and 404 for binary. Another reason is that the MCMC
implementation could not take advantage of the same structure which allowed block
Gibbs sampling for the remaining algorithms; instead, one variable was resampled
at a time from its conditional distribution. (For the clustering and binary models,
the NS transition operators were similar to the ones used by the other algorithms.)

The CMS estimator underestimated the true value by over 1000 nats. The reason
is that p(U?,V? |Y) is estimated using an MCMC chain starting close to the point
estimate p(U?,V?). The model has a large space of symmetries which the Markov
chain explores slowly, because U and V are tightly coupled. Therefore, the first
few samples dramatically overestimate the probability of transitioning to (U?,V?),
and it is impossible for later samples to cancel out this bias because the transition
probabilities are averaged arithmetically. In general, variational Bayes is also known
to have difficulty modeling spaces with symmetries when tightly coupled variables
are restricted to be independent in the variational approximation. Interestingly, it
was able to attenuate the effect by making U and V small in magnitude, thereby
reducing the coupling between them.

Binary attributes. Finally, the results for the binary attribute model BG + G
are shown in Figure 7-4. Similarly to the clustering model, three algorithms came
within 10 nats of the true value: NS, AIS, and SMC. NS and AIS each crossed the 10
nat threshold in similar amounts of time: AIS achieved an RMSE of 7.5 nats in 16.5
minutes, while NS achieved an RMSE of 9.0 nats in 15.1 minutes. By contrast, SMC

128



achieved RMSE values of 11.9 and 4.7 in 20.5 minutes and 69 minutes, respectively.
AIS and SMC continued to give more accurate results with increased computation
time, while the accuracy of NS was hindered by the variance of the estimator. Overall,
this experiment suggests that estimating the ML of a binary attribute model remains
a difficult problem. 15 minutes is a very long time for a dataset with only 50 data
points and 25 input dimensions.

7.4 Discussion

Based on our experiments, we observe that the relative performance of different ML
estimators varied tremendously depending on the model. More work is required to
understand which algorithms perform well on which models and why. Our overall
recommendation is that AIS should be the first algorithm to try for a given model,
because in all of our experiments, it achieved accurate results given enough interme-
diate distributions. If AIS is too slow, then SMC and NS are also worth considering.

Interestingly, of the three strongest performing algorithms in our experiments—
AIS, SMC, and NS—both AIS and SMC are instances of bridging between a tractable
distribution and an intractable one using a sequence of intermediate distributions
(see Section 2.3.6.1). Any algorithm which shares this structure can be reversed
using the technique of Section 7.2 to obtain a stochastic upper bound on the log-
ML of synthetic data. Therefore, if better algorithms are devised which build upon
AIS and SMC (either separately or in combination), they will automatically lead
to more precise ground truth ML values for synthetic data. We believe the rigorous
quantitative evaluation framework we presented will accelerate progress in developing
ML estimation algorithms for latent variable models.

While NS does not share the same mathematical structure as AIS and SMC, it
also involves a sequence of distributions, albeit ones which are chosen adaptively. In
fact, Skilling (2006) considered it similar enough to AIS that he proposed using NS
to find better AIS schedules. In short, all three of the algorithms which performed
well in our experiments are based on some form of annealing. This suggests that a
better understanding of annealing in general is crucial to improving ML estimators.
The next chapter presents a framework for analyzing and designing annealing paths.
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Chapter 8

Alternative annealing paths

The previous chapter compared a variety of marginal likelihood estimators and found
that annealed importance sampling (AIS) gives accurate estimates across a variety
of model classes. In those experiments, the intermediate distributions consisted of
geometric averages of the prior and posterior, which had a natural interpretation in
terms of fractional data points. In many cases, however, the choice of intermediate
distributions is less obvious. In this chapter, we present a framework for designing
and analyzing annealing paths. We focus on the problem of estimating partition
functions of Markov random fields (MRFs), because this case leads to a particularly
insightful mathematical analysis, and because it is useful in its own right. While the
algorithms are specific to MRFs and exponential families, we believe many of the
insights uncovered by the analysis should extend to the directed case.

MRFs are defined in terms of an unnormalized probability distribution, and com-
puting the probability of a state requires computing the (usually intractable) par-
tition function. This is problematic for model selection, since one often wishes to
compute the probability assigned to held-out test data. AIS is especially widely used
because given enough computing time, it can provide high-accuracy estimates. AIS
has enabled precise quantitative comparisons of powerful generative models in image
statistics (Sohl-Dickstein and Culpepper, 2012; Theis et al., 2011) and deep learning
(Salakhutdinov and Murray, 2008; Desjardins et al., 2011; Taylor and Hinton, 2009).
Unfortunately, applying AIS in practice can be computationally expensive and re-
quire laborious hand-tuning of annealing schedules. Because of this, many generative
models still have not been quantitatively compared in terms of held-out likelihood.

While there has been much work on automatically tuning AIS schedules (Neal,
1996; Behrens et al., 2012; Calderhead and Girolami, 2009) and on alternative al-
gorithms based on similar principles (Frenkel and Smit, 2002; Gelman and Meng,
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1998; Neal, 1996; Iba, 2001), very little attention has been devoted to the choice of
path itself. The nearly universal practice is to use geometric averages of the initial
and target distributons. Tantalizingly, Gelman and Meng (1998) derived the optimal
paths for some toy models in the context of path sampling and showed that they
vastly outperformed geometric averages. However, as choosing an optimal path is
generally intractable, geometric averages still predominate.

In this chapter, we present a theoretical framework for evaluating alternative
paths in terms of the asymptotic bias and variance of the estimator for large num-
bers of intermediate distributons. Based on this analysis, we propose a novel path
defined by averaging moments of the initial and target distributions. We show that
geometric averages and moment averages optimize different variational objectives,
derive an asymptotically optimal piecewise linear schedule, and analyze the asymp-
totic performance of both paths. The proposed path often outperforms geometric
averages at estimating partition functions of restricted Boltzmann machines (RBMs).

8.1 Estimating Partition Functions

In this section, we review the properties of AIS which are needed in this chapter.
More details on AIS can be found in Section 2.3.5.

Suppose we have a probability distribution pb(x) = fb(x)/Zb defined on a space
X , where fb(x) can be computed efficiently for a given x ∈ X , and we are interested
in estimating the partition function Zb. Annealed importance sampling (AIS) is an
algorithm which estimates Zb by gradually changing, or “annealing,” a distribution.
In particular, one must specify a sequence of T +1 intermediate distributions pt(x) =
ft(x)/Zt for t = 0, . . . T , where pa(x) = p0(x) is a tractable initial distribution,
and pb(x) = pT (x) is the intractable target distribution. For simplicity, assume all
distributions are strictly positive on X . For each pt, one must also specify an MCMC
transition operator Tt (e.g. Gibbs sampling) which leaves pt invariant. AIS alternates
between MCMC transitions and importance sampling updates, as shown in Alg 4.

The output of AIS is an unbiased estimate Ẑb of Zb. Remarkably, unbiasedness
holds even in the context of non-equilibrium samples along the chain (Neal, 2001a;
Jarzynski, 1997). However, unless the intermediate distributions and transition op-
erators are carefully chosen, Ẑb may have high variance and be far from Zb with high
probability.

The mathematical formulation of AIS leaves much flexibility for choosing inter-
mediate distributions. However, one typically defines a path γ : [0, 1] → P through
some family P of distributions. The intermediate distributions pt are chosen to be
points along this path corresponding to a schedule 0 = β0 < β1 < . . . < βT = 1. One
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Algorithm 4 Annealed Importance Sampling

for k = 1 to K do
x0 ← sample from p0(x)
w(k) ← Za
for t = 1 to T do
w(k) ← w(k) ft(xt−1)

ft−1(xt−1)

xt ← sample from Tt (x |xt−1)
end for

end for
return Ẑb =

∑K
k=1w

(k)/K

typically uses the geometric path γGA, defined in terms of geometric averages of pa
and pb:

pβ(x) = fβ(x)/Z(β) = fa(x)1−βfb(x)β/Z(β). (8.1)

Commonly, fa is the uniform distribution, and (8.1) reduces to pβ(x) = fb(x)β/Z(β).
This motivates the term “annealing,” and β resembles an inverse temperature pa-
rameter. As in simulated annealing, the “hotter” distributions often allow faster
mixing between modes which are isolated in pb.

AIS is closely related to a broader family of techniques for posterior inference
and partition function estimation, all based on the following identity from statistical
physics:

logZb − logZa =

∫ 1

0

Ex∼pβ

[
d

dβ
log fβ(x)

]
dβ. (8.2)

Thermodynamic integration (Frenkel and Smit, 2002) estimates (8.2) using numerical
quadrature, and path sampling (Gelman and Meng, 1998) does so with Monte Carlo
integration. The weight update in AIS can be seen as a finite difference approxima-
tion. Tempered transitions (Neal, 1996) is a Metropolis-Hastings proposal operator
which heats up and cools down the distribution, and computes an acceptance ratio
by approximating (8.2).

The choices of a path and a schedule are central to all of these methods. Most
work on adapting paths has focused on tuning schedules along a geometric path
(Neal, 1996; Behrens et al., 2012; Calderhead and Girolami, 2009). Neal (1996)
showed that the geometric schedule was optimal for annealing the scale parameter
of a Gaussian, and Behrens et al. (2012) extended this result more broadly. The aim
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of this paper is to propose, analyze, and evaluate a novel alternative to γGA based
on averaging moments of the initial and target distributions.

8.2 Surprising behavior of geometric averages

While the geometric averages formula (8.1) has a compelling motivation in terms
of annealing, geometric averages of distributions can sometimes exhibit surprising
behavior. This section discusses two examples. While the examples are chosen to
illustrate particular pathologies, they are distillations of problems which we have
actually encountered when applying AIS, and which only became apparent after
considerable time spent debugging.

For the first example, consider a mixture of two spherical Gaussians with a binary
threshold observation model:

z ∼ Bernoulli(0.5)

µ =

{
(0, 0, 0, 0, 0)T if z = 0

(5, 5, 5, 5, 5)T if z = 1

x |µ ∼ N (µ, I)

yi =

{
0 if xi ≤ 0

1 if xi > 0

This example is representative of issues that arise in evaluating predictive likelihood
of discrete models such as BG+G. For the initial distribution, let us use x ∼ N (0, I)
independent of z. Suppose we observe the vector (1, 1, 1, 1, 1)T . Taking the geometric
average of the two distributions, the intermediate distributions are given by:

pβ(z,x) ∝ p(z)N (x; 0, I)1−βN (x;µ, I)β,

subject to the constraint of xi > 0.
By inspection, we see that z = 1 with probability 0.5 in the initial distribution

and roughly 1 − 2−5 in the target distribution. We may expect, therefore, that the
probability gradually increases. However, as shown in Figure 8-1, the probability
first dips close to zero before finally becoming large around β = 0.9. Figure 8-1 plots
one term in the geometric average, N (x; 0, I)1−βN (x;µ, I)β, for different values of
β. Not only does the distribution change, but the normalizing constant changes as
well. (This example shows that the geometric average of two directed models is not
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Figure 8-1: (left) the conditional probability of z = 1 for the intermediate distributions in
the mixture example, as a function of β. The probability is close to zero for most values of
β. (right) The geometric averages of two non-overlapping gaussians, for different values of
β. Notice that the geometric averages are small in magnitude when the distributions have
little overlap. This explains why the intermediate distributions are biased towards z = 0,
since that explanation agrees with the initial distribution.

necessarily a directed model.) In Section 8.4.1, we will see that the geometric average
favors explanations which are likely under both the intial and target distributions; in
this case, z = 0 is favored because it overlaps more with the initial distribution.

From this example, one may conclude that the problem with geometric averages
is that the intermediate distributions are unnormalized. What if we modify the
definition to separately normalize each explanation under the prior? In other words,
define

pβ(x | z) =
pa(x)1−β pb(x | z)β∫
pa(x)1−β pb(x | z)β dx

.

Unlike traditional geometric averages, this method preserves the directed structure.
It yields sensible results in the mixture example. However, consider another model
where the latent variable is continuous:

u ∼ N (0, 3)

x ∼ N (u1, I)

yi =

{
0 if xi ≤ 0

1 if xi > 0
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Figure 8-2: Posterior over u for intermediate distributions in the continuous example. The
intermediate distributions are centered on values which are more extreme than either the
initial or target distributions.

This model corresponds to evaluating the predictive likelihood of a continuous model
such as GG+G. As before, let x ∼ N (0, I) independent of u in the initial distribution.
Then the CPDs for the intermediate distributions are given by:

pβ(x |u) =
N (x |0, I)1−βN (x |u1, I)β∫
N (x |0, I)1−βN (x |u1, I)β dx

= N (x | βu1, I).

Suppose we are given the observation vector

y = (1, 1, . . . , 1︸ ︷︷ ︸
90 1’s

, 0, . . . , 0︸ ︷︷ ︸
10 0’s

)T .

The posteriors over u for various values of β are shown in Figure 8-2. Effectively,
the model is able to compensate for the shrinking effect of β by making u large.
The intermediate distributions, therefore, take values more extreme than either the
initial or target distributions.

These examples show that it is not always easy to come up with an annealing path
where the intermediate distributions are sensible. The rest of this chapter focuses on
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a novel annealing path defined by averaging the moments of the initial and target
distributions.

8.3 Analyzing AIS Paths

When analyzing AIS, it is common to assume perfect transitions, i.e. that each tran-
sition operator Tt returns an independent and exact sample from the distribution
pt (Neal, 2001a). This corresponds to the (somewhat idealized) situation where the
Markov chains mix quickly. As Neal (2001a) pointed out, assuming perfect transi-
tions, the Central Limit Theorem shows that the samples w(k) are approximately log-
normally distributed. In this case, the variances var(w(k)) and var(logw(k)) are both
monotonically related to E[logw(k)]. Therefore, our analysis focuses on E[logw(k)].

Assuming perfect transitions, the expected log weights are given by:

E[logw(k)] = logZa +
T−1∑
t=0

Ept [log ft+1(x)− log ft(x)]

= logZb −
T−1∑
t=0

DKL(pt‖pt+1). (8.3)

In other words, each logw(k) can be seen as a biased estimator of logZb, where the
bias δ = logZb−E[logw(k)] is given by the sum of KL divergences

∑T−1
t=0 DKL(pt‖pt+1).

Suppose P is a family of probability distributions parameterized by θ ∈ Θ, and
the T + 1 distributions p0, . . . , pT are chosen to be linearly spaced along a path
γ : [0, 1] → P . Let θ(β) represent the parameters of the distribution γ(β). As T is
increased, the bias δ decays like 1/T , and the asymptotic behavior is determined by
a functional F(γ).

Theorem 1. Suppose T + 1 distributions pt are linearly spaced along a path γ.
Assuming perfect transitions, if θ(β) and the Fisher information matrix Gθ(β) =
covx∼pθ(∇θ log pθ(x)) are continuous and piecewise smooth, then as T →∞ the bias
δ behaves as follows:

Tδ = T
T−1∑
t=0

DKL(pt‖pt+1)→ F(γ) ≡ 1

2

∫ 1

0

θ̇(β)TGθ(β)θ̇(β)dβ, (8.4)

where θ̇(β) represents the derivative of θ with respect to β. [See Appendix B.1 for
proof.]
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This result reveals a relationship with path sampling, as Gelman and Meng (1998)
showed that the variance of the path sampling estimator is proportional to the same
functional. One useful result from their analysis is a derivation of the optimal sched-
ule along a given path. In particular, the value of F(γ) using the optimal schedule
is given by `(γ)2/2, where ` is the Riemannian path length defined by

`(γ) =

∫ 1

0

√
θ̇(β)TGθ(β)θ̇(β)dβ. (8.5)

Intuitively, the optimal schedule allocates more distributions to regions where pβ
changes quickly. While Gelman and Meng (1998) derived the optimal paths and
schedules for some simple examples, they observed that this is intractable in most
cases and recommended using geometric paths in practice.

The above analysis assumes perfect transitions, which can be unrealistic in prac-
tice because many distributions have separated modes between which mixing is dif-
ficult. As Neal (2001a) observed, in such cases, AIS can be viewed as having two
sources of variance: that caused by variability within a mode, and that caused by
misallocation of samples between modes. The former source of variance is well mod-
eled by the perfect transitions analysis and can be made small by adding more
intermediate distributions. The latter, however, can persist even with large num-
bers of intermediate distributions. While our theoretical analysis assumes perfect
transitions, our proposed method often gave substantial improvement empirically in
situations with poor mixing.

8.4 Moment Averaging

As discussed in Section 8.1, the typical choice of intermediate distributions for AIS
is the geometric averages path γGA given by (8.1). In this section, we propose an
alternative path for exponential family models. An exponential family model is
defined as

p(x) =
1

Z(η)
h(x) exp

(
ηTg(x)

)
, (8.6)

where η are the natural parameters and g are the sufficient statistics. Exponential
families include a wide variety of statistical models, including Markov random fields.

In exponential families, geometric averages correspond to averaging the natural
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parameters:

η(β) = (1− β)η(0) + βη(1). (8.7)

Exponential families can also be parameterized in terms of their moments s =
E[g(x)]. For any minimal exponential family (i.e. one whose sufficient statistics
are linearly independent), there is a one-to-one mapping between moments and nat-
ural parameters (Wainwright and Jordan, 2008, p. 64). We propose an alternative
to γGA called the moment averages path, denoted γMA, and defined by averaging the
moments of the initial and target distributions:

s(β) = (1− β)s(0) + βs(1). (8.8)

This path exists for any exponential family model, since the set of realizable moments
is convex (Wainwright and Jordan, 2008). It is unique, since g is unique up to affine
transformation.

As an illustrative example, consider a multivariate Gaussian distribution pa-
rameterized by the mean µ and covariance Σ. The moments are E[x] = µ and
−1

2
E[xxT ] = −1

2
(Σ + µµT ). By plugging these into (8.8), we find that γMA is given

by:

µ(β) = (1− β)µ(0) + βµ(1) (8.9)

Σ(β) = (1− β)Σ(0) + βΣ(1) + β(1− β)(µ(1)− µ(0))(µ(1)− µ(0))T . (8.10)

In other words, the means are linearly interpolated, and the covariances are linearly
interpolated and stretched in the direction connecting the two means. Intuitively,
this stretching is a useful property, because it increases the overlap between successive
distributions with different means. A comparison of the two paths is shown in Figure
8-3.

Next consider the example of a restricted Boltzmann machine (RBM), a widely
used model in deep learning. A binary RBM is a Markov random field over binary
vectors v (the visible units) and h (the hidden units), and which has the distribution

p(v,h) ∝ exp
(
aTv + bTh + vTWh

)
. (8.11)

The parameters of the model are the visible biases a, the hidden biases b, and the
weights W. Since these parameters are also the natural parameters in the expo-
nential family representation, γGA reduces to linearly averaging the biases and the
weights. The sufficient statistics of the model are the visible activations v, the hidden
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Figure 8-3: Comparison of γGA and γMA for multivariate Gaussians: intermediate distri-
bution for β = 0.5, and µ(β) for β evenly spaced from 0 to 1.

activations h, and the products vhT . Therefore, γMA is defined by:

E[v]β = (1− β)E[v]0 + βE[v]1 (8.12)

E[h]β = (1− β)E[h]0 + βE[h]1 (8.13)

E[vhT ]β = (1− β)E[vhT ]0 + βE[vhT ]1 (8.14)

For many models of interest, including RBMs, it is infeasible to determine γMA

exactly, as it requires solving two often intractable problems: (1) computing the mo-
ments of pb, and (2) solving for model parameters which match the averaged moments
s(β). However, much work has been devoted to practical approximations (Hinton,
2002; Tieleman, 2008), some of which we use in our experiments with intractable
models. Since it would be infeasible to moment match every βt even approximately,
we introduce the moment averages spline (MAS) path, denoted γMAS. We choose a
set of R values β1, . . . , βR called knots, and solve for the natural parameters η(βj) to
match the moments s(βj) for each knot. We then interpolate between the knots using
geometric averages. The analysis of Section 8.4.2 shows that, under the assumption
of perfect transitions, using γMAS in place of γMA does not affect the cost functional
F defined in Theorem 4.

8.4.1 Variational Interpretation

By interpreting γGA and γMA as optimizing different variational objectives, we gain
additional insight into their behavior. For geometric averages, the intermediate dis-
tribution γGA(β) minimizes a weighted sum of KL divergences to the initial and
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target distributions:

p
(GA)
β = arg min

q
(1− β)DKL(q‖pa) + βDKL(q‖pb). (8.15)

On the other hand, γMA minimizes the weighted sum of KL divergences in the reverse
direction:

p
(MA)
β = arg min

q
(1− β)DKL(pa‖q) + βDKL(pb‖q). (8.16)

See Appendix B.2 for the derivations. The objective function (8.15) is minimized
by a distribution which puts significant mass only in the “intersection” of pa and
pb, i.e. those regions which are likely under both distributions. By contrast, (8.16)
encourages the distribution to be spread out in order to capture all high probability
regions of both pa and pb. This interpretation helps explain why the intermediate
distributions in the Gaussian example of Figure 8-3 take the shape that they do.
In our experiments, we found that γMA often gave more accurate results than γGA
because the intermediate distributions captured regions of the target distribution
which were missed by γGA.

8.4.2 Asymptotics under Perfect Transitions

In general, we found that γGA and γMA can look very different. Intriguingly, both
paths always result in the same value of the cost functional F(γ) of Theorem 4
for any exponential family model. Furthermore, nothing is lost by using the spline
approximation γMAS in place of γMA:

Theorem 2. For any exponential family model with natural parameters η and mo-
ments s, all three paths share the same value of the cost functional:

F(γGA) = F(γMA) = F(γMAS) =
1

2
(η(1)− η(0))T (s(1)− s(0)). (8.17)

Proof. The two parameterizations of exponential families satisfy the relationship
Gηη̇ = ṡ (Amari and Nagaoka, 2000, sec. 3.3). Therefore, F(γ) can be rewritten as
1
2

∫ 1

0
η̇(β)T ṡ(β) dβ. Because γGA and γMA linearly interpolate the natural parameters
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and moments respectively,

F(γGA) =
1

2
(η(1)− η(0))T

∫ 1

0

ṡ(β) dβ =
1

2
(η(1)− η(0))T (s(1)− s(0)) (8.18)

F(γMA) =
1

2
(s(1)− s(0))T

∫ 1

0

η̇(β) dβ =
1

2
(s(1)− s(0))T (η(1)− η(0)). (8.19)

Finally, to show that F(γMAS) = F(γMA), observe that γMAS uses the geometric
path between each pair of knots γ(βj) and γ(βj+1), while γMA uses the moments path.
The above analysis shows the costs must be equal for each segment, and therefore
equal for the entire path.

This analysis shows that all three paths result in the same expected log weights
asymptotically, assuming perfect transitions. There are several caveats, however.
First, we have noticed experimentally that γMA often yields substantially more ac-
curate estimates of Zb than γGA even when the average log weights are comparable.
Second, the two paths can have very different mixing properties, which can strongly
affect the results. Third, Theorem 2 assumes linear schedules, and in principle there
is room for improvement if one is allowed to tune the schedule.

For instance, consider annealing between two Gaussians pa = N (µa, σ) and pb =
N (µb, σ). The optimal schedule for γGA is a linear schedule with cost F(γGA) =
O(d2), where d = |µb − µa|/σ. Using a linear schedule, the moment path also has
cost O(d2), consistent with Theorem 2. However, most of the cost of the path results
from instability near the endpoints, where the variance changes suddenly. Using an
optimal schedule, which allocates more distributions near the endpoints, the cost
functional falls to O((log d)2), which is within a constant factor of the optimal path
derived by Gelman and Meng (1998). (See Appendix B.3 for the derivations.) In
other words, while F(γGA) = F(γMA), they achieve this value for different reasons:
γGA follows an optimal schedule along a bad path, while γMA follows a bad schedule
along a near-optimal path. We speculate that, combined with the procedure of
Section 8.4.3 for choosing a schedule, moment averages may result in large reductions
in the cost functional for some models.

Figure 8-4 shows a visualization of both annealing paths, as well as the optimal
path given analytically by Gelman and Meng (1998). The space of univariate Gaus-
sian distributions can be viewed as a Riemannian manifold where the Riemannian
metric is Fisher information (Amari and Nagaoka, 2000). As pointed out by Gelman
and Meng (1998), the cost functional for the optimal schedule depends on the path
length (8.5) on the manifold. The Riemannian metric is visualized in terms of balls
of the metric, and the path length can be thought of as the number of balls the path
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Figure 8-4: A visualization of the Riemannian manifold of univariate Gaussian distributions
and several choices of annealing path. The balls correspond to the Riemannian metric
(Fisher information). The cost of a path under the optimal schedule depends on the path
length, which can be visualized as the number of balls it crosses.

crosses. It is interesting that the optimal path and the moment averages path, while
not identical, have a qualitatively similar shape.

8.4.3 Optimal Binned Schedules

In general, it is hard to choose a good schedule for a given path. However, consider
the set of binned schedules, where the path is divided into segments, some number
Tj of intermediate distributions are allocated to each segment, and the distributions
are spaced linearly within each segment. Under the assumption of perfect transi-
tions, there is a simple formula for an asymptotically optimal binned schedule which
requires only the parameters obtained through moment averaging:

Theorem 3. Let γ be any path for an exponential family model defined by a set of
knots βj, each with natural parameters ηj and moments sj, connected by segments
of either γGA or γMA paths. Then, under the assumption of perfect transitions, an
asymptotically optimal allocation of intermediate distributions to segments is given
by:

Tj ∝
√

(ηj+1 − ηj)T (sj+1 − sj). (8.20)

Proof. By Theorem 2, the cost functional for segment j is Fj = 1
2
(ηj+1−ηj)T (sj+1−

sj). Hence, with Tj distributions allocated to it, it contributes Fj/Tj to the total
cost. The values of Tj which minimize

∑
j Fj/Tj subject to

∑
j Tj = T and Tj ≥ 0
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Figure 8-5: Estimates of logZb for a normalized Gaussian as T , the number of intermediate
distributions, is varied. True value: logZb = 0. Error bars show bootstrap 95% confidence
intervals. (Best viewed in color.)

are given by Tj ∝
√
Fj.

8.5 Experimental Results

In order to compare our proposed path with geometric averages, we ran AIS using
each path to estimate partition functions of several probability distributions. For all
of our experiments, we report two sets of results. First, we show the estimates of logZ
as a function of T , the number of intermediate distributions, in order to visualize
the amount of computation necessary to obtain reasonable accuracy. Second, as
recommended by Neal (2001a), we report the effective sample size (ESS) of the
weights for a large T . This statistic roughly measures how many independent samples
one obtains using AIS.1 All results are based on 5,000 independent AIS runs, so the
maximum possible ESS is 5,000.

8.5.1 Annealing Between Two Distant Gaussians

In our first experiment, the initial and target distributions were the two Gaussians
shown in Fig. 8-3, whose parameters areN

((
−10
0

)
,
(

1 −0.85
−0.85 1

))
andN

((
10
0

)
,
(

1 0.85
0.85 1

))
.

As both distributions are normalized, Za = Zb = 1. We compared γGA and γMA both

1The ESS is defined as K/(1 + s2(w
(k)
∗ )) where s2(w

(k)
∗ ) is the sample variance of the normal-

ized weights (Neal, 2001a). In general, one should regard ESS estimates cautiously, as they can
give misleading results in cases where an algorithm completely misses an important mode of the
distribution. However, as we report the ESS in cases where the estimated partition functions are
close to the true value (when known) or agree closely with each other, we believe the statistic is
meaningful in our comparisons.
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under perfect transitions, and using the Gibbs transition operator. We also compared
linear schedules with the optimal binned schedules of Section 8.4.3, using 10 segments
evenly spaced from 0 to 1.

Figure 8-5 shows the estimates of logZb for T ranging from 10 to 1,000. Observe
that with 1,000 intermediate distributions, all paths yielded accurate estimates of
logZb. However, γMA needed fewer intermediate distributions to achieve accurate
estimates. For example, with T = 25, γMA resulted in an estimate within one nat of
logZb, while the estimate based on γGA was off by 27 nats.

This result may seem surprising in light of Theorem 2, which implies that F(γGA) =
F(γMA) for linear schedules. In fact, the average log weights for γGA and γMA were
similar for all values of T , as the theorem would suggest; e.g., with T = 25, the
average was -27.15 for γMA and -28.04 for γGA. However, because the γMA interme-
diate distributions were broader, enough samples landed in high probability regions
to yield reasonable estimates of logZb.

8.5.2 Partition Function Estimation for RBMs

Our next set of experiments focused on restricted Boltzmann machines (RBMs), a
building block of many deep learning models (see Section 8.4). We considered RBMs
trained with three different methods: contrastive divergence (CD) (Hinton, 2002)
with one step (CD1), CD with 25 steps (CD25), and persistent contrastive divergence
(PCD) (Tieleman, 2008). All of the RBMs were trained on the MNIST handwritten
digits dataset (LeCun et al., 1998), which has long served as a benchmark for deep
learning algorithms. We experimented both with small, tractable RBMs and with
full-size, intractable RBMs.

Since it is hard to compute γMA exactly for RBMs, we used the moments spline
path γMAS of Section 8.4 with the 9 knot locations 0.1, 0.2, . . . , 0.9. We considered
the two initial distributions discussed by Salakhutdinov and Murray (2008): (1) the
uniform distribution, equivalent to an RBM where all the weights and biases are set
to 0, and (2) the base rate RBM, where the weights and hidden biases are set to
0, and the visible biases are set to match the average pixel values over the MNIST
training set.

Small, Tractable RBMs: To better understand the behavior of γGA and γMAS,
we first evaluated the paths on RBMs with only 20 hidden units. In this setting, it is
feasible to exactly compute the partition function and moments and to generate exact
samples by exhaustively summing over all 220 hidden configurations. The moments
of the target RBMs were computed exactly, and moment matching was performed
with conjugate gradient using the exact gradients.

144



102 103 104 105

K

166
168
170
172
174
176
178
180

lo
g 

Z

Gibbs 1 Transitions

GA lin.
MAS lin.

102 103 104 105

K

Perfect Transitions

GA lin.
MAS lin.

102 103 104 105

K

Geometric Path / Gibbs 1

GA lin.
GA bin opt.

102 103 104 105

K

Moment Path / Gibbs 1

MA lin.
MAS bin opt.

Figure 8-6: Estimates of logZb for the tractable PCD(20) RBM as T , the number of in-
termediate distributions, is varied. Error bars indicate bootstrap 95% confidence intervals.
(Best viewed in color.)

Figure 8-7: Visible activations for samples from the PCD(500) RBM. (left) base rate
RBM, β = 0 (top) geometric path (bottom) MAS path (right) target RBM, β = 1.

The results are shown in Figure 8-6 and Table 8.1. Under perfect transitions,
γGA and γMAS were both able to accurately estimate logZb using as few as 100
intermediate distributions. However, using the Gibbs transition operator, γMAS gave
accurate estimates using fewer intermediate distributions and achieved a higher ESS
at T = 100,000. To check that the improved performance didn’t rely on accurate
moments of pb, we repeated the experiment with highly biased moments.2 The
differences in log Ẑb and ESS compared to the exact moments condition were not
statistically significant.

Full-size, Intractable RBMs: For intractable RBMs, moment averaging re-

2In particular, we computed the biased moments from the conditional distributions of the hidden
units given the MNIST training examples, where each example of digit class i was counted i + 1
times.
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CD1(20) PCD(20)

pa(v) path & schedule logZb log Ẑb ESS logZb log Ẑb ESS

uniform GA linear 279.59 279.60 248 178.06 177.99 204

uniform GA optimal binned 279.51 124 177.92 142

uniform MAS linear 279.59 2686 178.09 289

uniform MAS optimal binned 279.60 2619 178.08 934

Table 8.1: Comparing estimates of logZb and effective sample size (ESS) for tractable
RBMs. Results are shown for T = 100,000 intermediate distributions, with 5,000 chains
and Gibbs transitions. Bolded values indicate ESS estimates that are not significantly
different from the largest value (bootstrap hypothesis test with 1,000 samples at α = 0.05
significance level). The maximum possible ESS is 5,000.
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Figure 8-8: Estimates of logZb for intractable RBMs. Error bars indicate bootstrap 95%
confidence intervals. (Best viewed in color.)

quired approximately solving two intractable problems: moment estimation for the
target RBM, and moment matching. We estimated the moments from 1,000 inde-
pendent Gibbs chains, using 10,000 Gibbs steps with 1,000 steps of burn-in. The
moment averaged RBMs were trained using PCD. (We used 50,000 updates with a
fixed learning rate of 0.01 and no momentum.) In addition, we ran a cheap, inac-
curate moment matching scheme (denoted MAS cheap) where visible moments were
estimated from the empirical MNIST base rate and the hidden moments from the
conditional distributions of the hidden units given the MNIST digits. Intermediate
RBMs were fit using 1,000 PCD updates and 100 particles, for a total computational
cost far smaller than that of AIS itself. Results of both methods are shown in Fig-
ure 8-8 and Table 8.2. Overall, the MAS results compare favorably with those of GA
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CD1(500) PCD(500) CD25(500)

pa(v) path log Ẑb ESS log Ẑb ESS log Ẑb ESS

uniform GA linear 341.53 4 417.91 169 451.34 13

uniform MAS linear 359.09 3076 418.27 620 449.22 12

uniform MAS cheap linear 359.09 3773 418.33 5 450.90 30

base rate GA linear 359.10 4924 418.20 159 451.27 2888

base rate MAS linear 359.07 2203 418.26 1460 451.31 304

base rate MAS cheap linear 359.09 2465 418.25 359 451.14 244

Table 8.2: Comparing estimates of logZb and effective sample size (ESS) for intractable
RBMs. Results are shown for T = 100,000 intermediate distributions, with 5,000 chains
and Gibbs transitions. Bolded values indicate ESS estimates that are not significantly
different from the largest value (bootstrap hypothesis test with 1,000 samples at α = 0.05
significance level). The maximum possible ESS is 5,000.

on both of our metrics. Performance was comparable under MAS cheap, suggesting
that γMAS can be approximated cheaply and effectively. As with the tractable RBMs,
we found that optimal binned schedules made little difference in performance, so we
focus here on linear schedules.

The most serious failure was γGA for CD1(500) with uniform initialization, which
underestimated our best estimates of the log partition function (and hence overesti-
mated held-out likelihood) by nearly 20 nats. The geometric path from uniform to
PCD(500) and the moments path from uniform to CD1(500) also resulted in under-
estimates, though less drastic. The rest of the paths agreed closely with each other
on their partition function estimates, although some methods achieved substantially
higher ESS values on some RBMs. One conclusion is that it’s worth exploring mul-
tiple initializations and paths for a given RBM in order to ensure accurate results.

Figure 8-7 compares samples along γGA and γMAS for the PCD(500) RBM using
the base rate initialization. For a wide range of β values, the γGA RBMs assigned most
of their probability mass to blank images. As discussed in Section 8.4.1, γGA prefers
configurations which are probable under both the initial and target distributions. In
this case, the hidden activations were closer to uniform conditioned on a blank image
than on a digit, so γGA preferred blank images. By contrast, γMAS yielded diverse,
blurry digits which gradually coalesced into crisper ones.
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8.6 Conclusion

We presented a theoretical analysis of the performance of AIS paths and proposed
a novel path for exponential families based on averaging moments. We gave a vari-
ational interpretation of this path and derived an asymptotically optimal piecewise
linear schedule. Moment averages performed well empirically at estimating partition
functions of RBMs. We hope moment averaging can also improve other path-based
sampling algorithms which typically use geometric averages, such as path sampling
(Gelman and Meng, 1998), parallel tempering (Iba, 2001), and tempered transitions
(Neal, 1996).
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Chapter 9

Conclusions and future work

9.1 Contributions

In Chapter 3, we introduced a space of matrix decomposition models defined com-
positionally in terms of simple probabilistic modeling motifs and operations used to
combine them. The models are organized into a grammar whose productions cor-
respond to simple factorization models. This gives a compact notation for matrix
decomposition models and highlights relationships between a variety of models from
the literature. Chapter 4 proposed an inference procedure for this space of models
based on recursively applying samplers specialized to the individual productions of
the grammar. A greedy search through the space of models was able to recover the
true structure for synthetic data and plausible structures for a variety of real-world
datasets, all using the same code and no hand-tuned parameters.

Building upon this, Chapter 5 described an analogous compositional structure
search for Gaussian process covariance kernels. On several time series datasets, this
structure search yielded interpretable decompositions into phenomena occurring at
different scales.

In Chapter 6, we introduced compositional importance sampling (CIS), a fully
compositional algorithm for inference and marginal likelihood estimation. We ana-
lyzed the bias of the CIS estimator in the case of a clustering-within-low-rank model
and showed that it is able to distinguish the first- and second-level models. This re-
sult also yields a bound on the error introduced by the greedy initialization procedure
of Chapter 4.

A practical implementation of CIS will require advances in marginal likelihood es-
timators for the productions of the grammar. We believe progress has been hindered
by a lack of quantitative frameworks for analyzing and evaluating partition function
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estimators. Chapters 7 and 8 were both attempts at addressing this problem. In
Chapter 7, we introduced a framework for evaluating marginal likelihood (ML) esti-
mators against ground truth on synthetic data and compared a wide variety of ML
estimation algorithms on three production rules from the grammar. We believe that
having a rigorous evaluation method will spur accelerated progress on ML estimation
algorithms.

Chapter 8 introduced a framework for improving annealed importance sampling
(AIS), a state-of-the-art algorithm for estimating partition functions, and the one
which performed the best in the experiments of Chapter 7. We introduced a frame-
work for comparing different AIS paths—a widely overlooked factor which turns out
to make a large difference in the performance of the estimator—and showed that
averaging moments rather than natural parameters often yields substantial improve-
ments in accuracy.

9.2 Future directions

We believe this work opens up more questions and avenues to explore than it closes
off. There is much potential for extending the model spaces to more components, ob-
servation models, operators, and productions. Because of the combinatorial nature
of modeling, the grammars of Chapters 3 and 5 capture only a small fraction of the
models used in modern machine learning research. For instance, if there are 30 mod-
eling motifs that machine learning researchers commonly apply, and our grammar
captures 6 of them, then it still only captures 1/53 of the models that are reachable
within three productions. On the bright side, this implies that the benefit of adding
more productions is superlinear. Twice as many productions yields 8 times as many
third-level models.

Tensor decompositions are another model class where compositional structure
search may prove fruitful. Some of the models presented in Section 3.4 were origi-
nally formulated as tensor models, and our grammar captured only the special case
for matrices. In principle, tensor decompositions share the same compositional struc-
ture as matrix decompositions, so one could define a grammar analogous to that of
Chapter 3. However, as the combinatorial explosion is even greater for tensors than
for matrices, additional structure may need to be exploited in the search.

Expanding the space of models will require a better theoretical understanding of
when compositional structure search is justified. The analysis of Section 6.2 gives
a partial answer in the case of finding structure within a low rank approximation.
Hopefully, that analysis will serve as a template for further work which determines,
for instance, how to organize a space of tensor decomposition models so that it can
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be searched efficiently.
Much work also remains to be done on estimating marginal likelihood for the

productions themselves. Partition function estimation algorithms require choosing
parameters which trade off time and accuracy, not to mention further design choices
concerning the MCMC transition operators and the choice of annealing paths. Unless
someone discovers magic values that perform well in all cases, an effective structure
search system would need to make such choices automatically. The methods of
Chapters 7 and 8 for quantitatively analyzing and evaluating partition function es-
timators open the door to using Bayesian optimization (Snoek et al., 2012) to tune
the algorithms.

While most of this thesis has focused on algorithms for posterior inference and
model scoring, there is also room for improvement in the search procedure itself.
Bayesian optimization (Snoek et al., 2012) has recently emerged as a powerful tech-
nique for optimizing model hyperparameters. Conceivably, with an appropriate prior
over the performances of different models, it could be used to search more efficiently
through a compositional space of models compared to the current greedy search.
Conversely, there are potential synergies in the opposite direction as well: Bayesian
optimization currently relies on simple kernel structures such as the squared-exp ker-
nel, so perhaps it could benefit from the Gaussian process structure search techniques
of Chapter 5.

From the perspective of usability, one generally likes to know how much confi-
dence to place in an algorithm’s output. Rather than a point estimate of marginal
likelihood, one would prefer confidence intervals. This could be done, at least heuris-
tically, using the techniques of Chapter 7. While the technique for obtaining ML
upper bounds is only mathematically justified for synthetic data generated from the
model, one could obtain confidence intervals using the parametric bootstrap: fit the
model to the data, generate synthetic data with the same hyperparameters, and eval-
uate the gap between the lower and upper ML bounds on the synthetic data. If the
datasets are similar enough in terms of properties relied on by the estimator, the gap
between the bounds on the synthetic data should translate to a confidence interval
for the real data. Having confidence intervals would add a degree of reliability to a
structure search system.

In mathematics, much progress was driven by the classification of simple groups.
Having a complete enumeration of simple groups enables mathematicians to prove
properties of groups in general by proving the statements for the simple groups and
the operations used to combine them. In machine learning, we face an analogous
question. Which models are fundamental, in terms of requiring their own special-
purpose inference algorithms, and which models can be fit compositionally in terms of

151



simple component algorithms? A better understanding of the range of applicability
of CIS and related techniques should help to focus algorithmic effort on the models
where it is most needed.

Learning high-level representations of abstract concepts has long been a holy grail
of AI resesarch. While it is difficult to pin down a formal definition of representa-
tion, we informally posit that a good representation is one which enables humans
and machines to discover further patterns on top of it. But learning representations
which support higher-level representations is precisely the basis of the compositional
structure search techniques presented in this thesis. We believe the techniques and
results presented here constitute a step towards the goal of learning high-level rep-
resentations.
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Appendix A

CIS derivations

A.1 Priors

We now motivate the choice of prior pwi. For reasons discussed in Section 6.2.4.2,
we would like the prior over V to be invariant to linear transformations of the latent
space, i.e. transformations of the form V 7→ TV. This can be achieved with the
uninformative prior q(ΛV) ∝ |ΛV|−(K+1)/2:

q(V) ∝
∫
q(ΛV) q(V |ΛV) dΛV

=

∫
|ΛV|−(K+1)/2N−1(vec(V); 0, I⊗ΛV) dΛV

=

∫
|ΛV|(D−K−1)/2 exp

(
−1

2
tr VVTΛV

)
dΛV

∝
∣∣VVT

∣∣−D/2 . (A.1)

The integral in the last step is based on the normalizing constant for the Wishart
distribution (Bishop, 2006, app. B). Similarly,

p(V | r, z) ∝
∣∣VSVT

∣∣−D/2 , (A.2)

where S is defined in (6.20).
Unfortunately, under this prior, the posterior is improper, with infinite mass on
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large values of ΛV. Instead, we use the proper distribution

pwi(ΛV) ∝

{
|ΛV|−(K+1)/2 if εI � ΛV � ε−1I

0 otherwise,
(A.3)

for small ε, which agrees with the uninformative prior for non-extreme values of ΛV,
but does not have this degeneracy. For the remainder of the discussion, we use the
approximations (A.1) and (A.2).

A.2 Model symmetries

First, note that p(U) = q(U) and p(Y |U,V) = q(Y |U,V). Also, using (A.1) and
(A.2),

p(T2V | r, z)

p(V | r, z)
=

∣∣T2VSVTTT
2

∣∣−D/2
|VSVT |−D/2

= |T2|−D

=

∣∣T2VVTTT
2

∣∣−D/2
|VVT |−D/2

=
q(T2V)

q(V)
(A.4)

Then,

p(T2V) =
∑
z

∫
p(r) p(z) p(T2V | r, z) dr

=
q(T2V)

q(V)

∑
z

∫
p(r) p(z) p(V | r, z) dr

=
q(T2V)

q(V)
p(V). (A.5)
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Therefore,

p(UT1,T2V |Y)

p(U,V |Y)
=
p(UT1) p(T2V) p(Y |UT1,T2V)

p(U) p(V) p(Y |U,V)

=
q(UT1) q(T2V) q(Y |UT1,T2V)

q(U) q(V) q(Y |U,V)

=
q(UT1,T2V |Y)

q(U,V |Y)
. (A.6)

A.3 Second-order Taylor approximation

A.3.1 Priors

We first compute the second-order approximation to log q(V).

d log
∣∣VVT

∣∣ = tr
(
VVT

)−1
d
(
VVT

)
= 2 tr

(
VVT

)−1 (
VdVT

)
= 0 (A.7)

d2 log
∣∣VVT

∣∣ = 2 tr d(VVT )−1(VdVT ) + 2 tr(VVT )−1d(VdVT )

= −2 tr(VVT )−1(VdVT + dVVT )(VVT )−1(VdVT ) + 2 tr(VVT )−1dVdVT

= 2 tr(VVT )−1dVdVT , (A.8)

where steps (A.7) and (A.8) use the assumption that VdVT = 0 (Section 6.2.4.2).
In Kronecker product notation, this can be written:

d2 log
∣∣VVT

∣∣ = 2 vec(dV)T
(
I⊗ (VVT )−1

)
vec(dV).

For values of V such that ΛV is far from the constraint boundary, we have
log q(V) ≈ −D

2
log
∣∣VVT

∣∣ (see (A.1)). Therefore,

log q(V) ≈ N−1
(

vec(V); 0, I⊗D
(
VVT

)−1)
. (A.9)
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The prior over V is given by:

p(V |η) = N−1(vec(V); 0,S ⊗ΛV)

∝ exp

(
−1

2
tr VSVTΛV

)
= exp

(
−1

2
tr V0SVT

0 ΛV − tr V0SVT
⊥ΛV −

1

2
V⊥SVT

⊥ΛV

)
∝ exp

(
− vec (ΛVV0S)T vec(V⊥)− 1

2
vec(V⊥)T (S ⊗ΛV) vec(V⊥)

)
.

(A.10)

A.3.2 Observation term

We compute the first and second derivatives of f(U,V) = 1
2
‖UV −Y‖2:

df = tr (UV −Y)T d (UV −Y)

= tr (UV −Y)T (UdV + dUV)

= tr RTUdV + RTdUV (A.11)

d2f = tr d(UV −Y)Td(UV −Y) + tr (UV −Y)T d2(UV −Y)

= tr (dUV + UdV)T (dUV + UdV) + tr (UV −Y)T dUdV

= tr
[
VTdUTdUV + 2dVTUTdUV + dVTUTUdV

]
+ tr RTdUdV

= tr
[
VTdUTdUV + dVTUTUdV

]
+ tr RTdUdV

= (vec(dU)T vec(dV)T )

(
VVT ⊗ I F(R⊗ I)

(RT ⊗ I)F I⊗UTU

)(
vec(dU)

vec(dV)

)
. (A.12)
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The second to last step uses the assumption that VdVT = 0. Therefore, the Taylor
approximation is given by

log pso(Y |U,V) = log p(Y |U0,V0)− λ tr RT (U0(V −V0) + (U−U0)V0)

− λ

2

(
vec(U−U0)

T vec(V −V0)
T
)( V0V

T
0 ⊗ I F(R⊗ I)

(RT ⊗ I)F I⊗UT
0 U0

)(
vec(U−U0)

vec(V −V0)

)
= const +Q− λ tr RT (U0V + UV0)

+ λ
(
vec(U)T vec(V)T

)( V0V
T
0 ⊗ I F(R⊗ I)

(RT ⊗ I)F I⊗UT
0 U0

)(
vec(U0)

vec(V0)

)
= const +Q+ λ tr

(
UT

0 UV0V
T
0 + UT

0 U0VVT
0

)
= const +Q+ λ tr

(
UT

0 UV0V
T
0

)
(A.13)

where

Q = −λ
2

(
vec(U)T vec(V)T

)( V0V
T
0 ⊗ I F(R⊗ I)

(RT ⊗ I)F I⊗UT
0 U0

)(
vec(U)

vec(V)

)

= −λ tr RVT
0 UT − λ

2

(
vec(U)T vec(V⊥)T

)( V0V
T
0 ⊗ I F(R⊗ I)

(RT ⊗ I)F I⊗UT
0 U0

)(
vec(U)

vec(V⊥)

)

A.4 Analyzing the Gaussian approximation

In this section, we compute the KL divergence between Gaussian approximations
to the two posteriors. We begin with a few observations which are used repeatedly
throughout this section. First, observe that

UT
0 U0 ≈ NI. (A.14)

This is true because covariance can be “shifted” between U and V by taking U 7→
UT and V 7→ T−1V, where T is an invertible matrix. This transformation does not
affect the observation term p(Y |U,V). The priors q(V) and p(V) are invariant to
such linear transformations, while p(U) = q(U) assumes a unit normal distribution.
Therefore, the posterior should favor explanations where UTU ≈ NI.

Next, ΛV should be close to its maximum likelihood solution, namely

Λ−1V ≈
1

D
V0SVT

0 . (A.15)
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Finally, S−1 = rZZT + I � I, so

S � I. (A.16)

Since S⊥ is the projection of S onto a subspace, we have

S⊥ � I (A.17)

as well.
Throughout this section, we use the shorthand

u = vec(U)

v = vec(Ṽ⊥). (A.18)

A.4.1 Marginal covariance is approximately conditional co-
variance

In the Gaussian approximation to the posterior, Cp represents the conditional pre-
cision of v given u, and Cp − BTA−1B represents the marginal precision. We now
show that these two quantities are approximately equal. The derivation, and the
result, are identical if Cq is substituted for Cp. Let ‖ · ‖2 denote the matrix 2-norm,
i.e. the largest signular value.∥∥I−C−1p (Cp −BTA−1B)

∥∥
2

=
∥∥C−1p BTA−1B

∥∥
2

≤
∥∥C−1p ∥∥2 ∥∥BTA−1B

∥∥
2

=
∥∥C−1p ∥∥2 ∥∥λ2(RT

⊥ ⊗ I)F(λV0V0
T ⊗ I + I⊗ I)−1F(R⊥ ⊗ I)

∥∥
=
∥∥C−1p ∥∥2 ∥∥λ2RT

⊥R⊥ ⊗ (λV0V
T
0 + I)−1

∥∥
2

= λ2
∥∥C−1p ∥∥2 ∥∥RT

⊥R⊥
∥∥
2

∥∥(λV0V
T
0 + I)−1

∥∥
2

(A.19)

The first step uses the general fact that ‖XY‖ ≤ ‖X‖‖Y‖ for any matrix norm, and
the last step uses the general fact that ‖X⊗Y‖2 = ‖X‖2‖Y‖2. Now,∥∥C−1p ∥∥2 =

∥∥(λI⊗UT
0 U0 + S ⊗ΛV)−1

∥∥
2

≤
∥∥(λI⊗UT

0 U0)
−1∥∥

2

= 1/Θ(N) (A.20)
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Using our assumption of uncorrelated residuals from Section 6.2.2,∥∥RT
⊥R⊥

∥∥
2
≤
∥∥RTR

∥∥
2

= ‖R‖22 = O(N +D). (A.21)

Finally,
∥∥(λV0V

T
0 + I)−1

∥∥
2

= 1/Θ(D). Putting this together,

∥∥I−C−1p (Cp −BTA−1B)
∥∥
2

= O

(
1

N
+

1

D

)
. (A.22)

This implies that
(1− ε)Cp � Cp −BTA−1B � Cp (A.23)

where ε = O( 1
N

+ 1
D

). (The right-hand inequality holds because BTA−1B is positive
semidefinite.) Hence, whenever Cp−BTA−1B appears multiplicatively in a formula,
we make the approximation

Cp −BTA−1B ≈ Cp. (A.24)

A.4.2 Taylor approximation is Gaussian

In order for the second-order Taylor approximation to define a Gaussian, the matrices

Λqpost(u,v) =

(
A B

BT Cq

)

Λppost(u,v) =

(
A B

BT Cp

)
(A.25)

must be positive definite (PD). One characterization of PD matrices is that Λppost(u,v)

is PD if and only if A and Cp − BTA−1B are both PD (Boyd and Vandenberghe,
2004, app. A.5.5). First, note that A and Cp are both PD, because they consist
of sums and Kronecker products of PD matrices. Since Cp is PD, the left-hand
inequality of (A.23) implies that Cp − BTA−1B is PD for large D. The proof also
applies for Λppost(u,v), with Cq substituted for Cp.
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A.4.3 KL divergence between two Gaussians

The approximate posteriors qpost and ppost are Gaussians with precision matrices
defined in (A.25). First, note that because qpost(u |v) = ppost(u |v),

DKL(qpost(u,v) ‖ ppost(u,v)) = DKL(qpost(v) ‖ ppost(v)). (A.26)

(The vectors u and v are defined in (A.18).) Therefore, we focus on the marginal
distribution of v.

The marginal precisions of v are obtained from the Schur complement formula:

Λqpost(v) = Cq −BTA−1B

Λppost(v) = Cp −BTA−1B (A.27)

Plugging these into the PDF of a multivariate Gaussian,

Eqpost [log q(v)] = −d
2

log 2π +
1

2
log
∣∣Cq −BTA−1B

∣∣− 1

2
Eqpost

[
(v − µq)T (Cq −BTA−1B)(v − µq)

]
= −d

2
log 2π +

1

2
log
∣∣Cq −BTA−1B

∣∣− 1

2
tr Σv(Cq −BTA−1B)

Eqpost [log p(v)] = −d
2

log 2π +
1

2
log
∣∣Cp −BTA−1B

∣∣− 1

2
Eqpost

[
(v − µp)T (Cp −BTA−1B)(v − µp)

]
= −d

2
log 2π +

1

2
log
∣∣Cp −BTA−1B

∣∣− 1

2
tr Σv(Cp −BTA−1B)

− 1

2
∆T

µ(Cp −BTA−1B)∆µ, (A.28)

where d is the dimensionality of v, Σv = (Cq −BTA−1B)−1, and ∆µ = Eqpost [v]−
Eppost [v]. Therefore,

DKL (qpost(v) ‖ ppost(v)) = Eqpost [log q(v)]− Eqpost [log p(u)]

= T1 + T2 + T3, (A.29)

where

T1 =
1

2
log
∣∣Cq −BTA−1B

∣∣− 1

2
log
∣∣Cp −BTA−1B

∣∣
T2 =

1

2
tr Σv(Cp −Cq)

T3 =
1

2
∆T

µ(Cp −BTA−1B)∆µ. (A.30)
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A.4.4 The volume term T1

T1 =
1

2
log
∣∣Cq −BTA−1B

∣∣− 1

2
log
∣∣Cp −BTA−1B

∣∣
=

1

2
log
∣∣∣(Cp −BTA−1B

)−1 (
Cq −BTA−1B

)∣∣∣
=

1

2
log
∣∣∣I +

(
Cp −BTA−1B

)−1
(Cq −Cp)

∣∣∣
≤ 1

2
tr
(
Cp −BTA−1B

)−1
(Cq −Cp) (A.31)

≈ 1

2
tr C−1p (Cq −Cp) (A.32)

=
1

2
tr C−1p

(
I⊗D(V0V

T
0 )−1 − S⊥ ⊗ΛV

)
≤ 1

2
tr
(
λI⊗UT

0 U0

)−1 (
I⊗D(V0V

T
0 )−1

)
=

1

2λ
D tr I tr(UT

0 U0)
−1(V0V

T
0 )−1

≈ 1

2λN
D tr I tr(V0V

T
0 )−1 (A.33)

=
1

2λN
D(D −K) tr(V0V

T
0 )−1

≤ 1

2λN
D(D −K) tr(V0SVT

0 )−1 (A.34)

≈ 1

2λN
(D −K) tr ΛV (A.35)

Step (A.31) holds because

log det I + D =
∑
i

log νi + 1 ≤
∑
i

νi = tr D

for any square matrix D, where the νi denote the eigenvalues of D. (A.32) follows
from (A.23), (A.33) follows from (A.14), (A.34) follows from (A.16), and (A.35)
follows from (A.15). The remaining steps are simple substitutions and algebraic
manipulations.
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A.4.5 The variance term T2

T2 =
1

2
tr(Cq −BTA−1B)−1(Cp −Cq)

≈ 1

2
tr Cq

−1(Cp −Cq) (A.36)

=
1

2
tr Cq

−1 (S⊥ ⊗ΛV − I⊗D(V0V
T
0 )−1

)
≤ 1

2
tr
(
λI⊗ (UT

0 U0)
)−1

(S⊥ ⊗ΛV)

=
1

2λ
trS⊥ ⊗ (UT

0 U0)
−1ΛV

=
1

2λ
trS⊥ tr(UT

0 U0)
−1ΛV

≤ 1

2λ
(D −K) tr(UT

0 U0)
−1ΛV (A.37)

≈ 1

2λN
(D −K) tr ΛV (A.38)

(A.36) follows from (A.23), (A.37) follows from (A.17), and (A.38) follows from
(A.14). The remaining steps are simple substitutions and algebraic manipulations.

A.4.6 The bias term T3

The difference in means of the two posteriors is given by:

Eppost
[v]− Eqpost

[v] =
(
Cp −BTA−1B

)−1 (
hv −BTA−1hu

)
−
(
Cq −BTA−1B

)−1 (−BTA−1hu

)
=
(
Cp −BTA−1B

)−1
hv +

[(
Cq −BTA−1B

)−1 − (Cp −BTA−1B
)−1]

BTA−1hu

=
(
Cp −BTA−1B

)−1 [
hv + (Cp −Cq)

(
Cq −BTA−1B

)−1
BTA−1hu

]
,
(
Cp −BTA−1B

)−1
[hv + hu→v] .
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Now,

√
T3 =

√
1

2
(Eppost [v]− Eqpost [v])T (Cp −BTA−1B) (Eppost [v]− Eqpost [v])

=

√
1

2
(hv + hu→v)T (Cp −BTA−1B)−1 (hv + hu→v)

≈
√

1

2
(hv + hu→v)TC−1p (hv + hu→v) (A.39)

≤
√

1

2
hTvC−1p hv +

√
1

2
hTu→vC−1p hu→v, (A.40)

where (A.39) follows from (A.23), and (A.40) holds because
√

xTDx is a norm on x
when D is positive definite.

We take these two terms in turn. For the first term,

hTvC−1p hv = vec
(
ΛVV0SQT

)T (
λI⊗UT

0 U0 + S⊥ ⊗ΛV

)−1
vec
(
ΛVV0SQT

)
≤ 1

λ
vec
(
ΛVV0SQT

)T (
I⊗UT

0 U0

)−1
vec
(
ΛVV0SQT

)
=

1

λ
tr
(
UT

0 U0

)−1
ΛVV0SQTQSVT

0 ΛV

≤ 1

λ
tr
(
UT

0 U0

)−1
ΛVV0SVT

0 ΛV (A.41)

≈ 1

λN
D tr ΛV. (A.42)

Here, (A.41) holds because QTQ � I (the rows of Q are orthogonal) and because of
(A.16). (A.42) follows from (A.14) and (A.15).

For the second term,

hu→v = (Cp −Cq)
(
Cq −BTA−1B

)−1
BTA−1hu

≈ (Cp −Cq)C
−1
q BTA−1hu

=
(
S⊥ ⊗ΛV − I⊗D(V0V

T
0 )−1

) (
I⊗UT

0 U0

)−1 (
RT
⊥ ⊗ I

)
F
(
V0V

T
0 ⊗ I

)−1
vec(YV0

T )

=
(
S⊥ ⊗ΛV − I⊗D(V0V

T
0 )−1

) (
I⊗UT

0 U0

)−1 (
I⊗V0V

T
0

)−1
vec(V0Y

TR⊥)

Let ‖ · ‖ denote the Euclidean norm, ‖ · ‖2 the matrix 2-norm (largest singular
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value) and ‖ · ‖F the Frobenius norm.

‖hu→v‖ ≤
∥∥S⊥ ⊗ΛV − I⊗D(V0V

T
0 )−1

∥∥
2

∥∥I⊗ (UT
0 U0)

−1∥∥
2

∥∥I⊗ (V0V
T
0 )−1

∥∥
2

∥∥vec(V0Y
TR⊥)

∥∥
=
∥∥S⊥ ⊗ΛV − I⊗D(V0V

T
0 )−1

∥∥
2

∥∥(UT
0 U0)

−1∥∥
2

∥∥(V0V
T
0 )−1

∥∥
2

∥∥V0Y
TR⊥

∥∥
F

Taking these factors individually,∥∥S⊥ ⊗ΛV − I⊗D(V0V
T
0 )−1

∥∥
2

= O(1)∥∥(UT
0 U0)

−1∥∥
2

= O(1/N)∥∥(V0V
T
0 )−1

∥∥
2

= O(1/D)∥∥V0Y
TR⊥

∥∥
F

=
√

tr V0YTR⊥RT
⊥YVT

0

≤ ν(N +D)1/2
√

tr V0YTYVT
0 (A.43)

= ν(N +D)1/2
∥∥V0Y

T
∥∥
F

≤ ν(N +D)1/2 ‖V0‖F
∥∥YT

∥∥
F

= O(N1/2D3/2 +ND)

where ν is a constant that does not depend on N or D. (A.43) follows from the
assumption of uncorrelated residuals in Section 6.2.2, the reasoning of (A.21), and
the observation that D � ‖D‖2I for a symmetric matrix D. Combining these factors,
‖hu→v‖ = O(N−1/2D1/2 + 1). Therefore,

hTu→vC−1p hu→v ≤
∥∥C−1p ∥∥2 ‖hu→v‖2

≤
∥∥I⊗ (UT

0 U0)
−1∥∥

2
‖hu→v‖2

= O(N−2D +N−1).

This term is smaller than the first term (which is Θ(N−1D)), so we drop it. We
have, therefore, that

T3 ≤
1

2λN
D tr ΛV + o(N−1D).
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Appendix B

Moment averaging derivations

B.1 Asymptotics of AIS

Theorem 4. Suppose T + 1 distributions pt are linearly spaced along a path γ.
Assuming perfect transitions, if θ(β) and the Fisher information matrix Gθ(β) =
covx∼pθ(∇θ log pθ(x)) are continuous and piecewise smooth, then as T →∞ the bias
δ behaves as follows:

Tδ = T
T−1∑
t=0

DKL(pt‖pt+1)→ F(γ) ≡ 1

2

∫ 1

0

θ̇(β)TGθ(β)θ̇(β) dβ, (B.1)

where θ̇(β) represents the derivative of θ with respect to β.

Proof. First, assume that θ(β) and Gθ(β) are both smooth. Consider a second-order
Taylor expansion of DKL(θ(β)‖θ(β+h)) around h = 0. The constant and first order
terms are zero. For the second order term,

∇2
θDKL(θ‖θ0)

∣∣
θ=θ0

= Gθ,

so the second-order Taylor expansion is given by:

DKL(θ(β)‖θ(β + h)) =
1

2
h2θ̇

T
(β)Gθ(β)θ̇(β) + ε,

where

|ε| ≤ h3

6
max
β

∣∣∣∣ d3dh3DKL(θ(β)‖θ(β + h))

∣∣∣∣ .
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(The maximum is finite because Gθ is smooth.)
Assuming a linear schedule, the bias is given by

δ =
T−1∑
t=0

DKL(pt‖pt+1)

=
T−1∑
t=0

DKL(θ(t/T ) ‖ θ((t+ 1)/T ))

=
1

2T 2

T−1∑
t=0

θ̇(βt)
TGθ(βt)θ̇(βt) +

T−1∑
t=0

εt

The error term decays like 1/T 2, so it approaches zero even when scaled by T . The
asymptotic bias, therefore, is determined by the first term. When scaled by T , this
approaches

F(γ) ≡ 1

2

∫ 1

0

θ̇(β)TGθ(β)θ̇(β) dβ.

Therefore, Tδ → F(γ).
In the above analysis, we assumed that θ(β) and Gθ(β) were smooth. If they

are merely piecewise smooth, the integral decomposes into sums over the smooth
segments of γ. Similarly, the KL divergence terms corresponding to non-smooth
points decay like 1/T 2, so they approach zero when scaled by T . Ignoring these
terms, the bias decomposes as a sum over the smooth segments of γ, so the theorem
holds in the piecewise smooth case as well.

B.2 Variational interpretations of geometric and

moment averages

B.2.1 Geometric averages

For simplicity of notation, assume the state space X is discrete. Consider solving for
a distribution q to minimize the weighted sum of KL divergences

(1− β)DKL(q‖pa) + βDKL(q‖pb) (B.2)
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with the constraint that
∑

x q(x) = 1. The Lagrangian is given by:

L(q) = λ

(∑
x

q(x)− 1

)
+ (1− β)

∑
x

q(x) (log q(x)− log pa(x)) +

+ β
∑
x

q(x) (log q(x)− log pb(x))

= −λ+
∑
x

λq(x) + q(x) log q(x)− q(x) [(1− β) log pa(x)− β log pb(x)]

Differentiating with respect to q(x),

∂L(q)

∂q(x)
= λ+ 1 + log q(x)− (1− β) log pa(x)− β log pb(x).

Setting this to zero gives:
q(x) ∝ pa(x)1−βpb(x)β.

This is the optimum over the probability simplex. If pa and pb belong to an exponen-
tial family P , with natural parameters ηpa and ηpb , the optimum is achieved within
P using ηβ = (1− β)ηpa + βηpb .

B.2.2 Moment averages

Suppose we wish to find

p
(MA)
β = arg min

q
(1− β)DKL(pa‖q) + βDKL(pb‖q). (B.3)

We write the cost function in terms of the natural parameters η:

J(η) = (1− β)
∑
x

pa(x)(log pa(x)− log q(x)) + β
∑
x

pb(x)(log pb(x)− log q(x))

= const−
∑
x

[(1− β)pa(x) + βpb(x)] log q(x)

= const + logZ(η)−
∑
x

[(1− β)pa(x) + βpb(x)]ηTg(x)
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The partial derivatives are given by:

∂J

∂ηi
=
∑
x

q(x)gi(x)−
∑
x

[(1− β)pa(x) + βpb(x)] gi(x)

= Eq[gi(x)]− (1− β)Epa(gi(x))− βEpb(gi(x))

Setting this to zero, we see that the optimal solution is given by averaging the
moments of pa and pb:

Eq[gi(x)] = (1− β)Epa(gi(x)) + βEpb(gi(x))

Intuitively, this can be thought of as a maximum likelihood estimate of η for a dataset
with (1− β) fraction of the points drawn from pa and β fraction drawn from pb.

B.3 AIS example: univariate Gaussians

Here we evaluate the cost functionals for the Gaussian example of Section 4.2 under
γGA and γMA using both linear and optimal schedules. Recall that pa = N (µa, σ)
and pb = N (µb, σ). The natural parameters of the Gaussian are the information
form representation, with precision λ = 1/σ2 and potential h = λµ. The suffi-
cient statistics are the first and (rescaled) second moments given by E[x] = µ and
−1

2
E[x2] = −1

2
s ≡ −1

2
(σ2 + µ2).

Throughout this section, we use the relationship Gηη̇ = ṡ (Amari (2000), sec. 3.3),
so that F(γ) can be rewritten as 1

2

∫ 1

0
η̇(β)T ṡ(β) dβ.

To simplify calculations, let β range from −1/2 to 1/2 (rather than 0 to 1), and
assume µa = −1/2 and µb = 1/2. The general case can be obtained by rescaling µa,
µb, and σ.

B.3.1 Geometric averages

Geometric averages correspond to averaging the natural parameters:

λ(β) = 1/σ2

h(β) = β/σ2
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Solving for the moments,

µ(β) = β

s(β) = σ2 + β2.

The derivatives are given by:

λ̇(β) = 0

ḣ(β) = 1/σ2

µ̇(β) = 1

ṡ(β) = 2β

Ignoring the constant, the cost functional is given by:

F(γ) =
1

2

∫ 1/2

−1/2
ḣ(β)µ̇(β)− 1

2
λ̇(β)ṡ(β) dβ

=
1

2

∫ 1/2

−1/2

1

σ2
dβ

=
1

2σ2
.

We can also compute the cost under the optimal schedule by computing the path
length (see Section 3):

`(γ) =

∫ 1/2

−1/2

√
ḣ(β)µ̇(β)− 1

2
λ̇(β)ṡ(β) dβ

=

∫ 1/2

−1/2

√
1/σ2 dβ

=
1

σ
.

Since the functional under the optimal schedule is given by `2/2, these two answers
agree with each other, i.e. the linear schedule is optimal.

We assumed for simplicity that µa = −1/2 and µb = 1/2. In general, we can
rescale σ and µb−µa by the same amount without changing the functional. Therefore,
F(γGA) is given by:

(µb − µa)2

2σ2
≡ d2

2
.
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B.3.2 Moment averaging

Now let’s look at moment averaging. The parameterizations are given by:

µ(β) = β

s(β) = σ2 +
1

4

λ(β) =

(
σ2 +

1

4
− β2

)−1
h(β) =

(
σ2 +

1

4
− β2

)−1
β

with derivatives

µ̇(β) = 1

ṡ(β) = 0

λ̇(β) = 2

(
σ2 +

1

4
− β2

)−2
β

ḣ(β) = λ(β)µ̇(β) + µ(β)λ̇(β)

=

(
σ2 +

1

4
− β2

)−1
+ 2

(
σ2 +

1

4
− β2

)−2
β2

The cost functional is given by:

F(γMA) =
1

2

∫ 1/2

−1/2
µ̇(β)ḣ(β)− 1

2
ṡ(β)λ̇(β)

=
1

2

∫ 1/2

−1/2
ḣ(β) dβ

=
1

2
[h(1/2)− h(−1/2)]

=
1

2σ2
.

This agrees exactly with F(γGA), consistent with Theorem 2.
However, we can see by inspection that for small σ, most of the mass of this

integral is concentrated near the endpoints, where the variance changes suddenly.
This suggests that the optimal schedule would place more intermediate distributions
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near the endpoints.
We can bound the cost under the optimal schedule by bounding the path length

`(γMA):

`(γMA) =

∫ 1/2

−1/2

√
µ̇(β)ḣ(β)− 1

2
ṡ(β)λ̇(β) dβ

=

∫ 1/2

−1/2

√
ḣ(β) dβ

=

∫ 1/2

−1/2

√
λ(β)µ̇(β) + µ(β)λ̇(β) dβ

≤
∫ 1/2

−1/2

√
|λ(β)µ̇(β)| dβ +

∫ 1/2

−1/2

√
|µ(β)λ̇(β)| dβ

=

∫ 1/2

−1/2

1√
σ2 + 1

4
− β2

dβ +
√

2

∫ 1/2

−1/2

|β|
σ2 + 1

4
− β2

dβ

= 2 sin−1
(

1√
4σ2 + 1

)
+
√

2 log

(
1 +

1

4σ2

)
≤ π +

√
2 log

(
1 +

1

4σ2

)
The path length has dropped from linear to logarithmic! Since F grows like `2, the
cost drops from quadratic to log squared.

This shows that even though Theorem 2 guarantees that both γGA and γMA have
the same cost under a linear schedule, one path may do substantially better than the
other if one is allowed to change the schedule.
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