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Abstract

Markov chain Monte Carlo (MCMC) is one of the main workhorses of probabilistic
inference, but it is notoriously hard to measure the quality of approximate posterior
samples. This challenge is particularly salient in black box inference methods,
which can hide details and obscure inference failures. In this work, we extend
the recently introduced bidirectional Monte Carlo [GGA15] technique to evaluate
MCMC-based posterior inference algorithms. By running annealed importance
sampling (AIS) chains both from prior to posterior and vice versa on simulated data,
we upper bound in expectation the symmetrized KL divergence between the true
posterior distribution and the distribution of approximate samples. We integrate
our method into two probabilistic programming languages, WebPPL [GS] and Stan
[CGHL+ p], and validate it on several models and datasets. As an example of how
our method be used to guide the design of inference algorithms, we apply it to
study the effectiveness of different model representations in WebPPL and Stan.

1 Introduction

Markov chain Monte Carlo (MCMC) is one of the most important classes of probabilistic inference
methods and underlies a variety of approaches to automatic inference [e.g. LTBS00; GMRB+08;
GS; CGHL+ p]. Despite its widespread use, it is still difficult to rigorously validate the effectiveness
of an MCMC inference algorithm. There are various heuristics for diagnosing convergence, but
reliable quantitative measures are hard to find. This creates difficulties both for end users of automatic
inference systems and for experienced researchers who develop models and algorithms.

In this paper, we extend the recently proposed bidirectional Monte Carlo (BDMC) [GGA15] method
to evaluate certain kinds of MCMC-based inference algorithms by bounding the symmetrized KL
divergence (Jeffreys divergence) between the distribution of approximate samples and the true
posterior distribution. Specifically, our method is applicable to algorithms which can be viewed as
importance sampling over an extended state space, such as annealed importance sampling (AIS;
[Nea01]) or sequential Monte Carlo (SMC; [MDJ06]). BDMC was proposed as a method for
accurately estimating the log marginal likelihood (log-ML) on simulated data by sandwiching the true
value between stochastic upper and lower bounds which converge in the limit of infinite computation.
These log-likelihood values were used to benchmark marginal likelihood estimators. We show that it
can also be used to measure the accuracy of approximate posterior samples obtained from algorithms
like AIS or SMC. More precisely, we refine the analysis of [GGA15] to derive an estimator which
upper bounds in expectation the Jeffreys divergence between the distribution of approximate samples
and the true posterior distribution. We show that this upper bound is quite accurate on some toy
distributions for which both the true Jeffreys divergence and the upper bound can be computed exactly.
We refer to our method of bounding the Jeffreys divergence by sandwiching the log-ML as Bounding
Divergences with REverse Annealing (BREAD).
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While our method is only directly applicable to certain algorithms such as AIS or SMC, these
algorithms involve many of the same design choices as traditional MCMC methods, such as the
choice of model representation (e.g. whether to collapse out certain variables), or the choice of
MCMC transition operators. Therefore, the ability to evaluate AIS-based inference should also yield
insights which inform the design of MCMC inference algorithms more broadly.

One additional hurdle must be overcome to use BREAD to evaluate posterior inference: the method
yields rigorous bounds only for simulated data because it requires an exact posterior sample. One
would like to be sure that the results on simulated data accurately reflect the accuracy of posterior
inference on the real-world data of interest. We present a protocol for using BREAD to diagnose
inference quality on real-world data. Specifically, we infer hyperparameters on the real data, simulate
data from those hyperparameters, measure inference quality on the simulated data, and validate the
consistency of the inference algorithm’s behavior between the real and simulated data. (This protocol
is somewhat similar in spirit to the parametric bootstrap [ET98].)

We integrate BREAD into the tool chains of two probabilistic programming languages: WebPPL
[GS] and Stan [CGHL+ p]. Both probabilistic programming systems can be used as automatic
inference software packages, where the user provides a program specifying a joint probabilistic model
over observed and unobserved quantities. In principle, probabilistic programming has the potential to
put the power of sophisticated probabilistic modeling and efficient statistical inference into the hands
of non-experts, but realizing this vision is challenging because it is difficult for a non-expert user
to judge the reliability of results produced by black-box inference. We believe BREAD provides a
rigorous, general, and automatic procedure for monitoring the quality of posterior inference, so that
the user of a probabilistic programming language can have confidence in the accuracy of the results.
Our approach to evaluating probabilistic programming inference is closely related to independent
work [CTM16] that is also based on the ideas of BDMC. We discuss the relationships between both
methods in Section 4.

In summary, this work includes four main technical contributions. First, we show that BDMC yields
an estimator which upper bounds in expectation the Jeffreys divergence of approximate samples
from the true posterior. Second, we present a technique for exactly computing both the true Jeffreys
divergence and the upper bound on small examples, and show that the upper bound is often a
good match in practice. Third, we propose a protocol for using BDMC to evaluate the accuracy
of approximate inference on real-world datasets. Finally, we extend both WebPPL and Stan to
implement BREAD, and validate BREAD on a variety of probabilistic models in both frameworks.
As an example of how BREAD can be used to guide modeling and algorithmic decisions, we use
it to analyze the effectiveness of different representations of a matrix factorization model in both
WebPPL and Stan.

2 Background

2.1 Annealed Importance Sampling

Annealed importance sampling (AIS; [Nea01]) is a Monte Carlo algorithm commonly used to estimate
(ratios of) normalizing constants. More carefully, fix a sequence of T distributions p1, . . . , pT , with
pt(x) = ft(x)/Zt. The final distribution in the sequence, pT , is called the target distribution; the
first distribution, p1, is called the initial distribution. It is required that one can obtain one or more
exact samples from p1.1 Given a sequence of reversible MCMC transition operators T1, . . . , TT ,
where Tt leaves pt invariant, AIS produces a (nonnegative) unbiased estimate of ZT /Z1 as follows:
first, we sample a random initial state x1 from p1 and set the initial weight w1 = 1. For every stage
t ≥ 2 we update the weight w and sample the state xt according to

wt ← wt−1
ft(xt−1)

ft−1(xt−1)
xt ← sample from Tt (x |xt−1) . (1)

Neal [Nea01] justified AIS by showing that it is a simple importance sampler over an extended state
space (see Appendix A for a derivation in our notation). From this analysis, it follows that the weight
wT is an unbiased estimate of the ratio ZT /Z1. Two trivial facts are worth highlighting: when Z1

1Traditionally, this has meant having access to an exact sampler. However, in this work, we sometimes have
access to a sample from p1, but not a sampler.
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is known, Z1wT is an unbiased estimate of ZT , and when ZT is known, wT /ZT is an unbiased
estimate of 1/Z1. In practice, it is common to repeat the AIS procedure to produce K independent
estimates and combine these by simple averaging to reduce the variance of the overall estimate.

In most applications of AIS, the normalization constant ZT for the target distribution pT is the
focus of attention, and the initial distribution p1 is chosen to have a known normalization constant
Z1. Any sequence of intermediate distributions satisfying a mild domination criterion suffices to
produce a valid estimate, but in typical applications, the intermediate distributions are simply defined
to be geometric averages ft(x) = f1(x)

1−βtfT (x)
βt , where the βt are monotonically increasing

parameters with β1 = 0 and βT = 1. (An alternative approach is to average moments [GMS13].)

In the setting of Bayesian posterior inference over parameters θ and latent variables z given some
fixed observation y, we take f1(θ, z) = p(θ, z) to be the prior distribution (hence Z1 = 1), and we
take fT (θ, z) = p(θ, z,y) = p(θ, z) p(y |θ, z). This can be viewed as the unnormalized posterior
distribution, whose normalizing constant ZT = p(y) is the marginal likelihood. Using geometric
averaging, the intermediate distributions are then

ft(θ, z) = p(θ, z) p(y |θ, z)βt . (2)

In addition to moment averaging, reasonable intermediate distributions can be produced in the
Bayesian inference setting by conditioning on a sequence of increasing subsets of data; this insight
relates AIS to the seemingly different class of sequential Monte Carlo (SMC) methods [MDJ06].

2.2 Stochastic lower bounds on the log partition function ratio

AIS produces a nonnegative unbiased estimate R̂ of the ratio R = ZT /Z1 of partition functions.
Unfortunately, because such ratios often vary across many orders of magnitude, it frequently happens
that R̂ underestimatesR with overwhelming probability, while occasionally taking extremely large
values. Correspondingly, the variance may be extremely large, or even infinite.

For these reasons, it is more meaningful to estimate logR. Unfortunately, the logarithm of a
nonnegative unbiased estimate (such as the AIS estimate) is, in general, a biased estimator of the log
estimand. More carefully, let Â be a nonnegative unbiased estimator forA = E[Â]. Then, by Jensen’s
inequality, E[log Â] ≤ logE[Â] = logA, and so log Â is a lower bound on logA in expectation. The
estimator log Â satisfies another important property: by Markov’s inequality for nonnegative random
variables, Pr(log Â > logA+ b) < e−b, and so log Â is extremely unlikely to overestimate logA
by any appreciable number of nats. These observations motivate the following definition [BGS15]: a
stochastic lower bound on X is an estimator X̂ satisfying E[X̂] ≤ X and Pr(X̂ > X + b) < e−b.
Stochastic upper bounds are defined analogously. The above analysis shows that log Â is a stochastic
lower bound on logA when Â is a nonnegative unbiased estimate of A, and, in particular, log R̂ is a
stochastic lower bound on logR. (It is possible to strengthen the tail bound by combining multiple
samples [GBD07].)

2.3 Reverse AIS and Bidirectional Monte Carlo

Upper and lower bounds are most useful in combination, as one can then sandwich the true value. As
described above, AIS produces a stochastic lower bound on the ratioR; many other algorithms do as
well. Upper bounds are more challenging to obtain. The key insight behind bidirectional Monte Carlo
(BDMC; [GGA15]) is that, provided one has an exact sample from the target distribution pT , one can
run AIS in reverse to produce a stochastic lower bound on logRrev = logZ1/ZT , and therefore a
stochastic upper bound on logR = − logRrev. (In fact, BDMC is a more general framework which
allows a variety of partition function estimators, but we focus on AIS for pedagogical purposes.)

More carefully, for t = 1, . . . , T , define p̃t = pT−t+1 and T̃t = TT−t+1. Then p̃1 corresponds
to our original target distribution pT and p̃T corresponds to our original initial distribution p1. As
before, T̃t leaves p̃t invariant. Consider the estimate produced by AIS on the sequence of distributions
p̃1, . . . , p̃T and corresponding MCMC transition operators T̃1, . . . , T̃T . (In this case, the forward
chain of AIS corresponds to the reverse chain described in Section 2.1.) The resulting estimate R̂rev

is a nonnegative unbiased estimator of Rrev. It follows that log R̂rev is a stochastic lower bound
on logRrev, and therefore log R̂−1rev is a stochastic upper bound on logR = logR−1rev. BDMC is
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simply the combination of this stochastic upper bound with the stochastic lower bound of Section 2.2.
Because AIS is a consistent estimator of the partition function ratio under the assumption of ergodicity
[Nea01], the two bounds converge as T → ∞; therefore, given enough computation, BDMC can
sandwich logR to arbitrary precision.

Returning to the setting of Bayesian inference, given some fixed observation y, we can apply BDMC
provided we have exact samples from both the prior distribution p(θ, z) and the posterior distribution
p(θ, z|y). In practice, the prior is typically easy to sample from, but it is typically infeasible to
generate exact posterior samples. However, in models where we can tractably sample from the joint
distribution p(θ, z,y), we can generate exact posterior samples for simulated observations using the
elementary fact that

p(y) p(θ, z|y) = p(θ, z,y) = p(θ, z) p(y|θ, z). (3)
In other words, if one ancestrally samples θ, z, and y, this is equivalent to first generating a dataset y
and then sampling (θ, z) exactly from the posterior. Therefore, for simulated data, one has access to a
single exact posterior sample; this is enough to obtain stochastic upper bounds on logR = log p(y).

2.4 WebPPL and Stan

We focus on two particular probabilistic programming packages. First, we consider WebPPL [GS], a
lightweight probabilistic programming language built on Javascript, and intended largely to illustrate
some of the important ideas in probabilistic programming. Inference is based on Metropolis–Hastings
(M–H) updates to a program’s execution trace, i.e. a record of all stochastic decisions made by the
program. WebPPL has a small and clean implementation, and the entire implementation is described
in an online tutorial on probabilistic programming [GS].

Second, we consider Stan [CGHL+ p], a highly engineered automatic inference system which is
widely used by statisticians and is intended to scale to large problems. Stan is based on the No U-Turn
Sampler (NUTS; [HG14]), a variant of Hamiltonian Monte Carlo (HMC; [Nea+11]) which chooses
trajectory lengths adaptively. HMC can be significantly more efficient than M–H over execution
traces because it uses gradient information to simultaneously update multiple parameters of a model,
but is less general because it requires a differentiable likelihood. (In particular, this disallows discrete
latent variables unless they are marginalized out analytically.)

3 Methods

There are at least two criteria we would desire from a sampling-based approximate inference algorithm
in order that its samples be representative of the true posterior distribution: we would like the
approximate distribution q(θ, z;y) to cover all the high-probability regions of the posterior p(θ, z |y),
and we would like it to avoid placing probability mass in low-probability regions of the posterior. The
former criterion motivates measuring the KL divergence DKL(p(θ, z |y) ‖ q(θ, z;y)), and the latter
criterion motivates measuring DKL(q(θ, z;y) ‖ p(θ, z |y)). If we desire both simultaneously, this
motivates paying attention to the Jeffreys divergence, defined as DJ(q‖p) = DKL(q‖p) + DKL(p‖q).
In this section, we present Bounding Divergences with Reverse Annealing (BREAD), a technique for
using BDMC to bound the Jeffreys divergence from the true posterior on simulated data, combined
with a protocol for using this technique to analyze sampler accuracy on real-world data.

3.1 Upper bounding the Jeffreys divergence in expectation

We now present our technique for bounding the Jeffreys divergence between the target distribution
and the distribution of approximate samples produced by AIS. In describing the algorithm, we revert
to the abstract state space formalism of Section 2.1, since the algorithm itself does not depend
on any structure specific to posterior inference (except for the ability to obtain an exact sample).
We first repeat the derivation from [GGA15] of the bias of the stochastic lower bound log R̂. Let
v = (x1, . . . ,xT−1) denote all of the variables sampled in AIS before the final stage; the final state
xT corresponds to the approximate sample produced by AIS. We can write the distributions over the
forward and reverse AIS chains as:

qfwd(v,xT ) = qfwd(v) qfwd(xT |v) (4)
qrev(v,xT ) = pT (xT ) qrev(v |xT ). (5)
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The distribution of approximate samples qfwd(xT ) is obtained by marginalizing out v. Note that
sampling from qrev requires sampling exactly from pT , so strictly speaking, BREAD is limited
to those cases where one has at least one exact sample from pT — such as simulated data from a
probabilistic model (see Section 2.3).

The expectation of the estimate log R̂ of the log partition function ratio is given by:

E[log R̂] = Eqfwd(v,xT )

[
log

fT (xT ) qrev(v |xT )
Z1 qfwd(v,xT )

]
(6)

= logZT − logZ1 −DKL(qfwd(xT ) qfwd(v |xT ) ‖ pT (xT ) qrev(v |xT )) (7)
≤ logZT − logZ1 −DKL(qfwd(xT ) ‖ pT (xT )). (8)

(Note that qfwd(v |xT ) is the conditional distribution of the forward chain, given that the final state is
xT .) The inequality follows because marginalizing out variables cannot increase the KL divergence.

We now go beyond the analysis in [GGA15], to bound the bias in the other direction. The expectation
of the reverse estimate R̂rev is

E[log R̂rev] = Eqrev(xT ,v)

[
log

Z1 qfwd(v,xT )

fT (xT ) qrev(v |xT )

]
(9)

= logZ1 − logZT −DKL(pT (xT ) qrev(v|xT ) ‖ qfwd(xT ) qfwd(v |xT )) (10)
≤ logZ1 − logZT −DKL(pT (xT ) ‖ qfwd(xT )). (11)

As discussed above, log R̂ and log R̂−1rev can both be seen as estimators of log ZT

Z1
, the former of

which is a stochastic lower bound, and the latter of which is a stochastic upper bound. Consider the
gap between these two bounds, B̂ , log R̂−1rev − log R̂. It follows from Eqs. (8) and (11) that, in
expectation, B̂ upper bounds the Jeffreys divergence

J , DJ(pT (xT ), qfwd(xT )) , DKL(pT (xT ) ‖ qfwd(xT )) + DKL(qfwd(xT ) ‖ pT (xT )) (12)
between the target distribution pT and the distribution qfwd(pT ) of approximate samples.

Alternatively, if one happens to have some other lower bound L or upper bound U on logR, then one
can bound either of the one-sided KL divergences by running only one direction of AIS. Specifically,
from Eq. (8), E[U − log R̂] ≥ DKL(qfwd(xT ) ‖ pT (xT )), and from Eq. (11), E[log R̂−1rev − L] ≥
DKL(pT (xT ) ‖ qfwd(xT )).

How tight is the expectation B , E[B̂] as an upper bound on J ? We evaluated both B and J exactly
on some toy distributions and found them to be a fairly good match. Details are given in Appendix B.

3.2 Application to real-world data

So far, we have focused on the setting of simulated data, where it is possible to obtain an exact
posterior sample, and then to rigorously bound the Jeffreys divergence using BDMC. However, we
are more likely to be interested in evaluating the performance of inference on real-world data, so
we would like to simulate data which resembles a real-world dataset of interest. One particular
difficulty is that, in Bayesian analysis, hyperparameters are often assigned non-informative or weakly
informative priors, in order to avoid biasing the inference. This poses a challenge for BREAD, as
datasets generated from hyperparameters sampled from such priors (which are often very broad) can
be very dissimilar to real datasets, and hence conclusions from the simulated data may not generalize.

In order to generate simulated datasets which better match a real-world dataset of interest, we adopt
the following heuristic scheme: we first perform approximate posterior inference on the real-world
dataset. Let η̂real denote the estimated hyperparameters. We then simulate parameters and data from
the forward model p(θ | η̂real)p(D| η̂real,θ). The forward AIS chain is run on D in the usual way.
However, to initialize the reverse chain, we first start with (η̂real,θ), and then run some number of
MCMC transitions which preserve p(η,θ |D), yielding an approximate posterior sample (η?,θ?).

In general, (η?,θ?) will not be an exact posterior sample, since η̂real was not sampled from p(η |D).
However, the true hyperparameters η̂real which generated D ought to be in a region of high posterior
mass unless the prior p(η) concentrates most of its mass away from η̂real. Therefore, we expect even
a small number of MCMC steps to produce a plausible posterior sample. This motivates our use of
(η?,θ?) in place of an exact posterior sample. We validate this procedure in Section 5.1.2.
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4 Related work

Much work has been devoted to the diagnosis of Markov chain convergence (e.g. [CC96; GR92;
BG98]). Diagnostics have been developed both for estimating the autocorrelation function of
statistics of interest (which determines the number of effective samples from an MCMC chain) and
for diagnosing whether Markov chains have reached equilibrium. In general, convergence diagnostics
cannot confirm convergence; they can only identify particular forms of non-convergence. By contrast,
BREAD can rigorously demonstrate convergence in the simulated data setting.

There has also been much interest in automatically configuring parameters of MCMC algorithms.
Since it is hard to reliably summarize the performance of an MCMC algorithm, such automatic
configuration methods typically rely on method-specific analyses. For instance, Roberts and Rosenthal
[RR01] showed that the optimal acceptance rate of Metropolis–Hastings with an isotropic proposal
distribution is 0.234 under fairly general conditions. M–H algorithms are sometimes tuned to
achieve this acceptance rate, even in situations where the theoretical analysis doesn’t hold. Rigorous
convergence measures might enable more direct optimization of algorithmic hyperparameters.

Gorham and Mackey [GM15] presented a method for directly estimating the quality of a set of
approximate samples, independently of how those samples were obtained. This method has strong
guarantees under a strong convexity assumption. By contrast, BREAD makes no assumptions about
the distribution itself, so its mathematical guarantees (for simulated data) are applicable even to
multimodal or badly conditioned posteriors.

It has been observed that heating and cooling processes yield bounds on log-ratios of partition
functions by way of finite difference approximations to thermodynamic integration. Neal [Nea96]
used such an analysis to motivate tempered transitions, an MCMC algorithm based on heating and
cooling a distribution. His analysis cannot be directly applied to measuring convergence, as it assumed
equilibrium at each temperature. Jarzynski [Jar97] later gave a non-equilibrium analysis which is
equivalent to that underlying AIS [Nea01].

We have recently learned of independent work [CTM16] which also builds on BDMC to evaluate the
accuracy of posterior inference in a probabilistic programming language. In particular, Cusumano-
Towner and Mansinghka [CTM16] define an unbiased estimator for a quantity called the subjective
divergence. The estimator is equivalent to BDMC except that the reverse chain is initialized from an
arbitrary reference distribution, rather than the true posterior. In [CTM16], the subjective divergence
is shown to upper bound the Jeffreys divergence when the true posterior is used; this is equivalent to
our analysis in Section 3.1. Much less is known about subjective divergence when the reference distri-
bution is not taken to be the true posterior. (Our approximate sampling scheme for hyperparameters
can be viewed as a kind of reference distribution.)

5 Experiments

In order to experiment with BREAD, we extended both WebPPL and Stan to run forward and reverse
AIS using the sequence of distributions defined in Eq. (2). The MCMC transition kernels were the
standard ones provided by both platforms. Our first set of experiments was intended to validate that
BREAD can be used to evaluate the accuracy of posterior inference in realistic settings. Next, we
used BREAD to explore the tradeoffs between two different representations of a matrix factorization
model in both WebPPL and Stan.

5.1 Validation

As described above, BREAD returns rigorous bounds on the Jeffreys divergence only when the data
are sampled from the model distribution. Here, we address three ways in which it could potentially
give misleading results. First, the upper bound B may overestimate the true Jeffreys divergence J .
Second, results on simulated data may not correspond to results on real-world data if the simulated
data are not representative of the real-world data. Finally, the fitted hyperparameter procedure of
Section 3.2 may not yield a sample sufficiently representative of the true posterior p(θ,η |D). The
first issue, about the accuracy of the bound, is addressed in Appendix B.1.1; the bound appears to be
fairly close to the true Jeffreys divergence on some toy distributions. We address the other two issues
in this section. In particular, we attempted to validate that the behavior of the method on simulated
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Figure 1: (a) Validation of the consistency of the behavior of forward AIS on real and simulated data for
the logistic regression model. Since the log-ML values need not match between the real and simulated data,
the y-axes for each curve are shifted based on the maximum log-ML lower bound obtained by forward AIS.
(b) Same as (a), but for matrix factorization. The complete set of results on all datasets is given in Appendix D.
(c) Validation of the fitted hyperparameter scheme on the logistic regression model (see Section 5.1.2 for details).
Reverse AIS curves are shown as the number of Gibbs steps used to initialize the hyperparameters is varied.

data is consistent with that on real data, and that the fitted-hyperparameter samples can be used as a
proxy for samples from the posterior. All experiments in this section were performed using Stan.

5.1.1 Validating consistency of inference behavior between real and simulated data

To validate BREAD in a realistic setting, we considered five models based on examples from the Stan
manual [Sta], and chose a publicly available real-world dataset for each model. These models include:
linear regression, logistic regression, matrix factorization, autoregressive time series modeling, and
mixture-of-Gaussians clustering. See Appendix C for model details and Stan source code.

In order to validate the use of simulated data as a proxy for real data in the context of BREAD,
we fit hyperparameters to the real-world datasets and simulated data from those hyperparameters,
as described in Section 3.2. In Fig. 1 and Appendix D, we show the distributions of forward and
reverse AIS estimates on simulated data and forward AIS estimates on real-world data, based on 100
AIS chains for each condition.2 Because the distributions of AIS estimates included many outliers,
we visualize quartiles of the estimates rather than means.3 The real and simulated data need not
have the same marginal likelihood, so the AIS estimates for real and simulated data are shifted
vertically based on the largest forward AIS estimate obtained for each model. For all five models
under consideration, the forward AIS curves were nearly identical (up to a vertical shift), and the
distributions of AIS estimates were very similar at each number of AIS steps. (An example where the
forward AIS curves failed to match up due to model misspecification is given in Appendix D.) Since
the inference behavior appears to match closely between the real and simulated data, we conclude
that data simulated using fitted hyperparameters can be a useful proxy for real data when evaluating
inference algorithms.

5.1.2 Validating the approximate posterior over hyperparameters

As described in Section 3.2, when we simulate data from fitted hyperparameters, we use an ap-
proximate (rather than exact) posterior sample (η?,θ?) to initialize the reverse chain. Because of
this, BREAD is not mathematically guaranteed to upper bound the Jeffreys divergence even on the
simulated data. In order to determine the effect of this approximation in practice, we repeated the
procedure of Section 5.1.1 for all five models, but varying S, the number of MCMC steps used to
obtain (η?,θ?), with S ∈ {10, 100, 1000, 10000}. The reverse AIS estimates are shown in Fig. 1
and Appendix D. (We do not show the forward AIS estimates because these are unaffected by S.) In
all five cases, the reverse AIS curves were statistically indistinguishable. This validates our use of
fitted hyperparameters, as it suggests that the use of approximate samples of hyperparameters has
little impact on the reverse AIS upper bounds.

2The forward AIS chains are independent, while the reverse chains share an initial state.
3Normally, such outliers are not a problem for AIS, because one averages the weights wT , and this average is

insensitive to extremely small values. Unfortunately, the analysis of Section 3.1 does not justify such averaging,
so we report estimates corresponding to individual AIS chains.
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Figure 2: Comparison of Jeffreys divergence bounds for matrix factorization in Stan and WebPPL, using the
collapsed and uncollapsed formulations. Given as a function of (a) number of MCMC steps, (b) running time.

5.2 Scientific findings produced by BREAD

Having validated various aspects of BREAD, we applied it to investigate the choice of model represen-
tation in Stan and WebPPL. During our investigation, we also uncovered a bug in WebPPL, indicating
the potential usefulness of BREAD as a means of testing the correctness of an implementation.

5.2.1 Comparing model representations

Many models can be written in more than one way, for example by introducing or collapsing latent
variables. Performance of probabilistic programming languages can be sensitive to such choices of
representation, and the representation which gives the best performance may vary from one language
to another. We consider the matrix factorization model described above, which we now specify in
more detail. We approximate an N × D matrix Y as a low rank matrix, the product of matrices
U and V with dimensions N × K and K × D respectively (where K < min(N,D)). We use a
spherical Gaussian observation model, and spherical Gaussian priors on U and V:

uik ∼ N (0, σ2
u) vkj ∼ N (0, σ2

v) yij | ui,vj ∼ N (u>i vj , σ
2)

We can also collapse U to obtain the model vkj ∼ N (0, σ2
v) and yi | V ∼ N (0, σuV

>V + σI).
In general, collapsing variables can help MCMC samplers mix faster at the expense of greater
computational cost per update. The precise tradeoff can depend on the size of the model and dataset,
the choice of MCMC algorithm, and the underlying implementation, so it would be useful to have a
quantitative criterion to choose between them.

We fixed the values of all hyperparameters to 1, and set N = 50, K = 5 and D = 25. We ran
BREAD on both platforms (Stan and WebPPL) and for both formulations (collapsed and uncollapsed)
(see Fig. 2). The simulated data and exact posterior sample were shared between all conditions in
order to make the results directly comparable.

As predicted, the collapsed sampler resulted in slower updates but faster convergence (in terms of
the number of steps). However, the per-iteration convergence benefit of collapsing was much larger
in WebPPL than in Stan (perhaps because of the different underlying inference algorithm). Overall,
the tradeoff between efficiency and convergence speed appears to favour the uncollapsed version in
Stan, and the collapsed version in WebPPL (see Fig. 2(b)). (Note that this result holds only for our
particular choice of problem size; the tradeoff may change given different model or dataset sizes.)
Hence BREAD can provide valuable insights into the tricky question of which representations of
models to choose to achieve faster convergence.

5.2.2 Debugging

Mathematically, the forward and reverse AIS chains yield lower and upper bounds on log p(y) with
high probability; if this behavior is not observed, that indicates a bug. In our experimentation with
WebPPL, we observed a case where the reverse AIS chain yielded estimates significantly lower than
those produced by the forward chain, inconsistent with the theoretical guarantee. This led us to
find a subtle bug in how WebPPL sampled from a multivariate Gaussian distribution (which had the
effect that the exact posterior samples used to initialize the reverse chain were incorrect).4 These
days, while many new probabilistic programming languages are emerging and many are in active
development, such debugging capabilities provided by BREAD can potentially be very useful.

4Issue: https://github.com/probmods/webppl/issues/473
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A Importance sampling analysis of AIS

This is well known and appears even in [Nea01]. We present it here in order to provide some foundation for the
analysis of the bias of the log marginal likelihood estimators and the relationship to the Jeffreys divergence.

Neal [Nea01] justified AIS by showing that it is a simple importance sampler over an extended state space: To
see this, note that the joint distribution of the sequence of states x1, . . . ,xT−1 visited by the algorithm has joint
density

qfwd(x1, . . . ,xT−1) = p1(x1) T2(x2 |x1) · · · TT−1(xT−1 |xT−2), (13)

and, further note that, by reversibility,

Tt(x′ |x) = Tt(x |x′)
pt(x

′)

pt(x)
= Tt(x |x′)

ft(x
′)

ft(x)
. (14)

Then, applying Eq. (1)

E[w] = E
[ T∏

t=2

ft(xt−1)

ft−1(xt−1)

]
(15)

= E
[
fT (xT−1)

f1(x1)

f2(x1)

f2(x2)
· · · fT−1(xT−2)

fT−1(xT−1)

]
(16)

=
ZT

Z1
E
[
pT (xT−1)

p1(x1)

T2(x1 |x2)

T2(x2 |x1)
· · · TT−1(xT−2 |xT−1)

TT−1(xT−1 |xT−2)

]
(17)

=
ZT

Z1
E
[
qrev(x1, . . . ,xT−1)

qfwd(x1, . . . ,xT−1)

]
(18)

=
ZT

Z1
, (19)

where

qrev(x1, . . . ,xT−1) = pT (xT−1) TT−1(xT−2 |xT−1) · · · T2(x1 |x2) (20)

is the density of a hypothetical reverse chain, where xT−1 is first sampled exactly from the distribution pT , and
the transition operators are applied in the reverse order. (In practice, the intractability of pT generally prevents
one from simulating the reverse chain.)

B How tight is the Jeffreys divergence upper bound?

In Section 3.1, we derived an estimator B̂ which upper bounds in expectation the Jeffreys divergence J between
the true posterior distribution and the distribution of approximate samples produced by AIS, i.e., E[B̂] > J .
It can be seen from Eqs. (7) and (10) that the expectation B , E[B̂] is the Jeffreys divergence between the
distributions over the forward and reverse chains:

B = E[log R̂−1
rev − log R̂]

= DKL(qfwd(xT ) qfwd(v |xT ) ‖ pT (xT ) qrev(v |xT )) +

+ DKL(pT (xT ) qrev(v|xT ) ‖ qfwd(xT ) qfwd(v |xT ))

= DKL(qfwd(v,xT ) ‖ qrev(v,xT )) + DKL(qrev(v,xT ) ‖ qfwd(v,xT ))

= DJ(qfwd(v,xT ) ‖ qrev(v,xT )) (21)

One might intuitively expect B to be a very loose upper bound on J , as it is a divergence over a much larger
domain (specifically, of size |X |T , compared with |X |). In order to test this empirically, we have evaluated both
J and B on several toy distributions for which both quantities can be tractably computed. We found the naïve
intuition to be misleading — on some of these distributions, B is a good proxy for J . In this section, we describe
how to exactly compute B and J in small discrete spaces; experimental results are given in Appendix B.1.1

B.1 Methods

Even when the domain X is a small discrete set, distributions over the extended state space are too large
to represent explicitly. However, because both the forward and reverse chains are Markov chains, all of the
marginal distributions qfwd(xt,xt+1) and qrev(xt,xt+1) can be computed using the forward pass of the
Forward–Backward algorithm. The final-state divergence J can be computed directly from the marginals over
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Figure 3: Comparing the true Jeffreys divergence J against our upper bound B for the toy distributions of
Fig. 4. Solid lines: J . Dashed lines: B.

β = 0.1 β = 0.25 β = 0.5 p(x) q(x)

EASY RANDOM

HARD RANDOM

BARRIER

Figure 4: Visualizations of the toy distributions used for analyzing the tightness of our bound. Columns
1-3: intermediate distributions for various inverse temperatures β. Column 4: target distribution. Column 5:
Distribution of approximate samples produced by AIS with 100 intermediate distributions.

xT . The KL divergence DKL(qfwd ‖ qrev) can be computed as:

DKL(qfwd ‖ qrev) = Eqfwd(x1,...,xT ) [log qfwd(x1, . . . ,xT )− log qrev(x1, . . . ,xT )] (22)

= Eqfwd(x1) [log qfwd(x1)− log qrev(x1)] +

+

T−1∑
t=1

Eqfwd(xt,xt+1) [log qfwd(xt+1 |xt)− log qrev(xt+1 |xt)] , (23)

and analogously for DKL(qrev ‖ qfwd). B is the sum of these quantities.

B.1.1 Experiments

To validate the upper bound B as a measure of the accuracy of an approximate inference engine, we must first
check that it accurately reflects the true Jeffreys divergence J . This is hard to do in realistic settings since J
is generally unavailable, but we can evaluate both quantities on small toy distributions using the technique of
Appendix B.1.

We considered several toy distributions, where the domain X was taken to be a 7 × 7 grid. In all cases, the
MCMC transition operator was Metropolis-Hastings, where the proposal distribution was uniform over moving
one step in the four coordinate directions. (Moves which landed outside the grid were rejected.) For the
intermediate distributions, we used geometric averages with a linear schedule for β.

First, we generated random unnormalized target distributions f(x) = exp(g(x)), where each entry of g was
sampled independently from the normal distribution N (0, σ). When σ is small, the M-H sampler is able to
explore the space quickly, because most states have similar probabilities, and therefore most M-H proposals are
accepted. However, when σ is large, the distribution fragments into separated modes, and it is slow to move from
one mode to another using a local M-H kernel. We sampled random target distributions using σ = 2 (which we
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refer to as EASY RANDOM) and σ = 10 (which we refer to as HARD RANDOM). The target distributions, as
well as some of the intermediate distributions, are shown in Fig. 4.

The other toy distribution we considered consists of four modes separated by a deep energy barrier. The
unnormalized target distribution is defined by:

f(x) =

 e3 in the upper right quadrant
1 in the other three quadrants
e−10 on the barrier

(24)

In the target distribution, the dominant mode makes up about 87% of the probability mass. Fig. 4 shows the target
function as well as some of the AIS intermediate distributions. This example illustrates a common phenomenon
in AIS, whereby the distribution splits into different modes at some point in the annealing process, and then the
relative probability mass of those modes changes. Because of the energy barrier, we refer to this example as
BARRIER.

The distributions of approximate samples produced by AIS with T = 100 intermediate distributions are shown
in Fig. 4. For EASY RANDOM, the approximate distribution is quite accurate, with J = 0.13. However, for
the other two examples, the probability mass is misallocated between different modes because the sampler has a
hard time moving between them. Correspondingly, the Jeffreys divergences are J = 4.73 and J = 1.65 for
HARD RANDOM and BARRIER, respectively.

How well are these quantities estimated by the upper bound B? Fig. 3 shows both J and B for all three toy
distributions and numbers of intermediate distributions varying from 10 to 100,000. In the case of EASY
RANDOM, the bound is quite far off: for instance, with 1000 intermediate distributions, J ≈ 0.00518 and
B ≈ 0.0705, which differ by more than a factor of 10. However, the bound is more accurate in the other two
cases: for HARD RANDOM, J ≈ 1.840 and B ≈ 2.309, a relative error of 26%; for BARRIER, J ≈ 1.085
and B ≈ 1.184, a relative error of about 9%. In these cases, according to Fig. 3, the upper bound remains
accurate across several orders of magnitude in the number of intermediate distributions and in the true divergence
J . Roughly speaking, it appears that most of the difference between the forward and reverse AIS chains is
explained by the difference in distributions over the final state. Even the extremely conservative bound in the
case of EASY RANDOM is potentially quite useful, as it still indicates that the inference algorithm is performing
well, in contrast with the other two cases.

Overall, we conclude that on these toy distributions, the upper bound B is accurate enough to give meaningful
information about J . This motivates using B as a diagnostic for evaluating approximate inference algorithms
when J is unavailable.

C Models and datasets

• Linear regression. Targets are modeled as a linear function of input variables, plus spherical Gaussian
noise. Regression weights are assigned a spherical Gaussian prior. Variances of both Gaussians are
drawn from a broad inverse-gamma prior.
Dataset: A standardized version of the NHEFS dataset5, which consists of several health-related
attributes for 1746 people. We pick 5 of them namely gender, age, race, years of smoking and whether
they quit smoking to predict weight gain between 1971 and 1982.

data {
int N;
int K;
matrix[N,K] x;
vector[N] y;

}

parameters {
// Hyperparameters.
real<lower=0> sigma_sq;
real<lower=0> scale_sq;

// Parameters.
real alpha;
vector[K] beta;

}

5http://cdn1.sph.harvard.edu/wp-content/uploads/sites/1268/2015/07/
nhefs_book.xlsx
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model {
// Sampling hyperparameters.
sigma_sq ~ inv_gamma(1, 1);
scale_sq ~ inv_gamma(1, 1);

// Sampling parameters.
alpha ~ normal(0, sqrt(scale_sq));
for (k in 1:K)

beta[k] ~ normal(0, sqrt(scale_sq));

// Sampling data.
{

vector[N] mu;
mu <- x * beta + alpha;
for (i in 1:N)

y[i] ~ normal(mu[i], sqrt(sigma_sq));
}

}

• Logistic regression. Targets are Bernoulli distributed with mean parameters which are log-linear
functions of the inputs. Regression weights are sampled from a spherical Gaussian distribution whose
variance is assigned a broad inverse-gamma prior.
Dataset: A standardized version of the Pima Indian Diabetes Dataset6 which contains 8 health-related
attributes for 768 women of Pima Indian heritage such as age, body mass index, diastolic blood
pressure, number of times pregnant etc. The task is to predict whether a woman has diabetes.

data {
int N;
int K;
matrix[N,K] x;
int y[N];

}

parameters {
// Hyperparameters.
real<lower=0> scale_sq;

// Parameters.
real alpha;
vector[K] beta;

}

model {
// Sampling hyperparameters.
scale_sq ~ inv_gamma(1, 1);

// Sampling parameters.
alpha ~ normal(0, sqrt(scale_sq));
for (k in 1:K)

beta[k] ~ normal(0, sqrt(scale_sq));

// Sampling data.
{

vector[N] mu;
mu <- x * beta + alpha;
for (i in 1:N)

y[i] ~ bernoulli(inv_logit(mu[i]));
}

}

• Matrix factorization. The dataset, a fully or partially observed matrix, is modelled as a low-rank
matrix (i.e. a product of two matrices), plus Gaussian noise. Elements of the factors are assigned
spherical Gaussian priors. Variances of all Gaussians are drawn from broad inverse-gamma priors.

6https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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Dataset: A subset of the MovieLens 100k dataset7, which consists of movie ratings given by a set
of viewers on a scale from 1 to 5. We picked the 50 most engaged viewers and the 50 most viewed
movies, and assume 5 latent dimensions. We normalized the ratings to have mean 0.

data {
int N;
int L;
int D;
matrix[N,D] Y;

}

parameters {
// Hyperparameters.
real<lower=0> scale_u_sq;
real<lower=0> scale_v_sq;
real<lower=0> sigma_sq;

// Parameters.
matrix[N,L] U;
matrix[L,D] V;

}

model {
matrix[N,D] UV;

// Sampling hyperparameters.
scale_u_sq ~ inv_gamma(1, 1);
scale_v_sq ~ inv_gamma(1, 1);
sigma_sq ~ inv_gamma(1, 1);

// Sampling parameters.
for (i in 1:N)

for (j in 1:L)
U[i,j] ~ normal(0, sqrt(scale_u_sq));

for (i in 1:L)
for (j in 1:D)

V[i,j] ~ normal(0, sqrt(scale_v_sq));

// Sampling data.
UV <- U * V;
for (i in 1:N)

for (j in 1:D)
if (Y[i,j] > -999999)

Y[i,j] ~ normal(UV[i,j], sqrt(
sigma_sq));

}

• Time series modeling. We use an autoregressive time series model of order one, where the next
data point is modelled as a linear function of the previous data point, plus Gaussian noise. Since the
autoregressive coefficient is likely to be close to 1, we assign it a Gaussian prior with mean 1 and a
small variance. The bias term is assigned a standard Gaussian prior, and the noise variance is assigned
a broad inverse-gamma prior. All three are treated as hyperparameters.
Dataset: Daily stock prices of Google, Inc. from 2-7-2005 to 7-7-20058, with 105 time steps in all.

data {
int<lower=0> N;
real y[N];

}

parameters {
// Hyperparameters.

7http://grouplens.org/datasets/movielens/100k/
8https://onlinecourses.science.psu.edu/stat501/sites/onlinecourses.

science.psu.edu.stat501/files/ch15/google_stock.txt
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real alpha;
real beta;
real<lower=0> sigma_sq;

// Parameters.
}

model {
// Sampling hyperparameters.
alpha ~ normal(0, 1);
beta ~ normal(1, 0.1);
sigma_sq ~ inv_gamma(1, 1);

// Sampling parameters.

// Sampling data.
for (n in 2:N)
y[n] ~ normal(alpha + beta * y[n-1], sqrt(sigma_sq));

}

• Clustering. A mixture of finite Gaussians (one for each cluster), plus Gaussian noise. Mixture means
are assigned spherical Gaussian priors and the mixing proportions are assigned a flat Dirichlet prior.
The inter- and intra- cluster variances are drawn from broad inverse-gamma priors.
Dataset: A standardized version of the Old-Faithful dataset9, which contains 272 pairs of waiting time
between eruptions and the durations of eruption for the Old Faithful geyser in Yellowstone National
Park, Wyoming, USA. We set the number of clusters to 2.

data {
int<lower=0> N;
int<lower=0> D;
int<lower=0> K;
vector[D] y[N];

}

transformed data {
real HALF_D_LOG_TWO_PI;
vector[K] ONES_VECTOR;

HALF_D_LOG_TWO_PI <- 0.5 * D * log(2 * 3.14159);
for (k in 1:K)
ONES_VECTOR[k] <- 1;

}

parameters {
// Hyperparameters.
real<lower=0> scale_sq;
real<lower=0> sigma_sq;

// Parameters.
vector[D] mu[K];
simplex[K] pi;

}

transformed parameters {
real z[N,K];
for (n in 1:N)
for (k in 1:K)
z[n, k] <- log(pi[k]) - HALF_D_LOG_TWO_PI - 0.5 * D * log(

sigma_sq) - 0.5 * (dot_self(mu[k] - y[n]) / sigma_sq);
}

model {
// Sampling hyperparameters.

9http://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat

15

http://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat


scale_sq ~ inv_gamma(1, 1);
sigma_sq ~ inv_gamma(1, 1);

// Sampling parameters.
for (k in 1:K)
for (d in 1:D)
mu[k,d] ~ normal(0, sqrt(scale_sq));

pi ~ dirichlet(ONES_VECTOR);

// Sampling data.
for (n in 1:N)
increment_log_prob(log_sum_exp(z[n]));

}

D Full experimental results

Here we report the full set of experimental results on all models we considered. See Section 5.1 for descriptions
of the experimental protocols.

Our complete set of results for real-data validation, shown in Fig. 5, includes one case where the forward AIS
curves failed to line up due to model misspecification. In particular, the first time we ran the experiment with
the matrix factorization model on the Movielens dataset, we had not centered the ratings to be zero mean. This
resulted in model misspecification, because the factorization model as we defined it did not include an intercept
term. As shown in Fig. 5(e), the forward AIS curves failed to match. We then normalized the ratings to have
zero mean and re-ran the experiment. As shown in Fig. 5(f), the forward AIS curves matched quite well after
normalization. This is the only case where we observed a mismatch in inference behavior between real and
simulated data.
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Figure 5: Validation of the consistency of the behavior of forward AIS on real and simulated data. Since the
log-ML values need not match between the real and simulated data, the y-axes for each curve are shifted based
on the maximum log-ML lower bound obtained by forward AIS. In most cases, the forward AIS curves have a
broadly similar shape, suggesting the simulated data is a good proxy for the real-world data. (a) linear regression
(b) logistic regression (c) time series modeling (d) clustering (e) matrix factorization, with uncentered data (f)
matrix factorization, with centered data
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Figure 6: Validation of the fitted hyperparameter scheme (see Section 5.1.2 for details). Reverse AIS curves
are shown as the number of Gibbs steps used to initialize the hyperparameters is varied. There appear to be
no significant differences between the conditions. (a) linear regression (b) logistic regression (c) time series
modeling (d) clustering (e) matrix factorization
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