
CSC321 Winter 2015 — Intro to Neural Networks
Solutions for night midterm

Unless otherwise specified, half the marks for each question are for the answer, and half are for
an explanation which demonstrates understanding of the relevant concepts.

1. (1 mark) Suppose we want to train a perceptron with weights w1 and w2 and a fixed bias
b = −1. Sketch the constraints in weight space corresponding to the following training cases.
(The decision boundaries have already been drawn for you, so you only need to draw arrows
to indicate the half-spaces.) Shade the feasible region or indicate that none exists. You do
not need to justify your answer.

x = (1,−1), t = 1

x = (−1,−1), t = 0

w1

w2

�w1 � w2 � 1 = 0 w1 � w2 � 1 = 0

Solution

w1

w2

�w1 � w2 � 1 = 0 w1 � w2 � 1 = 0

2. (1 mark) Suppose we have a fully connected, feed-forward network with no hidden layer, and
5 input units connected directly to 3 output units. Briefly explain why adding a hidden layer
with 8 linear units does not make the network any more powerful (as opposed to not having
a hidden layer).

Solution. The network with 8 linear units computes a composition of two linear functions,
which is linear. But the network with no hidden layer can compute any linear function, so

1

it is at least as powerful as the network with a hidden layer. (In fact, the two are equally
powerful, but the question doesn’t ask for this.)

3. (1 mark) Suppose we have a network with linear hidden units, so that each hidden unit
computes its activation hi as

hi =
∑
j

wijxj ,

where the xj are the input values and the wij are the weights. Let the matrix X represent
the input values for a mini-batch of training examples (rows correspond to training examples
and columns correspond to input dimensions). Let W represent the weight matrix, where the
(i, j) entry connects input j to hidden unit i. Write a matrix expression which computes the
hidden activations on this mini-batch, and specify what the rows and columns of the result
correspond to. You do not need to justify your answer.

Solution. The activations are computed by XW>. Rows correspond to training cases, and
columns correspond to output units. WX> is also correct, if rows correspond to output units
and columns correspond to training cases.

4. (1 mark) In stochastic gradient descent, each pass over the dataset requires the same number
of arithmetic operations, whether we use minibatches of size 1 or size 1000. Why can it
nevertheless be more computationally efficient to use minibatches of size 1000?

Solution. Possible answers include:

• For each set of 1000 examples, the size-1 approach requires a for loop (which incurs some
overhead), while the size-1000 approach requires only a single matrix multiplication.

• The size-1000 approach makes use of matrix-matrix multiplication, whose implementa-
tions are heavily optimized (e.g. for cache efficiency).

We found that students wrote other advantages of using size-1000 that we not computational.
For example, the gradients will oscillate more with size-1. This is certainly true, but this is
not a computational advantage. Another advantage is that size-1000 will have fewer weight
updates, but weight updates are element-wise operations and take negligible time compared
to the matrix multiplies used to compute the updates.

5. (2 marks) In class, we saw that using squared error loss C = (y−t)2 with a logistic output unit
can make optimization difficult because the unit can saturate, leading to a small gradient.
Cross-entropy loss doesn’t have this problem. Suppose that we instead use the absolute loss
C = |y − t| (but keep the logistic output unit). Does this have the same problem with
saturation that squared error does? Justify your answer algebraically and/or by drawing a
figure.

2

Solution. Yes, it still has the problem. Suppose, for instance, that we have a training
example with target t = 0. The cost is C = |y − t| = y. For large values of the input
z (i.e. very bad predictions), the cost asymptotes to C = 1, so the derivatives ∂C/∂z are
approximately 0. This implies there is a plateau.

6. (2 marks) Briefly explain a way in which the neural probabilistic language model from Assign-
ment 1 was doing supervised learning, and a way in which it was doing unsupervised learning.
Solution. The model was doing supervised learning because it was trained to predict the
next word as a target given the previous few words. There are two ways in which it was doing
unsupervised learning:

(a) The goal was to model the distribution over sentences, which is an unsupervised task
because the sentences aren’t labeled in any way.

(b) The model learned word representations which we could then analyze and visualize. This
is unsupervised learning because we didn’t specify the correct word representations in
advance.

7. (1 mark) Briefly explain one thing you would use a validation set for, and why you can’t just
do it using the test set. Solution. Possible things we’d use a validation set for include:

(a) Choosing hyperparameters, e.g. learning rate or number of hidden units.

(b) Early stopping, where we stop the training once the validation set performance gets
worse.

We can’t just use the test set, because then we’d be choosing aspects of the model or algorithm
based on test set performance, and the test set performance will no longer be indicative of
generalization performance.

8. (2 marks) Fill in weights, biases, and initial activations for the following RNN so that it
initially outputs 1, but as soon as it receives an input of 0, it switches to outputting 0 for all
subsequent time steps. For instance, the input 1110101 produces the output 1110000. All
units are binary threshold units with a threshold of 0. The hidden unit has an initial value
of 0. You don’t need to provide an explanation, but doing so may help you receive partial
credit. Hint: in one possible solution, the hidden unit has an activation ht = 0 until there’s
an input xt = 0, at which point it switches to maintaining an activation of 1 forever. The
output unit always predicts the opposite of the hidden unit, i.e. y = 1− h.

3

w1 =

w2 =

b2 =

w3 =

b3 =
x

h

y
weight w3

bias b3

weight w2
bias b2

weight w1

Solution. A good strategy for thinking about this problem is to list the values each unit
should take as a function of the units that feed into it. In particular,

ht yt
0 1
1 0

ht−1 xt ht
0 0 1
0 1 0
1 0 1
1 1 1

One possible setting of the weights and biases which achieves these relationships is:

w1 = −1

w2 = 1

b2 = 0.5

w3 = −1

b3 = 0.5

Scaling all these numbers by the same positive constant will also be a valid solution.

We found that several students chose numbers which led to a zero input to the threshold
units. Unfortunately, we did not specify the behaviour of the unit at the threshold, that is,
whether the output is 1 if the input is greater than the threshold or, greater than or equal
to the threshold. So we gave full points if either of the two interpretations led to the correct
result. However, the same interpretation must be used at both threshold units. In general, it
is a good idea not to rely on boundary values when thinking about networks.

One mark for the relationship between ht and yt, and one mark for the relationship between
xt, ht−1, and ht.

4

9. (2 marks) Suppose we have an RNN with one hidden unit with a logistic nonlinearity, and
no inputs or outputs. The unit has a bias of −1.75 and is connected to itself with a weight of
4. The figure shows the activation ht+1 as a function of the previous activation ht. Draw a
phase plot that summarizes the behavior of this system, and label any sources or sinks. For
what values of the initial activation r = h0 will we encounter exploding or vanishing gradients
(with respect to r)?

ht

ht+1

(0.82, 0.82)

ht+1 = ht

Solution. When ht < 0.82 we have ht+1 > ht, and when ht > 0.82 we have ht+1 < ht. This
can be summarized with the following phase plot:

0 1
x

0.82 (sink)

Regardless of the initial value r, the activations approach 0.82. Therefore, ∂hT /∂r will be
close to 0 for large T , and we will encounter vanishing gradients for all values of r.

10. (2 marks) Alice and Bob have implemented two neural networks for recognizing handwritten
digits from 16 × 16 grayscale images. Each network has a single hidden layer, and makes
predictions using a softmax output layer with 10 units, one for each digit class.

- Alice’s network is a convolutional net. The hidden layer consists of three 16× 16 convo-
lutional feature maps, each with filters of size 5 × 5, and uses the logistic nonlinearity.
All of the hidden units are connected to all of the output units.

5

- Bob’s network is a fully connected network with no weight sharing. The hidden layer
consists of 768 logistic units (the same number of units as in Alice’s convolutional layer).

Briefly explain one advantage of Alice’s approach and one advantage of Bob’s approach.

Solution. The inputs to the convolution layer are a linear function of the images. In Bob’s
network, the hidden units can compute any linear function of the images; by contrast, Alice’s
convolutional layer is more restricted because of weight sharing and local connectivity. The
advantage of Bob’s network is that it is more powerful, i.e. it can compute any function Alice’s
network can compute, plus some additional functions. Advantages of Alice’s network include:

(a) It has fewer parameters, so it is less likely to overfit.

(b) It has fewer connections, so it requires fewer arithmetic operations to compute the acti-
vations or the weight gradients.

6

