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Abstract
Second-order optimization methods such as nat-
ural gradient descent have the potential to speed
up training of neural networks by correcting for
the curvature of the loss function. Unfortunately,
the exact natural gradient is impractical to com-
pute for large models, and most approximations
either require an expensive iterative procedure
or make crude approximations to the curvature.
We present Kronecker Factors for Convolution
(KFC), a tractable approximation to the Fisher
matrix for convolutional networks based on a
structured probabilistic model for the distribution
over backpropagated derivatives. Similarly to the
recently proposed Kronecker-Factored Approxi-
mate Curvature (K-FAC), each block of the ap-
proximate Fisher matrix decomposes as the Kro-
necker product of small matrices, allowing for ef-
ficient inversion. KFC captures important curva-
ture information while still yielding comparably
efficient updates to stochastic gradient descent
(SGD). We show that the updates are invariant
to commonly used reparameterizations, such as
centering of the activations. In our experiments,
approximate natural gradient descent with KFC
was able to train convolutional networks several
times faster than carefully tuned SGD. Further-
more, it was able to train the networks in 10-20
times fewer iterations than SGD, suggesting its
potential applicability in a distributed setting.

1. Introduction
Despite advances in optimization, most neural networks are
still trained using variants of stochastic gradient descent
(SGD) with momentum. It has been suggested that natu-
ral gradient descent (Amari, 1998) could greatly speed up
optimization because it accounts for the geometry of the
optimization landscape and has desirable invariance prop-
erties. (See Martens (2014) for a review.) Unfortunately,
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computing the exact natural gradient is intractable for large
networks, as it requires solving a large linear system in-
volving the Fisher matrix, whose dimension is the number
of parameters (potentially tens of millions for modern ar-
chitectures). Approximations to the natural gradient typi-
cally either impose very restrictive structure on the Fisher
matrix (e.g. LeCun et al., 1998; Le Roux et al., 2008) or
require expensive iterative procedures to compute each up-
date, analogously to approximate Newton methods (e.g.
Martens, 2010). An ongoing challenge has been to develop
a curvature matrix approximation which reflects enough
structure to yield high-quality updates, while introducing
minimal computational overhead beyond the standard gra-
dient computations.

Much progress in machine learning has been driven by
the development of structured probabilistic models whose
independence structure allows for efficient computations,
yet which still capture important dependencies between the
variables of interest. In our case, since the Fisher ma-
trix is the covariance of the backpropagated log-likelihood
derivatives, we are interested in modeling the distribution
over these derivatives. The model must support efficient
computation of the inverse covariance, as this is what’s
required to compute the natural gradient. Recently, the
Factorized Natural Gradient (FANG) (Grosse & Salakhut-
dinov, 2015) and Kronecker-Factored Approximate Cur-
vature (K-FAC) (Martens & Grosse, 2015) methods ex-
ploited probabilistic models of the derivatives to efficiently
compute approximate natural gradient updates. In its sim-
plest version, K-FAC approximates each layer-wise block
of the Fisher matrix as the Kronecker product of two much
smaller matrices. These (very large) blocks can then be
can be tractably inverted by inverting each of the two fac-
tors. K-FAC was shown to greatly speed up the training of
deep autoencoders. However, its underlying probabilistic
model assumed fully connected networks with no weight
sharing, rendering the method inapplicable to two archi-
tectures which have recently revolutionized many applica-
tions of machine learning — convolutional networks (Le-
Cun et al., 1989; Krizhevsky et al., 2012) and recurrent neu-
ral networks (Hochreiter & Schmidhuber, 1997; Sutskever
et al., 2014).

We introduce Kronecker Factors for Convolution (KFC), an
approximation to the Fisher matrix for convolutional net-
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works. Most modern convolutional networks have trainable
parameters only in convolutional and fully connected lay-
ers. Standard K-FAC can be applied to the latter; our contri-
bution is a factorization of the Fisher blocks corresponding
to convolution layers. KFC is based on a structured proba-
bilistic model of the backpropagated derivatives where the
activations are independent of the derivatives, the activa-
tions and derivatives are spatially homogeneous, and the
derivatives are spatially uncorrelated. Under these approx-
imations, we show that the Fisher blocks for convolution
layers decompose as a Kronecker product of smaller matri-
ces (analogously to K-FAC), yielding tractable updates.

KFC yields a tractable approximation to the Fisher matrix
of a conv net. It can be used directly to compute approxi-
mate natural gradient descent updates, as we do in our ex-
periments. One could further combine it with the adap-
tive step size, momentum, and damping methods from the
full K-FAC algorithm (Martens & Grosse, 2015). It could
also potentially be used as a pre-conditioner for iterative
second-order methods (Martens, 2010; Vinyals & Povey,
2012; Sohl-Dickstein et al., 2014). We show that the ap-
proximate natural gradient updates are invariant to widely
used reparameterizations of a network, such as whitening
or centering of the activations.

We have evaluated our method on training conv nets on ob-
ject recognition benchmarks. In our experiments, KFC was
able to optimize conv nets several times faster than care-
fully tuned SGD with momentum, in terms of both training
and test error. Furthermore, it required 10-20 times fewer
iterations, suggesting its usefulness in the context of highly
distributed training algorithms.

2. Background
In this section, we outline the K-FAC method as previously
formulated for standard fully-connected feed-forward net-
works without weight sharing (Martens & Grosse, 2015).
Each layer of a fully connected network computes activa-
tions as:

s` = W`ā`−1 (1)
a` = φ`(s`), (2)

where ` ∈ {1, . . . , L} indexes the layer, s` denotes the
inputs to the layer, a` denotes the activations, W̄` =
(b` W`) denotes the matrix of biases and weights, ā` =
(1 a>` )> denotes the activations with a homogeneous di-
mension appended, and φ` denotes a nonlinear activation
function (usually applied coordinate-wise). (Throughout
this paper, we will use the index 0 for all homogeneous co-
ordinates.) We will refer to the values s` as pre-activations.
By convention, a0 corresponds to the inputs x and aL cor-
responds to the prediction z made by the network. For con-
venience, we concatenate all of the parameters of the net-
work into a vector θ = (vec(W1)>, . . . , vec(WL)>)>,
where vec denotes the Kronecker vector operator which
stacks the columns of a matrix into a vector. We denote

the function computed by the network as f(x,θ) = aL.

Typically, a network is trained to minimize an objective
h(θ) given by L(y, f(x,θ)) as averaged over the training
set, where L(y, z) is a loss function. The gradient ∇h of
h(θ), which is required by most optimization methods, is
estimated stochastically using mini-batches of training ex-
amples. (We will often drop the explicit θ subscript when
the meaning is unambiguous.)

For the remainder of this paper, we will assume the net-
work’s prediction f(x,θ) determines the value of the pa-
rameter z of a distribution Ry|z over y, and the loss func-
tion is the corresponding negative log-likelihoodL(y, z) =
− log r(y|z).

2.1. Second-order optimization of neural networks

Second-order optimization methods work by computing a
parameter update v that minimizes (or approximately min-
imizes) a local quadratic approximation to the objective,
given by h(θ) = ∇θh

>v + 1
2v>Cv, where C is a ma-

trix which quantifies the curvature of the cost function h
at θ. The exact solution to this minimization problem can
be obtained by solving the linear system Cv = −∇θh.
The original and most well-known example is Newton’s
method, where C is chosen to be the Hessian matrix;
this isn’t appropriate in the non-convex setting because of
the well-known problem that it searches for critical points
rather than local optima (e.g. Pascanu et al., 2014). There-
fore, it is more common to use natural gradient (Amari,
1998) or updates based on the generalized Gauss-Newton
matrix (Schraudolph, 2002), which are guaranteed to pro-
duce descent directions because the curvature matrix C is
positive semidefinite.

Natural gradient descent can be usefully interpreted as
a second-order method (Martens, 2014) where C is the
Fisher information matrix F, as given by

F = E x∼pdata
y∼Ry|f(x,θ)

[
Dθ(Dθ)>

]
, (3)

where pdata denotes the training distribution, Ry|f(x,θ)

denotes the model’s predictive distribution, and Dθ =
∇θL(y, f(x,θ)) is the log-likelihood gradient. For the re-
mainder of this paper, all expectations are with respect to
this distribution (which we term the model’s distribution),
so we will leave off the subscripts. (In this paper, we will
use the D notation for log-likelihood derivatives; deriva-
tives of other functions will be written out explicitly.) In
the case where Ry|z corresponds to an exponential family
model with “natural” parameters given by z, F is equiv-
alent to the generalized Gauss-Newton matrix (Martens,
2014), which is an approximation of the Hessian which has
also seen extensive use in various neural-network optimiza-
tion methods (e.g. Martens, 2010; Vinyals & Povey, 2012).

F is an n × n matrix, where n is the number of param-
eters and can be in the tens of millions for modern deep
architectures. Therefore, it is impractical to represent F
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explicitly in memory, let alone solve the linear system ex-
actly. There are two general strategies one typically takes
to find a good search direction: either impose a structure on
F enabling fast inversion (e.g. LeCun et al., 1998; Le Roux
et al., 2008; Grosse & Salakhutdinov, 2015), or use an it-
erative procedure to approximately solve the linear system
(e.g. Martens, 2010). These two strategies are not mutu-
ally exclusive: tractable curvature approximations can be
used as preconditioners in second order optimization, and
this has been observed to make a large difference (Martens,
2010; Chapelle & Erhan, 2011; Vinyals & Povey, 2012).

2.2. Kronecker-factored approximate curvature

Kronecker-factored approximate curvature (K-FAC;
Martens & Grosse, 2015) is a recently proposed optimiza-
tion method for neural networks which can be seen as
a hybrid of the two approximation strategies: it uses a
tractable approximation to the Fisher matrix F, but also
uses an optimization strategy which behaves locally like
conjugate gradient. This section gives a conceptual sum-
mary of the aspects of K-FAC relevant to the contributions
of this paper; a precise description of the full algorithm is
given in Appendix B.2.

The block-diagonal version of K-FAC (which is the simpler
of the two versions, and is what we will present here) is
based on two approximations to F which together make it
tractable to invert. First, weight derivatives in different lay-
ers are assumed to be uncorrelated, which corresponds to F
being block diagonal, with one block per layer. Each block
is given by E[vec(DW̄`) vec(DW̄`)

>]. This approxima-
tion by itself is insufficient, because each of the blocks may
still be very large. (E.g., if a network has 1,000 units in
each layer, each block would be of size 106× 106.) For the
second approximation, observe that

E
[
D[W̄`]ijD[W̄`]i′j′

]
= E [D[s`]i[ā`−1]jD[s`]i′ [ā`−1]j′ ] .

If we approximate the activations and pre-
activation derivatives as independent, this can
be decomposed as E

[
D[W̄`]ijD[W̄`]i′j′

]
≈

E [D[s`]iD[s`]i′ ]E [[ā`−1]j [ā`−1]j′ ]. This can be written
algebraically as a decomposition into a Kronecker product
of two smaller matrices:

E[vec(W̄`) vec(W̄`)
>] ≈ Ψ`−1 ⊗ Γ` , F̂`, (4)

where Ψ`−1 = E[ā`−1ā
>
`−1] and Γ` = E[s`s

>
` ] denote

the second moment matrices of the activations and pre-
activation derivatives, respectively. Call the block diagonal
approximate Fisher matrix, with blocks given by Eqn. 4,
F̂. The two factors are estimated online from the empiri-
cal moments of the model’s distribution using exponential
moving averages.

To invert F̂, we use the facts that (1) we can invert a block
diagonal matrix by inverting each of the blocks, and (2)
the Kronecker product satisfies the identity (A ⊗B)−1 =

A−1 ⊗B−1:

F̂−1 =

Ψ−1
0 ⊗ Γ−1

1 0
. . .

0 Ψ−1
L−1 ⊗ Γ−1

L

 (5)

We do not represent F̂−1 explicitly, as each of the blocks is
quite large. Instead, we keep track of each of the Kronecker
factors.

The approximate natural gradient F̂−1∇h can then be com-
puted as follows:

F̂−1∇h =

 vec
(
Γ−1

1 (∇W̄1
h)Ψ−1

0

)
...

vec
(
Γ−1
L (∇W̄L

h)Ψ−1
L−1

)
 (6)

We would often like to add a multiple of the identity ma-
trix to F for two reasons. First, many networks are regu-
larized with weight decay, which corresponds to a penalty
of 1

2λθ
>θ, for some parameter λ. Following the interpre-

tation of F as a quadratic approximation to the curvature,
it would be appropriate to use F + λI to approximate the
curvature of the regularized objective. The second reason
is that the local quadratic approximation of h implicitly
used when computing the natural gradient may be inaccu-
rate over the region of interest, owing to the approximation
of F by F̂, to the approximation of the Hessian by F, and
finally to the error associated with approximating h as lo-
cally quadratic in the first place. A common way to ad-
dress this issue is to damp the updates by adding γI to the
approximate curvature matrix, for some small value γ, be-
fore minimizing the local quadratic model. Therefore, we

would ideally like to compute
[
F̂ + (λ+ γ)I

]−1

∇h.

Unfortunately, adding (λ + γ)I breaks the Kronecker fac-
torization structure. While it is possible to exactly solve the
damped system (see Appendix B.2), it is often preferable to
approximate F̂ + (λ+ γ)I in a way that maintains the fac-
torizaton structure. Martens & Grosse (2015) pointed out
that

F̂`+(λ+γ)I ≈
(
Ψ`−1 + π`

√
λ+ γ I

)
⊗
(

Γ` +
1

π`

√
λ+ γ I

)
.

(7)
We will denote this damped approximation as F̂

(γ)
` =

Ψ
(γ)
`−1⊗Γ

(γ)
` . Mathematically, π` can be any positive scalar,

but Martens & Grosse (2015) suggest the formula

π` =

√
‖Ψ`−1 ⊗ I‖
‖I⊗ Γ`‖

, (8)

where ‖ · ‖ denotes some matrix norm, as this value mini-
mizes the norm of the residual in Eqn. 7. In this work, we
use the trace norm ‖B‖ = tr B. The approximate natural
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gradient ∇̂h is then computed as:

∇̂h , [F̂(γ)]−1∇h =


vec
(

[Γ
(γ)
1 ]−1(∇W̄1

h)[Ψ
(γ)
0 ]−1

)
...

vec
(

[Γ
(γ)
L ]−1(∇W̄L

h)[Ψ
(γ)
L−1]−1

)

(9)

The algorithm as presented by Martens & Grosse (2015)
has many additional elements which are orthogonal to the
contributions of this paper. For concision, a full description
of the algorithm is relegated to Appendix B.2.

2.3. Convolutional networks

Convolutional networks can require somewhat crufty nota-
tion when the computations are written out in full. In our
case, we are interested in computing correlations of deriva-
tives, which compounds the notational difficulties. In this
section, we summarize the notation we use. (Table 1 lists
all convolutional network notation used in this paper.) In
sections which focus on a single layer of the network, we
drop the explicit layer indices.

A convolution layer takes as input a layer of activations
{aj,t}, where j ∈ {1, . . . , J} indexes the input map and
t ∈ T indexes the spatial location. (Here, T is the set of
spatial locations, which is typically a 2-D grid. For sim-
plicity, we assume convolution is performed with a stride
of 1 and padding equal to R, so that the set of spatial
locations is shared between the input and output feature
maps.) This layer is parameterized by a set of weights
wi,j,δ and biases bi, where i ∈ {1, . . . , I} indexes the out-
put map, j indexes the input map, and δ ∈ ∆ indexes the
spatial offset (from the center of the filter). If the filters
are of size (2R + 1) × (2R + 1), then we would have
∆ = {−R, . . . , R} × {−R, . . . , R}. We denote the num-
bers of spatial locations and spatial offsets as |T | and |∆|,
respectively. The convolution layer computes a set of pre-
activations {si,t} as follows:

si,t =
∑
δ∈∆

wi,j,δaj,t+δ + bi, (10)

where bi denotes the bias parameter. The activations are de-
fined to take the value 0 outside of T . The pre-activations
are passed through a nonlinearity such as ReLU to compute
the output layer activations, but we have no need to refer
to this explicitly when analyzing a single layer. (For sim-
plicity, we assume operations such as pooling and response
normalization are implemented as separate layers.)

Pre-activation derivatives Dsi,t are computed during back-
propagation. One then computes weight derivatives as:

Dwi,j,δ =
∑
t∈T

aj,t+δDsi,t. (11)

In some cases, it is useful to introduce vectorized notation
for conv nets. We will represent the activations for a layer

` as a |T |×J matrix A` and the preactivations as a |T |×I
matrix S`. The weights are represented as a I×|∆|J matrix
W`.

2.3.1. EFFICIENT IMPLEMENTATION AND VECTORIZED
NOTATION

For modern large-scale vision applications, it’s necessary
to implement conv nets efficiently for a GPU (or some other
massively parallel computing architecture). Since one con-
tribution of our own work was to exploit the same under-
lying implementation to efficiently compute the statistics
needed by our algorithm, we outline a typical GPU im-
plementation of a conv net. As a bonus, discussing the
implementation gives us a convenient high-level notation
for analyzing conv nets mathematically. Due to space con-
strants, we relegate this material to Appendix A. This ap-
pendix also contains a table of all conv net notation used in
this paper.

3. Kronecker factorization for convolution
layers

We begin by assuming a block-diagonal approximation to
the Fisher matrix like that of K-FAC, where each block
contains all the parameters relevant to one layer (see Sec-
tion 2.2). (Recall that these blocks are typically too large
to invert exactly, or even represent explicitly, which is why
the further Kronecker approximation is required.) The Kro-
necker factorization from K-FAC applies only to fully con-
nected layers. Convolutional networks introduce several
kinds of layers not found in fully connected feed-forward
networks: convolution, pooling, and response normaliza-
tion. Since pooling and response normalization layers
don’t have trainable weights, they are not included in the
Fisher matrix. However, we must deal with convolution
layers. In this section, we present our main contribution,
an approximate Kronecker factorization for the blocks of F̂
corresponding to convolution layers. In the tradition of fast
food puns (Ranzato & Hinton, 2010; Yang et al., 2014), we
call our method Kronecker Factors for Convolution (KFC).

For this section, we focus on the Fisher block for a single
layer, so we drop the layer indices. All conv net notation is
summarized in Appendix A.

Recall that the Fisher matrix F = E
[
Dθ(Dθ)>

]
is the

covariance of the log-likelihood gradient under the model’s
distribution. (In this paper, all expectations are with respect
to the model’s distribution unless otherwise specified.) By
plugging in Eqn. 11, the entries corresponding to weight
derivatives are given by:

E[Dwi,j,δDwi′,j′,δ′ ] = E

[(∑
t∈T

aj,t+δDsi,t

)
(∑
t′∈T

aj′,t′+δ′Dsi′,t′
)]

(12)

To think about the computational complexity of computing
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the entries directly, consider the second convolution layer
of AlexNet (Krizhevsky et al., 2012), which has 48 input
feature maps, 128 output feature maps, 27 × 27 = 729
spatial locations, and 5 × 5 filters. Since there are 128 ×
48×5×5 = 245760 weights and 128 biases, the full block
would require 2458882 ≈ 60.5 billion entries to represent
explicitly, and inversion is clearly impractical.

Recall that K-FAC approximation for classical fully con-
nected networks can be derived by approximating activa-
tions and pre-activation derivatives as being statistically in-
dependent (this is the IAD approximation below). Deriving
an analogous Fisher approximation for convolution layers
will require some additional approximations.

Here are the approximations we will make in deriving our
Fisher approximation:

• Independent activations and derivatives (IAD).
The activations are independent of the pre-activation
derivatives, i.e. {aj,t} ⊥⊥ {Dsi,t′}.

• Spatial homogeneity (SH). The first-order statistics
of the activations are independent of spatial location.
The second-order statistics of the activations and pre-
activation derivatives at any two spatial locations t and
t′ depend only on t′ − t. This implies there are func-
tions M , Ω and Γ such that:

E [aj,t] = M(j) (13)

E [aj,taj′,t′ ] = Ω(j, j′, t′ − t) (14)

E [Dsi,tDsi′,t′ ] = Γ(i, i′, t′ − t). (15)

Note that E[Dsi,t] = 0 under the model’s distribution,
so Cov (Dsi,t,Dsi′,t′) = E [Dsi,tDsi′,t′ ].

• Spatially uncorrelated derivatives (SUD). The pre-
activation derivatives at any two distinct spatial loca-
tions are uncorrelated, i.e. Γ(i, i′, δ) = 0 for δ 6= 0.

We believe SH is fairly innocuous, as one is implicitly mak-
ing a spatial homogeneity assumption when choosing to
use convolution in the first place. SUD perhaps sounds like
a more severe approximation, but in fact appeared to de-
scribe the model’s distribution quite well in the networks
we investigated; this is analyzed empirially in Section 5.1.

We now show that combining the above three approx-
imations yields a Kronecker factorization of the Fisher
blocks. For simplicity of notation, assume the data are two-
dimensional, so that the offsets can be parameterized with
indices δ = (δ1, δ2) and δ′ = (δ′1, δ

′
2), and denote the di-

mensions of the activations map as (T1, T2). The formulas
can be generalized to data dimensions higher than 2 in the
obvious way. For clarity, we leave out the bias parameters
in this section, but these are discussed in Appendix E.

Theorem 1. Combining approximations IAD, SH, and

SUD yields the following factorization:

E [Dwi,j,δDwi′,j′,δ′ ] = β(δ, δ′) Ω(j, j′, δ′ − δ) Γ(i, i′, 0),
(16)

where

β(δ, δ′) , (T1 −max(δ1, δ
′
1, 0) + min(δ1, δ

′
1, 0)) ·

· (T2 −max(δ2, δ
′
2, 0) + min(δ2, δ

′
2, 0)) (17)

Proof. See Appendix E.

To talk about how this fits in to the block diagonal
approximation to the Fisher matrix F, we now restore
the explicit layer indices and use the vectorized nota-
tion from Section 2.3.1. The above factorization yields
a Kronecker factorization of each block, which will be
useful for computing their inverses (and ultimately our
approximate natural gradient). In particular, if F̂` ≈
E[vec(DW̄`) vec(DW̄`)

>] denotes the block of the ap-
proximate Fisher for layer `, Eqn. 16 yields our KFC factor-
ization of F̂` into a Kronecker product of smaller factors:

F̂` = Ω`−1 ⊗ Γ`, (18)

where

[Ω`−1]j|∆|+δ, j′|∆|+δ′ , β(δ, δ′) Ω(j, j′, δ′ − δ)
[Γ`]i,i′ , Γ(i, i′, 0). (19)

(We will derive much simpler formulas for Ω`−1 and Γ` in
the next section.) Using this factorization, the rest of the K-
FAC algorithm can be carried out without modification. For
instance, we can compute the approximate natural gradient
using a damped version of F̂ analogously to Eqns. 7 and 9
of Section 2.2:

F̂
(γ)
` = Ω

(γ)
`−1 ⊗ Γ

(γ)
` (20)

,
(
Ω`−1 + π`

√
λ+ γ I

)
⊗

⊗
(

Γ` +
1

π`

√
λ+ γ I

)
. (21)

∇̂h = [F̂(γ)]−1∇h =


vec
(

[Γ
(γ)
1 ]−1(∇W̄1

h)[Ω
(γ)
0 ]−1

)
...

vec
(

[Γ
(γ)
L ]−1(∇W̄L

h)[Ω
(γ)
L−1]−1

)


(22)

Returning to our running example of AlexNet, W̄` is a
I× (J |∆|+1) = 128×1201 matrix. Therefore the factors
Ω`−1 and Γ` are 1201× 1201 and 128× 128, respectively.
These matrices are small enough that they can be repre-
sented exactly and inverted in a reasonable amount of time,
allowing us to efficiently compute the approximate natural
gradient direction using Eqn. 22.
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3.1. Estimating the factors

Since the true covariance statistics are unknown, we esti-
mate them empirically by sampling from the model’s dis-
tribution, similarly to Martens & Grosse (2015). To sam-
ple derivatives from the model’s distribution, we select a
mini-batch, sample the outputs from the model’s predictive
distribution, and backpropagate the derivatives.

We need to estimate the Kronecker factors {Ω`}L−1
`=0 and

{Γ`}L`=1. Since these matrices are defined in terms of the
autocovariance functions Ω and Γ, it would appear natu-
ral to estimate these functions empirically. Unfortunately,
if the empirical autocovariances are plugged into Eqn. 19,
the resulting Ω` may not be positive semidefinite. This
is a problem, since negative eigenvalues in the approxi-
mate Fisher could cause the optimization to diverge (a phe-
nomenon we have observed in practice).

Instead, we estimate each Ω` directly using the following
fact:

Theorem 2. Under assumption SH,

Ω` = E
[
JA`K>HJA`KH

]
Γ` =

1

|T |
E
[
DS>` DS`

]
. (23)

(The J·K notation is defined in Appendix A.)

Proof. See Appendix E.

We maintain exponential moving averages of the covari-
ance statistics, where the empirical statistics are computed
on each mini-batch using these formulas.

3.2. Using KFC in optimization

So far, we have defined an approximation F̂(γ) to the Fisher
matrix F which can be tractably inverted. This can be used
in any number of ways in the context of optimization, most
simply by using ∇̂h = [F̂(γ)]−1∇h as an approximation to
the natural gradient F−1∇h. Alternatively, we could use it
in the context of the full K-FAC algorithm, or as a precon-
ditioner for iterative second-order methods (Martens, 2010;
Vinyals & Povey, 2012; Sohl-Dickstein et al., 2014).

In our experiments, we explored two particular instantia-
tions of KFC in optimization algorithms. First, in order
to provide as direct a comparison as possible to standard
SGD-based optimization, we used ∇̂h in the context of
a generic approximate natural gradient descent procedure;
this procedure is like SGD, except that ∇̂h is substituted
for the Euclidean gradient. Additionally, we used momen-
tum, update clipping, and parameter averaging — all stan-
dard techniques in the context of stochastic optimization.1

1Our SGD baseline used momentum and parameter averaging
as well. Clipping was not needed for SGD, for reasons explained
in Appendix B.1.

One can also view this as a preconditioned SGD method,
where F̂(γ) is used as the preconditioner. Therefore, we re-
fer to this method in our experiments as KFC-pre (to distin-
guish it from the KFC approximation itself). This method
is spelled out in detail in Appendix B.1.

We also explored the use of F̂(γ) in the context of the full
K-FAC training procedure (see Appendix B.2). Since this
performed about the same as KFC-pre, we report results
only for KFC-pre.

With the exception of inverting the Kronecker factors, all
of the heavy computation for our methods was performed
on the GPU. We based our implementation on CUDAMat
(Mnih, 2009) and the convolution kernels provided by the
Toronto Deep Learning ConvNet (TDLCN) package (Sri-
vastava, 2015). Full details on our GPU implementation
and other techniques for minimizing computational over-
head are given in Appendix B.3.

4. Theoretical analysis
4.1. Invariance

Natural gradient descent is motivated partly by way of its
invariance to reparameterization: regardless of how the
model is parameterized, the updates are equivalent to the
first order. Approximations to natural gradient don’t satisfy
full invariance to parameterization, but certain approxima-
tions have been shown to be invariant to more limited, but
still fairly broad, classes of transformations (Ollivier, 2015;
Martens & Grosse, 2015). For instance, K-FAC was shown
to be invariant to affine transformations of the activations
(Martens & Grosse, 2015).

For convolutional layers, we cannot expect an algorithm to
be invariant to arbitrary affine transformations of a given
layer’s activations, as such transformations can change the
set of functions which are representable. (Consider for in-
stance, a transformation which permutes the spatial loca-
tions.) However, we show that the KFC updates are in-
variant to homogeneous, pointwise affine transformations
of the activations, both before and after the nonlinearity.
This is perhaps an overly limited statement, as it doesn’t
use the fact that the algorithm accounts for spatial correla-
tions. However, it still accounts for a broad set of transfor-
mations, such as normalizing activations to be zero mean
and unit variance either before or after the nonlinearity.

To formalize this, recall that a layer’s activations are rep-
resented as a |T | × J matrix and are computed from that
layer’s pre-activations by way of an elementwise nonlin-
earity, i.e. A` = φ`(S`). We replace this with an activation
function φ†` which additionally computes affine transforma-
tions before and after the nonlinearity. Such transforma-
tions can be represented in matrix form:

A†` = φ†`(S
†
`) = φ`(S

†
`U` + 1c>` )V` + 1d>` , (24)

where U` and V` are invertible matrices, and c` and d`
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are vectors. For convenience, the inputs to the network can
be treated as an activation function φ0 which takes no ar-
guments. We also assume the final layer outputs are not
transformed, i.e. VL = I and dL = 0. KFC is invariant to
this class of transformations:

Theorem 3. Let N be a network with parameter vector θ
and activation functions {φ`}L`=0. Given activation func-
tions {φ†`}L`=0 defined as in Eqn. 24, there exists a param-
eter vector θ† such that a network N † with parameters θ†

and activation functions {φ†`}L`=0 computes the same func-
tion asN . The KFC updates onN andN † are equivalent,
in that the resulting networks compute the same function.

Proof. See Appendix E.

Invariance to affine transformations also implies approxi-
mate invariance to smooth nonlinear transformations; see
Martens (2014) for further discussion.

4.2. Relationship with other algorithms

It is possible to interpret many other neural net optimiza-
tion methods as structured probabilistic approximations to
natural gradient. This includes coordinatewise rescaling
methods (e.g. LeCun et al., 1998; Duchi et al., 2011; Tiele-
man & Hinton, 2012; Zeiler, 2013; Kingma & Ba, 2015),
centering of activations (Cho et al., 2013; Vatanen et al.,
2013; Ioffe & Szegedy, 2015, e.g.), and the recently pro-
posed Projected Natural Gradient (Desjardins et al., 2015).
This allows us to compare the modeling assumptions im-
plicitly made by different methods. See Appendix C for a
full discussion.

5. Experiments
We have evaluated our method on two standard image
recognition benchmark datasets: CIFAR-10 (Krizhevsky,
2009), and Street View Housing Numbers (SVHN; Netzer
et al., 2011). Our aim is not to achieve state-of-the-art per-
formance, but to evaluate KFC’s ability to optimize previ-
ously published architectures. We first examine the proba-
bilistic assumptions, and then present optimization results.

For CIFAR-10, we used the architecture from
cuda-convnet2 which achieved 18% error in 20
minutes. This network consists of three convolution layers
and a fully connected layer. (While cuda-convnet
provides some better-performing architectures, we could
not use these, since these included locally connected
layers, which KFC can’t handle.) For SVHN, we used
the architecture of Srivastava (2013). This architecture
consists of three convolutional layers followed by three
fully connected layers, and uses dropout for regularization.
Both of these architectures were carefully tuned for their
respective tasks. Furthermore, the TDLCN CUDA kernels

2https://code.google.com/p/cuda-convnet/

we used were carefully tuned at a low level to implement
SGD updates efficiently for both of these architectures.
Therefore, we believe our SGD baseline is quite strong.

5.1. Evaluating the probabilistic modeling assumptions

One of the benefits of using a structured probabilistic model
to approximate the Fisher matrix is that we can analyze
whether the modeling assumptions are satisfied. As dis-
cussed above, IAD is the standard approximation made by
standard K-FAC, and was discussed in detail both theoret-
ically and empirically by Martens & Grosse (2015). One
implicitly assumes SH when choosing to use a convolu-
tional architecture. However, SUD is perhaps less intuitive.
Why should we suppose the derivatives are spatially uncor-
related? Conversely, why not go a step further and assume
the activations are spatially uncorrelated (as do some meth-
ods; see Appendix C) or even drop all of the correlations
(thereby obtaining a much simpler diagonal approximation
to the Fisher matrix)?

Appendix D.1 analyzes empirically the validity of assump-
tion SUD on conv nets trained to CIFAR-10 and SVHN.
We conclude that SUD appears to describe the model dis-
tributions quite well for both networks. By contrast, the
networks’ activations have very strong spatial correlations,
so it is significant that KFC does not assume spatially un-
correlated activations.

5.2. Optimization performance

We evaluated KFC-pre in the context of optimizing deep
convolutional networks. We compared against stochastic
gradient descent (SGD) with momentum, which is widely
considered a strong baseline for training conv nets. All ar-
chitectural choices (e.g. sizes of layers) were kept consis-
tent with the previously published configurations. Since
the focus of this work is optimization rather than general-
ization, metaparameters were tuned with respect to train-
ing error. This protocol was favorable to the SGD baseline,
as the learning rates which performed the best on training
error also performed the best on test error.3 We tuned the
learning rates from the set {0.3, 0.1, 0.03, . . . , 0.0003} sep-
arately for each experiment. For KFC-pre, we also chose
several algorithmic parameters using the method of Ap-
pendix B.3, which considers only per-epoch running time
and not final optimization performance.4

3For KFC-pre, we encountered a more significant tradeoff be-
tween training and test error, most notably in the choice of mini-
batch size, so the presented results do not reflect our best runs on
the test set. For instance, as reported in Figure 1, the test error on
CIFAR-10 leveled off at 18.5% after 5 minutes, after which the
network started overfitting. When we reduced the mini-batch size
from 512 to 128, the test error reached 17.5% after 5 minutes and
16% after 35 minutes. However, this run performed far worse on
the training set. On the flip side, very large mini-batch sizes hurt
generalization for both methods, as discussed in Section 5.3.

4For SGD, we used a momentum parameter of 0.9 and mini-
batches of size 128, which match the previously published config-

https://code.google.com/p/cuda-convnet/


A Kronecker-factored approximate Fisher matrix for convolution layers

Figure 1. Optimization performance of KFC-pre and SGD. (a) CIFAR-10, negative log-likelihood. (b) CIFAR-10, classification error.
(c) SVHN, negative log-likelihood. (d) SVHN, classification error. Solid lines represent test error and dashed lines represent training
error. The horizontal dashed line represents the previously reported test error for the same architecture.

For both SGD and KFC-pre, we used an exponential mov-
ing average of the iterates (see Appendix B.1) with a
timescale of 50,000 training examples (which corresponds
to one epoch on CIFAR-10). This helped both SGD and
KFC-pre substantially. All experiments for which wall
clock time is reported were run on a single Nvidia GeForce
GTX Titan Z GPU board.

As baselines, we also tried Adagrad (Duchi et al., 2011),
RMSProp (Tieleman & Hinton, 2012), and Adam (Kingma
& Ba, 2015), but none of these approaches outperformed
carefully tuned SGD with momentum. This is consistent
with the observations of Kingma & Ba (2015).

Figure 1(a,b) shows the optimization performance on the
CIFAR-10 dataset, in terms of wall clock time. Both KFC-
pre and SGD reached approximately the previously pub-
lished test error of 18% before they started overfitting.
However, KFC-pre reached 19% test error in 3 minutes,
compared with 9 minutes for SGD. The difference in train-
ing error was more significant: KFC-pre reaches a train-
ing error of 6% in 4 minutes, compared with 30 minutes
for SGD. On SVHN, KFC-pre reached the previously pub-
lished test error of 2.78% in 120 minutes, while SGD did
not reach it within 250 minutes. (As discussed above, test
error comparisons should be taken with a grain of salt.)

Appendix D.2 analyzes the performance of KFC-pre in re-
lation to the recently proposed batch normalization method
(Ioffe & Szegedy, 2015).

5.3. Potential for distributed implementation

Much work has been devoted recently to highly parallel or
distributed implementations of neural network optimiza-
tion (e.g. Dean et al. (2012)). Synchronous SGD effec-
tively allows one to use very large mini-batches efficiently,
which helps optimization by reducing the variance in the
stochastic gradient estimates. However, the per-update per-
formace levels off to that of batch SGD once the variance
is no longer significant and curvature effects come to dom-
inate. Asynchronous SGD partially alleviates this issue

urations. For KFC-pre, we used a momentum parameter of 0.9,
mini-batches of size 512, and a damping parameter γ = 10−3.
In both cases, our informal explorations did not find other values
which performed substantially better in terms of training error.

Figure 2. Classification error as a function of the number of iter-
ations (weight updates). Heuristically, this is a rough measure of
how the algorithms might perform in a highly distributed setting.
(a) CIFAR-10. (b) SVHN. See Figure 1 caption for details.

by using new network parameters as soon as they become
available, but needing to compute gradients with stale pa-
rameters limits the benefits of this approach.

As a proxy for how the algorithms are likely to perform in a
highly distributed setting5, we measured the classification
error as a function of the number of iterations (weight up-
dates) for each algorithm. Both algorithms were run with
large mini-batches of size 4096 (in place of 128 for SGD
and 512 for KFC-pre). Figure 2 shows training curves for
both algorithms on CIFAR-10 and SVHN, using the same
architectures as above.6 KFC-pre required far fewer weight
updates to achieve good training and test error compared
with SGD. For instance, on CIFAR-10, KFC-pre obtained
a training error of 10% after 300 updates, compared with
6000 updates for SGD, a 20-fold improvement. Similar
speedups were obtained on test error and on the SVHN
dataset. These results suggest that a distributed implemen-
tation of KFC-pre has the potential to obtain large speedups
over distributed SGD-based algorithms.

5The gradient computations can be farmed out to worker
nodes, exactly as with SGD, and we expect the computations
of Kronecker factors and their inverses can be performed asyn-
chronously. Therefore, we would not expect additional sequential
bottlenecks or communication overhead.

6Both SGD and KFC-pre reached a slightly worse test er-
ror before they started overfitting, compared with the small-
minibatch experiments of the previous section. This is because
large mini-batches lose the regularization benefit of stochastic
gradients. One would need to adjust the regularizer in order to
get good generalization performance in this setting.
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A. Conv net notation and GPU
implementation

For modern large-scale vision applications, it’s necessary
to implement conv nets efficiently for a GPU (or some
other massively parallel computing architecture). We pro-
vide a very brief overview of the low-level efficiency is-
sues which are relevant to K-FAC. We base our discussion
on the Toronto Deep Learning ConvNet (TDLCN) package
(Srivastava, 2015), whose convolution kernels we use in
our experiments. Like many modern implementations, this
implementation follows the approach of Chellapilla et al.
(2006), which reduces the convolution operations to large
matrix-vector products in order to exploit memory local-
ity and efficient parallel BLAS operators. We describe the
implementation explicitly, as it is important that our pro-
posed algorithm be efficient using the same memory layout
(shuffling operations are extremely expensive). As a bonus,
these vectorized operations provide a convenient high-level
notation which we will use throughout the paper.

The ordering of arrays in memory is significant, as it deter-
mines which operations can be performed efficiently with-
out requiring (very expensive) transpose operations. The
activations are stored as a M × |T |× J array Ã`−1, where
M is the mini-batch size, |T | is the number of spatial lo-
cations, and J is the number of feature maps.7 This can
be interpreted as an M |T | × J matrix. (We must assign
orderings to T and ∆, but this choice is arbitrary.) Simi-
larly, the weights are stored as an I × |∆| × J array W`,
which can be interpreted either as an I × |∆|J matrix or a
I|∆| × J matrix without reshuffling elements in memory.
We will almost always use the former interpretation, which
we denote W`; the I|∆| × J matrix will be denoted W̆`.

The naive implementation of convolution, while highly par-
allel in principle, suffers from poor memory locality. In-
stead, efficient implementations typically use what we will
term the expansion operator and denote J·K. This operator
extracts the patches surrounding each spatial location and
flattens them into vectors. These vectors become the rows
of a matrix. For instance, JÃ`−1K is aM |T |×J |∆|matrix,
defined as

JÃ`−1KtM+m, j|∆|+δ = [Ã`−1](t+δ)M+m, j = a
(m)
j,t+δ,

(25)
for all entries such that t + δ ∈ T . All other entries are
defined to be 0. Here, m indexes the data instance within
the mini-batch.

In TDLCN, the forward pass is computed as

Ã` = φ(S̃`) = φ
(
JÃ`−1KW>

` + 1b>`

)
, (26)

where φ is the nonlinearity, applied elementwise, 1 is a
vector of ones, and b is the vector of biases. In backpropa-

7The first index of the array is the least significant in memory.

gation, the activation derivatives are computed as:

DÃ`−1 = JDS̃`KW̆`. (27)

Finally, the gradient for the weights is computed as

DW` = DS̃>` JÃ`−1K (28)

The matrix products are computed using the cuBLAS func-
tion cublasSgemm. In practice, the expanded matrix
JÃ`−1K may be too large to store in memory. In this case, a
subset of the rows of JÃ`−1K are computed and processed
at a time.

We will also use the |T | × J matrix A`−1 and the |T | × I
matrix S` to denote the activations and pre-activations for
a single training case. A`−1 and S` can be substituted for
Ã`−1 and S̃` in Eqns. 26-28.

For fully connected networks, it is often convenient to ap-
pend a homogeneous coordinate to the activations so that
the biases can be folded into the weights (see Section 2.2).
For convolutional layers, there is no obvious way to add
extra activations such that the convolution operation simu-
lates the effect of biases. However, we can achieve an anal-
ogous effect by adding a homogeneous coordinate (i.e. a
column of all 1’s) to the expanded activations. We will
denote this JÃ`−1KH . Similarly, we can prepend the bias
vector to the weights matrix: W̄` = (b` W`). The ho-
mogeneous coordinate is not typically used in conv net im-
plementations, but it will be convenient for us notationally.
For instance, the forward pass can be written as:

Ã` = φ
(
JÃ`−1KHW̄>

`

)
(29)

Table 1 summarizes all of the conv net notation used in this
paper.

B. Optimization methods
B.1. KFC as a preconditioner for SGD

The first optimization procedure we used in our experi-
ments was a generic natural gradient descent approxima-
tion, where F̂(γ) was used to approximate F. This proce-
dure is like SGD with momentum, except that ∇̂h is substi-
tuted for the Euclidean gradient. One can also view this as
a preconditioned SGD method, where F̂(γ) is used as the
preconditioner. To distinguish this optimization procedure
from the KFC approximation itself, we refer to it as KFC-
pre. Our procedure is perhaps more closely analogous to
earlier Kronecker product-based natural gradient approxi-
mations (Heskes, 2000; Povey et al., 2015) than to K-FAC
itself.

In addition, we used a variant of gradient clipping (Pas-
canu et al., 2013) to avoid instability. In particular, we
clipped the approximate natural gradient update v so that
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j input map index
J number of input maps
i output map index
I number of output maps

T1 × T2 feature map dimension
t spatial location index
T set of spatial locations

= {1, . . . , T1} × {1, . . . , T2}
R radius of filters
δ spatial offset

∆ set of spatial offsets (in a filter)
= {−R, . . . , R} × {−R, . . . , R}

δ = (δ1, δ2) explicit 2-D parameterization
(δ1 and δ2 run from −R to R)

aj,t input layer activations
si,t output layer pre-activations
Dsi,t the loss derivative ∂L/∂si,t

φ activation function (nonlinearity)
wi,j,δ weights

bi biases
M(j) mean activation

Ω(j, j′, δ) uncentered autocovariance of
activations

Γ(i, i′, δ) autocovariance of
pre-activation derivatives

β(δ, δ′) function defined in Theorem 1

⊗ Kronecker product
vec Kronecker vector operator
` layer index
L number of layers
M size of a mini-batch
A` activations for a data instance
Ã` activations for a mini-batch

JA`K expanded activations
JA`KH expanded activations with

homogeneous coordinate
S` pre-activations for a data instance
S̃` pre-activations for a mini-batch
DS` the loss gradient∇S`L

θ vector of trainable parameters
W` weight matrix
b` bias vector

W̄` combined parameters = (b` W`)
F exact Fisher matrix
F̂ approximate Fisher matrix

F̂` diagonal block of F̂ for layer `
Ω` Kronecker factor for activations
Γ` Kronecker factor for derivatives
λ weight decay parameter
γ damping parameter

F̂(γ) damped approximate Fisher matrix
Ω

(γ)
` , Γ

(γ)
` damped Kronecker factors

Table 1. Summary of convolutional network notation used in this paper. The left column focuses on a single convolution layer, which
convolves its “input layer” activations with a set of filters to produce the pre-activations for the “output layer.” Layer indices are omitted
for clarity. The right column considers the network as a whole, and therefore includes explicit layer indices.

ν , v>Fv < 0.3, where F is estimated using 1/4 of the
training examples from the current mini-batch. One mo-
tivation for this heuristic is that ν approximates the KL
divergence of the predictive distributions before and after
the update, and one wouldn’t like the predictive distribu-
tions to change too rapidly. The value ν can be computed
using curvature-vector products (Schraudolph, 2002). The
clipping was only triggered near the beginning of optimiza-
tion, where the parameters (and hence also the curvature)
tended to change rapidly.8 Therefore, one can likely elimi-
nate this step by initializing from a model partially trained
using SGD.

Taking inspiration from Polyak averaging (Polyak & Judit-
sky, 1992; Swersky et al., 2010), we used an exponential
moving average of the iterates. This helps to smooth out
the variability caused by the mini-batch selection. The full
optimization procedure is given in Algorithm 1.

B.2. Kronecker-factored approximate curvature

The central idea of K-FAC is the combination of ap-
proximations to the Fisher matrix described in Section

8This may be counterintuitive, since SGD applied to neural
nets tends to take small steps early in training, at least for com-
monly used initializations. For SGD, this happens because the
initial parameters, and hence also the initial curvature, are rela-
tively small in magnitude. Our method, which corrects for the
curvature, takes larger steps early in training, when the error sig-
nal is the largest.

2.2. While one could potentially perform standard natu-
ral gradient descent using the approximate natural gradi-
ent ∇̂h, perhaps with a fixed learning rate and with fixed
Tikhonov-style damping/reglarization, Martens & Grosse
(2015) found that the most effective way to use ∇̂h was
within a robust 2nd-order optimization framework based
on adaptively damped quadratic models, similar to the one
employed in HF (Martens, 2010). In this section, we de-
scribe the K-FAC method in detail, while omitting certain
aspects of the method which we do not use, such as the
block tri-diagonal inverse approximation.

K-FAC uses a quadratic model of the objective to dynam-
ically choose the step size α and momentum decay pa-
rameter µ at each step. This is done by taking v =

α∇̂h + µvprev where vprev is the update computed at the
previous iteration, and minimizing the following quadratic
model of the objective (over the current mini-batch):

M(θ + v) = h(θ) +∇h>v +
1

2
v>(F + rI)v. (30)

where we assume the h is the expected loss plus an `2-
regularization term of the form r

2‖θ‖
2. Since F behaves

like a curvature matrix, this quadratic function is similar
to the second-order Taylor approximation to h. Note that
here we use the exact F for the mini-batch, rather than the
approximation F̂. Intuitively, one can think of v as being it-
self iteratively optimized at each step in order to better min-
imize M , or in other words, to more closely match the true
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Algorithm 1 Using KFC as a preconditioner for SGD

Require: initial network parameters θ(0)

weight decay penalty λ
learning rate α
momentum parameter µ (suggested value: 0.9)
parameter averaging timescale τ (suggested value: number of mini-batches in the dataset)
damping parameter γ (suggested value: 10−3, but this may require tuning)
statistics update period Ts (see Appendix B.3)
inverse update period Tf (see Appendix B.3)
clipping parameter C (suggested value: 0.3)

k ← 0
p← 0
ξ ← e−1/τ

θ̄
(0) ← θ(0)

Estimate the factors {Ω`}L−1
`=0 and {Γ`}L`=1 on the full dataset using Eqn. 23

Compute the inverses {[Ω(γ)
` ]−1}L−1

`=0 and {[Γ(γ)
` ]−1}L`=1 using Eqn. 21

while stopping criterion not met do
k ← k + 1
Select a new mini-batch

if k ≡ 0 (mod Ts) then
Update the factors {Ω`}L−1

`=0 and {Γ`}L`=1 using Eqn. 23
end if
if k ≡ 0 (mod Tf ) then

Compute the inverses {[Ω(γ)
` ]−1}L−1

`=0 and {[Γ(γ)
` ]−1}L`=1 using Eqn. 21

end if

Compute ∇h using backpropagation
Compute ∇̂h = [F̂(γ)]−1∇h using Eqn. 22
v← −α∇̂h

{Clip the update if necessary}
Estimate ν = v>Fv + λv>v using a subset of the current mini-batch
if ν > C then

v← v/
√
ν/C

end if

p(k) ← µp(k−1) + v {Update momentum}
θ(k) ← θ(k−1) + p(k) {Update parameters}
θ̄

(k) ← ξθ̄
(k−1)

+ (1− ξ)θ(k) {Parameter averaging}
end while
return Averaged parameter vector θ̄(k)
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natural gradient (which is the exact minimum of M ). In-
terestingly, in full batch mode, this method is equivalent to
performing preconditioned conjugate gradient in the vicin-
ity of a local optimum (where F remains approximately
constant).

To see how this minimization over α and µ can be done
efficiently, without computing the entire matrix F, con-
sider the general problem of minimizing M on the sub-
space spanned by arbitrary vectors {v1, . . . ,vR}. (In our
case, R = 2, v1 = ∇̂h and v2 = vprev .) The coefficients
α can be found by solving the linear system Cα = −d,
where Cij = v>i Fvj and di = ∇h>vi. To compute the
matrix C, we compute each of the matrix-vector products
Fvj using automatic differentiation (Schraudolph, 2002).

Both the approximate natural gradient ∇̂h and the update
v (generated as described above) arise as the minimum,
or approximate minimum, of a corresponding quadratic
model. In the case of v, this model is given by M and
is designed to be a good local approximation to the objec-
tive h. Meanwhile, the quadratic model which is implicitly
minimized when computing ∇̂h is designed to approximate
M (by approximating F with F̂).

Because these quadratic models are approximations,
naively minimizing them over Rn can lead to poor results
in both theory and practice. To help deal with this prob-
lem K-FAC employs an adaptive Tikhonov-style damping
scheme applied to each of them (the details of which differ
in either case).

To compensate for the inaccuracy of M as a model of h,
K-FAC adds a Tikhonov regularization term λ

2 ‖v‖
2 to M

which encourages the update to remain small in magnitude,
and thus more likely to remain in the region where M is a
reasonable approximation to h. This amounts to replacing
r with r + λ in Eqn. 30. Note that this technique is for-
mally equivalent to performing constrained minimization
of M within some spherical region around v = 0 (a “trust-
region”). See for example Nocedal & Wright (2006).

K-FAC uses the well-known Levenberg-Marquardt tech-
nique (Moré, 1978) to automatically adapt the damping pa-
rameter λ so that the damping is loosened or tightened de-
pending on how accurately M(θ + v) predicts the true de-
crease in the objective function after each step. This accu-
racy is measured by the so-called “reduction ratio”, which
is given by

ρ =
h(θ)− h(θ + v)

M(θ)−M(θ + v)
, (31)

and should be close to 1 when the quadratic approximation
is reasonably accurate around the given value of θ. The
update rule for λ is as follows:

λ←

 λ · λ− if ρ > 3/4
λ if 1/4 ≤ ρ ≤ 3/4
λ · λ+ if ρ < 1/4

(32)

where λ+ and λ− are constants such that λ− < 1 < λ+.

To compensate for the inaccuracy of F̂, and encourage ∇̂h
to be smaller and more conservative, K-FAC similarly adds
γI to F̂ before inverting it. As discussed in Section 2.2, this
can be done approximately by adding multiples of I to each
of the Kronecker factors Ψ` and Γ` of F̂` before inverting
them. Alternatively, an exact solution can be obtained by
expanding out the eigendecomposition of each block F̂` of
F̂, and using the following identity:[
F̂` + γI

]−1

=
[
(QΨ ⊗QΓ) (DΨ ⊗DΓ)

(
Q>Ψ ⊗Q>Γ

)
+ γI

]−1

(33)

=
[
(QΨ ⊗QΓ) (DΨ ⊗DΓ + γI)

(
Q>Ψ ⊗Q>Γ

)]−1

(34)

= (QΨ ⊗QΓ) (DΨ ⊗DΓ + γI)−1
(
Q>Ψ ⊗Q>Γ

)
,

(35)

where Ψ` = QΨDΨQ>Ψ and Γ` = QΓDΓQ>Γ are the
orthogonal eigendecompositions of Ψ` and Γ` (which are
symmetric PSD). These manipulations are based on well-
known properties of the Kronecker product which can be
found in, e.g., Demmel (1997, sec. 6.3.3). Matrix-vector
products (F̂ + γI)−1∇h can then be computed from the
above identity using the following block-wise formulas:

V1 = Q>Γ (∇W̄`
h)QΨ (36)

V2 = V1/(dΓd>Ψ + γ) (37)

(F̂` + γI)−1 vec(∇W̄`
h) = vec

(
QΓV2Q

>
Ψ

)
, (38)

where dΓ and dΨ are the diagonals of DΓ and DΨ and the
division and addition in Eqn. 37 are both elementwise.

One benefit of this damping strategy is that it automatically
accounts for the curvature contributed by both the quadratic
damping term λ

2 ‖v‖
2 and the weight decay penalty r

2‖θ‖
2

if these are used. Heuristically, one could even set γ =√
λ+ r, which can sometimes perform well. One should

always choose γ at least this large. However, it may some-
times be advantageous to choose γ significantly larger, as F̂
might not be a good approximation to F, and the damping
may help reduce the impact of directions erroneously esti-
mated to have low curvature. For consistency with Martens
& Grosse (2015), we adopt their method of automatically
adapting γ. In particular, each time we adapt γ, we com-
pute ∇̂h for three different values γ− < γ < γ+. We
choose whichever of the three values results in the lowest
value of M(θ + v).

B.3. Efficient implementation

We based our implementation on the Toronto Deep Learn-
ing ConvNet (TDLCN) package (Srivastava, 2015), which
is a Python wrapper around CUDA kernels. We needed to
write a handful of additional kernels:

• a kernel for computing Ω̂` (Eqn. 23)
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• kernels which performed forward mode automatic dif-
ferentiation for the max-pooling and response normal-
ization layers

Most of the other operations for KFC could be performed
on the GPU using kernels provided by TDLCN. The only
exception is computing the inverses {[Ω(γ)

` ]−1}L−1
`=0 and

{[Γ(γ)
` ]−1}L`=1, which was done on the CPU. (The forward

mode kernels are only used in update clipping; as men-
tioned above, one can likely eliminate this step in practice
by initializing from a partially trained model.)

KFC introduces several sources of overhead per iteration
compared with SGD:

• Updating the factors {Ω`}L−1
`=0 and {Γ`}L`=1

• Computing the inverses {[Ω(γ)
` ]−1}L−1

`=0 and
{[Γ(γ)

` ]−1}L`=1

• Computing the approximate natural gradient ∇̂h =

[F̂(γ)]−1∇h

• Estimating ν = v>Fv + λv>v (which is used for
gradient clipping)

The overhead from the first two could be reduced by only
periodically recomputing the factors and inverses, rather
than doing so after every mini-batch. The cost of estimat-
ing v>Fv can be reduced by using only a subset of the
mini-batch. These shortcuts did not seem to hurt the per-
epoch progress very much, as one can get away with us-
ing quite stale curvature information, and ν is only used
for clipping and therefore doesn’t need to be very accurate.
The cost of computing ∇̂h is unavoidable, but because it
doesn’t grow with the size of the mini-batch, its per-epoch
cost can be made smaller by using larger mini-batches. (As
we discuss further in Section 5.3, KFC can work well with
large mini-batches.) These shortcuts introduce several ad-
ditional hyperparameters, but fortunately these are easy to
tune: we simply chose them such that the per-epoch cost of
KFC was less than twice that of SGD. This requires only
running a profiler for a few epochs, rather than measuring
overall optimization performance.

Observe that the inverses {[Ω(γ)
` ]−1}L−1

`=0 and
{[Γ(γ)

` ]−1}L`=1 are computed on the CPU, while all
of the other heavy computation is GPU-bound. In princi-
ple, since KFC works fine with stale curvature information,
the inverses could be computed asychronously while the
algorithm is running, thereby making their cost almost
free. We did not exploit this in our experiments, however.

C. Relationship with other algorithms
Other neural net optimization methods have been proposed
which attempt to correct for various statistics of the acti-
vations or gradients. Perhaps the most commonly used are

algorithms which attempt to adapt learning rates for indi-
vidual parameters based on the variance of the gradients
(LeCun et al., 1998; Duchi et al., 2011; Tieleman & Hin-
ton, 2012; Zeiler, 2013; Kingma & Ba, 2015). These can
be thought of as diagonal approximations to the curvature.

Another class of approaches attempts to reparameterize a
network such that its activations have zero mean and unit
variance, with the goals of preventing covariate shift and
improving the conditioning of the curvature (Cho et al.,
2013; Vatanen et al., 2013; Ioffe & Szegedy, 2015). Cen-
tering can be viewed as an approximation to natural gra-
dient where the Fisher matrix is approximated with a di-
rected Gaussian graphical model (Grosse & Salakhutdinov,
2015). As discussed in Section 4.1, KFC is invariant to re-
centering of activations, so it ought to automatically enjoy
the optimization benefits of centering. However, batch nor-
malization (Ioffe & Szegedy, 2015) includes some effects
not automatically captured by KFC. First, the normaliza-
tion is done separately for each mini-batch rather than aver-
aged across mini-batches; this introduces stochasticity into
the computations which may serve as a regularizer. Second,
it discourages large covariate shifts in the pre-activations,
which may help to avoid dead units. Since batch normaliza-
tion is better regarded as a modification to the architecture
than an optimization algorithm, it can be combined with
KFC; we investigated this in our experiments.

Projected Natural Gradient (PRONG; Desjardins et al.,
2015) goes a step further than centering methods by fully
whitening the activations in each layer. In the case of fully
connected layers, the activations are transformed to have
zero mean and unit covariance. For convolutional layers,
they apply a linear transformation that whitens the activa-
tions across feature maps. While PRONG includes clever
heuristics for updating the statistics, it’s instructive to con-
sider an idealized version of the method which has ac-
cess to the exact statistics. We can interpret this idealized
PRONG in our own framework as arising from following
two additional approximations:

• Spatially uncorrelated activations (SUA). The acti-
vations at any two distinct spatial locations are uncor-
related, i.e. Cov(aj,t, aj′,t′) = 0 for t 6= t′. Also
assuming SH, the correlations can then be written as
Cov(aj,t, aj′,t) = Σ(j, j′).

• White derivatives (WD). Pre-activation derivatives
are uncorrelated and have spherical covariance,
i.e. Γ(i, i′, δ) ∝ 1i=i′1δ=0. We can assume WLOG
that the proportionality constant is 1, since any scalar
factor can be absorbed into the learning rate.

Theorem 4. Combining approximations IAD, SH, SUA,
and WD results in the following approximation to the en-
tries of the Fisher matrix:

E [Dwi,j,δDwi′,j′,δ′ ] = β(δ, δ′) Ω̃(j, j′, δ′ − δ)1i=i′ ,
(39)



A Kronecker-factored approximate Fisher matrix for convolution layers

where 1 is the indicator function and Ω̃(j, j′, δ) ,
Σ(j, j′)1δ=0 + M(j)M(j′) is the uncentered autocovari-
ance function. (β is defined in Theorem 1. Formulas for the
remaining entries are given in Appendix E.) If the β(δ, δ′)
term is dropped, the resulting approximate natural gradi-
ent descent update rule is equivalent to idealized PRONG,
up to rescaling.

As we later discuss in Section 5.1, assumption WD appears
to hold up well empirically, while SUA appears to lose a lot
of information. Observe, for instance, that the input images
are themselves treated as a layer of activations. Assump-
tion SUA amounts to modeling each channel of an image
as white noise, corresponding to a flat power spectrum. Im-
ages have a well-characterized 1/fp power spectrum with
p ≈ 2 (Simoncelli & Olshausen, 2001), which implies that
the curvature may be much larger in directions correspond-
ing to low-frequency Fourier components than in directions
corresponding to high-frequency components.

D. Experiments
D.1. Evaluating the probabilistic modeling assumptions

In order to analyze the reasonableness of our spatially
uncorrelated derivatives (SUD) assumption, we investi-
gated the autocorrelation functions for networks trained
on CIFAR-10 and SVHN, each with 50 epochs of SGD.
(These models were trained long enough to achieve good
test error, but not long enough to overfit.) Derivatives were
sampled from the model’s distribution as described in Sec-
tion 2.2. Figure 3(a) shows the autocorrelation functions
of the pre-activation gradients for three (arbitrary) feature
maps in all of the convolution layers of both networks. Fig-
ure 3(b) shows the correlations between derivatives for dif-
ferent feature maps in the same spatial position. Evidently,
the derivatives are very weakly correlated, both spatially
and cross-map, although there are some modest cross-map
correlations in the first layers of both models, as well as
modest spatial correlations in the top convolution layer of
the CIFAR-10 network. This suggests that SUD is a good
approximation for these networks.

Interestingly, the lack of correlations between derivatives
appears to be a result of max-pooling. Max-pooling
has a well-known sparsifying effect on the derivatives,
as any derivative is zero unless the corresponding acti-
vation achieves the maximum within its pooling group.
Since neighboring locations are unlikely to simultaneously
achieve the maximum, max-pooling weakens the spatial
correlations. To test this hypothesis, we trained net-
works equivalent to those described above, except that the
max-pooling layers were replaced with average pooling.
The spatial autocorrelations and cross-map correlations are
shown in Figure 3(c, d). Replacing max-pooling with aver-
age pooling dramatically strengthens both sets of correla-
tions.

In contrast with the derivatives, the activations have very

strong correlations, both spatially and cross-map, as shown
in Figure 4. This suggests the spatially uncorrelated ac-
tivations (SUA) assumption implicitly made by some al-
gorithms could be problematic, despite appearing superfi-
cially analogous to SUD.

D.2. Comparison with batch normalization

Batch normalization (BN Ioffe & Szegedy, 2015) has re-
cently had much success at training a variety of neural net-
work architectures. It has been motivated both in terms
of optimization benefits (because it reduces covariate shift)
and regularization benefits (because it adds stochasticity
to the updates). However, BN is best regarded not as
an optimization algorithm, but as a modification to the
network architecture, and it can be used in conjunction
with algorithms other than SGD. We modified the origi-
nal CIFAR-10 architecture to use batch normalization in
each layer. Since the parameters of a batch normalized
network would have a different scale from those of an or-
dinary network, we disabled the `2 regularization term so
that both networks would be optimized to the same objec-
tive function. While our own (inefficient) implementation
of batch normalization incurred substantial computational
overhead, we believe an efficient implementation ought to
have very little overhead; therefore, we simulated an ef-
ficient implementation by reusing the timing data from the
non-batch-normalized networks. Learning rates were tuned
separately for all four conditions (similarly to the rest of our
experiments).

Training curves are shown in Figure 5. All of the meth-
ods achieved worse test error than the original network as a
result of `2 regularization being eliminated. However, the
BN networks reached a lower test error than the non-BN
networks before they started overfitting, consistent with the
stochastic regularization interpretation of BN.9 For both the
BN and non-BN architectures, KFC-pre optimized both the
training and test error and NLL considerably faster than
SGD. Furthermore, it appeared not to lose the regulariza-
tion benefit of BN. This suggests that KFC-pre and BN can
be combined synergistically.

9Interestingly, the BN networks were slower to optimize the
training error than their non-BN counterparts. We speculate that
this is because (1) the SGD baseline, being carefully tuned, didn’t
exhibit the pathologies that BN is meant to correct for (i.e. dead
units and extreme covariate shift), and (2) the regularization ef-
fects of BN made it harder to overfit.
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(a) (b) (c) (d)

Figure 3. Visualization of the absolute values of the correlations between the pre-activation derivatives for all of the convolution layers
of CIFAR-10 and SVHN networks trained with SGD. (a) Autocorrelation functions of the derivatives of three feature maps from each
layer. (b) Cross-map correlations for a single spatial position. (c, d) Same as (a) and (b), except that the networks use average pooling
rather than max-pooling.

(a) (b)

Figure 4. Visualization of the uncentered correlations Ω between activations in all of the convolution layers of the CIFAR-10 and SVHN
networks. (a) Spatial autocorrelation functions of three feature maps in each layer. (b) Correlations of the activations at a given spatial
location. The activations have much stronger correlations than the backpropagated derivatives.



A Kronecker-factored approximate Fisher matrix for convolution layers

(a) (b)

Figure 5. Optimization performance of KFC-pre and SGD on a CIFAR-10 network, with and without batch normalization (BN). (a)
Negative log-likelihood, on a log scale. (b) Classification error. Solid lines represent test error and dashed lines represent training error.
The horizontal dashed line represents the previously reported test error for the same architecture. The KFC-pre training curve is cut off
because the algorithm became unstable when the training NLL reached 4× 10−6.
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E. Proofs of theorems
E.1. Proofs for Section 3

Lemma 1. Under approximation IAD,

E [Dwi,j,δDwi′,j′,δ′ ] =
∑
t∈T

∑
t′∈T

E [aj,t+δaj′,t′+δ′ ]E [Dsi,tDsi′,t′ ] (40)

E [Dwi,j,δDbi′ ] =
∑
t∈T

∑
t′∈T

E [aj,t+δ]E [Dsi,tDsi′,t′ ] (41)

E [DbiDbi′ ] = |T |E [Dsi,tDsi′,t′ ] (42)

Proof. We prove the first equality; the rest are analogous.

E[Dwi,j,δDwi′,j′,δ′ ] = E

[(∑
t∈T

aj,t+δDsi,t

)(∑
t′∈T

aj′,t′+δ′Dsi′,t′
)]

(43)

= E

[∑
t∈T

∑
t′∈T

aj,t+δDsi,taj′,t′+δ′Dsi′,t′
]

(44)

=
∑
t∈T

∑
t′∈T

E [aj,t+δDsi,taj′,t′+δ′Dsi′,t′ ] (45)

=
∑
t∈T

∑
t′∈T

E [aj,t+δaj′,t′+δ′ ]E [Dsi,tDsi′,t′ ] (46)

Assumption IAD is used in the final line.

Theorem 1. Combining approximations IAD, SH, and SUD yields the following factorization:

E [Dwi,j,δDwi′,j′,δ′ ] = β(δ, δ′) Ω(j, j′, δ′ − δ) Γ(i, i′, 0),

E [Dwi,j,δDbi′ ] = β(δ)M(j) Γ(i, i′, 0)

E [DbiDbi′ ] = |T |Γ(i, i′, 0) (47)

where

β(δ) , (T1 − |δ1|) (T2 − |δ2|)
β(δ, δ′) , (T1 −max(δ1, δ

′
1, 0) + min(δ1, δ

′
1, 0)) · (T2 −max(δ2, δ

′
2, 0) + min(δ2, δ

′
2, 0)) (48)
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Proof.

E[Dwi,j,δDwi′,j′,δ′ ] =
∑
t∈T

∑
t′∈T

E [aj,t+δaj′,t′+δ′ ]E [Dsi,tDsi′,t′ ] (49)

=
∑
t∈T

∑
t′∈T

Ω(j, j′, t′ + δ′ − t− δ)1 t+δ∈T
t′+δ′∈T

Γ(i, i′, t′ − t) (50)

=
∑
t∈T

Ω(j, j′, δ′ − δ)1 t+δ∈T
t+δ′∈T

Γ(i, i′, 0) (51)

= |{t ∈ T : t+ δ ∈ T , t+ δ′ ∈ T }| Ω(j, j′, δ′ − δ) Γ(i, i′, 0) (52)

= β(δ, δ′) Ω(j, j′, δ′ − δ) Γ(i, i′, 0) (53)

Lines 49, 50, and 51 use Lemma 1 and assumptions SH, and SUD, respectively. In Line 50, the indicator function (denoted
1) arises because the activations are defined to be zero outside the set of spatial locations. The remaining formulas can be
derived analogously.

Theorem 2. Under assumption SH,

Ω` = E
[
JA`K>HJA`KH

]
(54)

Γ` =
1

|T |
E
[
DS>` DS`

]
(55)

Proof. In this proof, all activations and pre-activations are taken to be in layer `. The expected entries are given by:

E
[
JA`K>HJA`KH

]
j|∆|+δ, j′|∆|+δ = E

[∑
t∈T

aj,t+δaj′,t+δ′

]
(56)

=
∑
t∈T

E [aj,t+δaj′,t+δ′ ] (57)

=
∑
t∈T

Ω(j, j′, δ′ − δ)1 t+δ∈T
t+δ′∈T

(58)

= |{t ∈ T : t+ δ ∈ T , t+ δ′ ∈ T }| Ω(j, j′, δ′ − δ) (59)

= β(δ, δ′) Ω(j, j′, δ′ − δ) (60)
= [Ω`]j|∆|+δ, j′|∆|+δ′ (61)

SH is used in Line 58. Similarly,

E
[
JA`K>HJA`KH

]
0, j|∆|+δ = E

[∑
t∈T

aj,t+δ

]
(62)

= β(δ)M(j) (63)
= [Ω`]0, j|∆|+δ (64)[

JA`K>HJA`KH
]
0, 0

= |T | (65)

= [Ω`]0, 0 (66)

E
[
DS>` DS`

]
i,i′

= E

[∑
t∈T
Dsi,tDsi′,t

]
(67)

= |T |Γ(i, i′, 0) (68)
= |T | [Γ`]i, i′ (69)
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E.2. Proofs for Section 4

Preliminaries and notation. In discussing invariances, it will be convenient to add homogeneous coordinates to various
matrices:

[A`]H ,
(
1 A`

)
(70)

[S`]H ,
(
1 S`

)
(71)

[W̄`]H ,

(
1
b` W`

)
(72)

We also define the activation function φ to ignore the homogeneous column, so that

[A`]H = φ([S`]H) = φ(JA`−1K[W̄`]H). (73)

Using the homogeneous coordinate notation, we can write the effect of the affine transformations on the pre-activations
and activations:

[S†`U` + 1c>` ]H = [S†`]H [U`]H

[A`V` + 1d>` ]H = [A`]H [V`]H , (74)

where

[U`]H ,

(
1 c>`

U`

)
(75)

[V`]H ,

(
1 d>`

V`

)
. (76)

The inverse transformations are represented as

[U`]
−1
H ,

(
1 −c>` U−1

`

U−1
`

)
(77)

[V`]
−1
H ,

(
1 −d>` V−1

`

V−1
`

)
. (78)

We can also determine the effect of the affine transformation on the expanded activations:

JA`V` + 1d>` KH = JA`KHJV`KH , (79)

where

JV`KH ,

(
1 d>` ⊗ 1>

V` ⊗ I

)
, (80)

with inverse

JV`K−1
H =

(
1 −d>` V−1

` ⊗ 1>

V−1
` ⊗ I

)
. (81)

Note that JV`KH is simply a suggestive notation, rather than an application of the expansion operator J·K.

Lemma 2. LetN , θ, {φ`}L`=0, and {φ†`}L`=0 be given as in Theorem 3. The networkN † with activations functions {φ†`}L`=0
and parameters defined by

[W̄†
` ]H , [U`]

−>
H [W̄`]HJV`−1K−>H , (82)

compute the same function as N .

Remark. The definition of φ†` (Eqn. 24) can be written in homogeneous coordinates as

[A†`]H = φ†`([S
†
`]H) = φ`([S

†
`]H [U`]H)[V`]H . (83)

Eqn. 82 can be expressed equivalently without homogeneous coordinates as

W̄†
` , U−>`

(
W̄` − c`e

>) JV`−1K−>H , (84)

where e = (1 0 · · · 0)>.
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Proof. We will show inductively the following relationship between the activations in each layer of the two networks:

[A†`]H = [A`]H [V`]H . (85)

(By our assumption that the top layer inputs are not transformed, i.e. [VL]H = I, this would imply that [A†L]H = [AL]H ,
and hence that the networks compute the same function.) For the first layer, Eqn. 85 is true by definition. For the inductive
step, assume Eqn. 85 holds for layer `− 1. From Eqn 79, this is equivalent to

JA†`−1KH = JA`−1KHJV`−1KH . (86)

We then derive the activations in the following layer:

[A†`]H = φ†`

(
[S†`]H

)
(87)

= φ`

(
[S†`]H [U`]H

)
[V`]H (88)

= φ`

(
JA†`−1KH [W̄†

` ]
>
H [U`]H

)
[V`]H (89)

= φ`

(
JA`−1KH JV`−1KH [W̄†

` ]
>
H [U`]H

)
[V`]H (90)

= φ`
(
JA`−1KH JV`−1KH JV`−1K−1

H [W̄`]
>
H [U`]

−1
H [U`]H

)
[V`]H (91)

= φ`
(
JA`−1KH [W̄`]

>
H

)
[V`]H (92)

= [A`]H [V`]H (93)

Lines 89 and 93 are from Eqn. 73. This proves the inductive hypothesis for layer `, so we have shown that both networks
compute the same function.

Lemma 3. Suppose the parameters are transformed according to Lemma 2, and the parameters are updated according to

[W̄†
` ]

(k+1) ← [W̄†
` ]

(k) − αP†`(∇W̄†
`
h)R†`, (94)

for matrices P` and R`. This is equivalent to applying the following update to the original network:

[W̄`]
(k+1) ← [W̄`]

(k+1) − αP`(∇W̄`
h)R`, (95)

with

P` = U>` P†`U` (96)

R` = JV`−1KHR†`JV`−1K>H . (97)

Proof. This is a special case of Lemma 5 from Martens & Grosse (2015).

Theorem 3. Let N be a network with parameter vector θ and activation functions {φ`}L`=0. Given activation functions
{φ†`}L`=0 defined as in Eqn. 24, there exists a parameter vector θ† such that a networkN † with parameters θ† and activation
functions {φ†`}L`=0 computes the same function as N . The KFC updates on N and N † are equivalent, in that the resulting
networks compute the same function.

Proof. Lemma 2 gives the desired θ†. We now prove equivalence of the KFC updates. The Kronecker factors for N † are
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given by:

Ω†` = E
[
JA†`K

>
HJA†`KH

]
(98)

= E
[
JV`K>HJA`K>HJA`KHJV`KH

]
(99)

= JV`K>HE
[
JA`K>HJA`KH

]
JV`KH (100)

= JV`K>HΩ`JV`KH (101)

Γ†` =
1

|T |
E
[
(DS†`)

>DS†`

]
(102)

=
1

|T |
E
[
U`(DS†`)

>DS†`U
>
`

]
(103)

=
1

|T |
U`E

[
(DS†`)

>DS†`

]
U>` (104)

= U`Γ`U
>
` (105)

The approximate natural gradient update, ignoring momentum, clipping, and damping, is given by θ(k+1) ← θ(k) −
αF̂−1∇θh. For each layer of N †,

[W̄†
` ]

(k+1) ← [W̄†
` ]

(k) − α(Γ†`)
−1(∇W̄†

`
h)(Ω†`−1)−1 (106)

We apply Lemma 3 with P†` = (Γ†`)
−1 and R†` = (Ω†`−1)−1. This gives us

P` = U>` (Γ†`)
−1U` (107)

= Γ−1
` (108)

R` = JV`−1KH(Ω†`−1)−1JV`−1K>H (109)

= Ω−1
`−1, (110)

with the corresponding update
[W̄`]

(k+1) ← [W̄`]
(k) − αΓ−1

` (∇W̄`
h)Ω−1

`−1. (111)

But this is the same as the KFC update for the original network. Therefore, the two updates are equivalent, in that the
resulting networks compute the same function.

Theorem 4. Combining approximations IAD, SH, SUA, and WD results in the following approximation to the entries of
the Fisher matrix:

E [Dwi,j,δDwi′,j′,δ′ ] = β(δ, δ′) Ω̃(j, j′, δ′ − δ)1i=i′ (112)
E [Dwi,j,δDbi′ ] = β(δ)M(j)1i=i′ (113)

E [DbiDbi′ ] = |T |1i=i′ (114)

where 1 is the indicator function and Ω̃(j, j′, δ) = Σ(j, j′)1δ=0 +M(j)M(j′) is the uncentered autocovariance function.
(β is defined in Theorem 1.) If the β and |T | terms are dropped, the resulting approximate natural gradient descent update
rule is equivalent to idealized PRONG, up to rescaling.

Proof. We first compute the second moments of the activations and derivatives, under assumptions SH, SUA, and WD:

E [aj,taj′,t′ ] = Cov(aj,t, aj′,t′) + E[aj,t]E[aj′,t′ ] (115)

= Σ(j, j′)1δ=0 +M(j)M(j′) (116)

, Ω̃(j, j′, δ) (117)
E [Dsi,tDsi′,t′ ] = 1i=i′1δ=δ′ . (118)
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for any t, t′ ∈ T . We now compute

E [Dwi,j,δDwi,j,δ] =
∑
t∈T

∑
t′∈T

E [aj,t+δaj′,t′+δ′ ]E [Dsi,tDsi′,t′ ] (119)

=
∑
t∈T

∑
t′∈T

Ω̃(j, j′, t′ + δ′ − t− δ)1 t+δ∈T
t′+δ′∈T

1i=i′1t=t′ (120)

=
∑
t∈T

Ω̃(j, j′, δ′ − δ)1 t+δ∈T
t+δ′∈T

1i=i′ (121)

= |{t ∈ T : t+ δ ∈ T , t+ δ′ ∈ T }| Ω̃(j, j′, δ′ − δ)1i=i′ (122)

= β(δ, δ′) Ω̃(j, j′, δ′ − δ)1i=i′ (123)

Line 119 is from Lemma 1. The other formulas are derived analogously.

This can be written in matrix form as

F̂ = Ω̃⊗ I (124)

Ω̃ ,

(
1 µ> ⊗ 1>

µ⊗ 1 Σ⊗ I + µµ> ⊗ 11>

)
(125)

It is convenient to compute block Cholesky decompositions:

Ω̃ =

(
1

µ⊗ 1 B⊗ I

)(
1 µ> ⊗ 1>

B> ⊗ I

)
(126)

, LL> (127)

Ω̃
−1

= L−>L−1 (128)

=

(
1 −µ>B−> ⊗ 1>

B−> ⊗ I

)(
1

−B−1µ⊗ 1 B−1 ⊗ I

)
, (129)

where B is some square root matrix, i.e. BB> = Σ (not necessarily lower triangular).

Now consider PRONG. In the original algorithm, the network is periodically reparameterized such that the activations are
white. In our idealized version of the algorithm, we assume this is done after every update. For convenience, we assume that
the network is converted to the white parameterizaton immediately before computing the SGD update, and then converted
back to its original parameterization immediately afterward. In other words, we apply an affine transformation (Eqn. 24)
which whitens the activations:

A†` = φ†`(S
†
`) =

(
φ`(S

†
`)− 1µ>

)
B−1 (130)

= φ`(S
†
`)B

−1 − 1µ>B−1, (131)

where B is a square root matrix of Σ, as defined above. This is an instance of Eqn. 24 with U` = I, c` = 0, V` = B−1,
and d` = −B−1µ. The transformed weights which compute the same function as the original network according to
Lemma 2 are W̄†

` = W̄` JB−1K−>H , where

JB−1KH ,

(
1 −µ>B−> ⊗ 1>

B−1 ⊗ I

)
, (132)

is defined according to Eqn. 80. But observe that JB−1KH = L−>, where L is the Cholesky factor of Ω̃ (Eqn. 129).
Therefore, we have

W̄†
` = W̄` L. (133)

We apply Lemma 3 with P†` = I and R†` = I. This gives us the update in the original coordinate system:

W̄
(k+1)
` ← W̄

(k)
` − α(∇W̄`

h) L−>L−1 (134)

= W̄
(k)
` − α(∇W̄`

h) Ω̃
−1
. (135)

This is equivalent to the approximate natural gradient update where the Fisher block is approximated as Ω̃⊗ I. This is the
same approximate Fisher block we derived given the assumptions of the theorem (Eqn. 124).


