
CSC321 Lecture 9
Recurrent neural nets

Roger Grosse and Nitish Srivastava

February 3, 2015

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 1 / 20

Overview

You just implemented a neural probabilistic language model for Assignment 1:

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 2 / 20

Overview

Recall that we made a Markov assumption:

p(wi |w1, . . . ,wi−1) = p(wi |wi−3,wi−2,wi−1).

This means the model is memoryless, i.e. it has no memory of anything
before the last few words.

But sometimes long-distance context can be important:

Rob Ford told the flabbergasted reporters assembled at the press
conference that .

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 3 / 20

Overview

Recall that we made a Markov assumption:

p(wi |w1, . . . ,wi−1) = p(wi |wi−3,wi−2,wi−1).

This means the model is memoryless, i.e. it has no memory of anything
before the last few words.

But sometimes long-distance context can be important:

Rob Ford told the flabbergasted reporters assembled at the press
conference that .

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 3 / 20

Recurrent neural nets

RNNs are a kind of neural net model which use hidden units to remember
things over time. When we compute with them, we unroll them over time:

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 4 / 20

Recurrent neural nets

One way to use RNNs to model text:

As with our language model, each word is represented as an indicator vector, the
model predicts a distribution, and we can train it with cross-entropy loss.

This model can learn long-distance dependencies.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 5 / 20

Recurrent neural nets

When we generate from the model (i.e. compute samples from its
distribution over sentences), the outputs feed back in to the network as
inputs.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 6 / 20

Recurrent neural nets

Another approach is to model text one character at a time!

This solves the problem of what to do about previously unseen words.
Note that long-term memory is essential at the character level!

Note: modeling language well at the character level requires multiplicative interactions,

which we’re not going to talk about.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 7 / 20

Recurrent neural nets

From Geoff’s lecture video (optional Lecture H), an example of a
paragraph generated by an RNN language model one character at a time:

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters‘ sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

J. Martens and I. Sutskever, 2011. Learning recurrent neural networks with Hessian-free optimization.

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 8 / 20

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

Question 1: RNN examples

Now let’s look at some simple examples of RNNs.

This one sums its inputs:

2

2

2

w=1

w=1

-0.5

1.5

1.5

w=1

w=1

1

2.5

2.5

w=1

w=1

1

3.5

3.5

w=1

w=1

T=1 T=2 T=3 T=4

w=1 w=1 w=1

input
unit

linear
hidden

unit

linear
output

unit

w=1

w=1

w=1

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 9 / 20

Question 1: RNN examples

What do these RNNs do?

input
unit

logistic
hidden

unit
1

linear
output

unit

w=1

w=5

bias= -3

logistic
hidden

unit
2

w=8
w=8

bias= -4
input
unit
1

linear
hidden

unit

logistic
output

unit

w=5

w=1

w=1

input
unit
2

w= -1

input
unit

linear
hidden

unit

linear
output

unit

w=1

w=1

w=1

What do these three RNNs do?

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 10 / 20

Question 1: RNN examples

This one determines if the total values of the first or second input are larger:

input
unit
1

linear
hidden

unit

logistic
output

unit

w=5

w=1

w=1

input
unit
2

w= -1

2

4

1.00

-2

T=1

0

0.5

0.92

3.5

T=2

1

-0.7

0.03

2.2

T=3

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 11 / 20

Finite state machines

A major motivation for RNNs is that they can perform computations.
Finite state machines (FSMs) are a simple model of computation.

Intuitively, they perform computations that require only finite memory.

We can represent a FSM as a graph.

Each node denotes a state that the FSM can be in.

It reads its input one symbol at a time.

After reading the input, it transitions to some other state according
to the edge label.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 12 / 20

Finite state machines

A major motivation for RNNs is that they can perform computations.
Finite state machines (FSMs) are a simple model of computation.

Intuitively, they perform computations that require only finite memory.

We can represent a FSM as a graph.

Each node denotes a state that the FSM can be in.

It reads its input one symbol at a time.

After reading the input, it transitions to some other state according
to the edge label.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 12 / 20

Finite state machines

What does this FSM do?

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 13 / 20

Question 2: Parity

Assume we have a sequence of binary inputs. We’ll consider how to
determine the parity, i.e. whether the number of 1’s is even or odd.

We can compute parity incrementally by keeping track of the parity of the
input so far:

Parity bits: 0 1 1 0 1 1 −→
Input: 0 1 0 1 1 0 1 0 1 1

Each parity bit is the XOR of the input and the previous parity bit.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 14 / 20

Question 2: Parity

Assume we have a sequence of binary inputs. We’ll consider how to
determine the parity, i.e. whether the number of 1’s is even or odd.

1 Write down a finite state machine
which determines the parity.

2 Fill in the weights and biases for the
RNN on the right so that it computes
the parity. All hidden and output units
are binary threshold units.

Hint: Have one hidden unit represent
the conjunction of the input and the
previous parity bit, and the other hidden
unit represent the disjunction.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 15 / 20

Question 2: Parity

This FSM determines the parity:

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 16 / 20

Question 2: Parity

We can’t get by with just one
hidden unit, since we need to solve
the XOR problem at each time step.

Recall that a feed-forward network
can compute XOR if we have one
hidden unit compute the disjunction
of its inputs and the other one the
conjunction.

This RNN computes the parity using

this strategy. One hidden unit

computes the disjunction of the

input with the previous parity bit,

and the other computes the

conjunction.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 17 / 20

Question 2: Parity

Parity is a classic example of a problem that’s difficult to solve with a
standard feed-forward net, but easy to solve with an RNN.

Geoff said that “a recurrent network can emulate a finite state
automaton.”

In our last example, we designed an RNN by inspection. If you want a
fun challenge, try to come up with a procedure for converting a FSM
into an RNN.

The parity example makes a good test case.

Hint: you’ll need lots of hidden units.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 18 / 20

What can RNNs compute?

In 2014, Google researchers built an RNN that learns to execute simple
Python programs, one character at a time!Learning to Execute

(Maddison & Tarlow, 2014) learned a language model on
parse trees, and (Mou et al., 2014) predicted whether two
programs are equivalent or not. Both of these approaches
require parse trees, while we learn from a program charac-
ter level sequence.

Predicting program output requires that the model deals
with long term dependencies that arise from variable as-
signment. Thus we chose to use Recurrent Neural Net-
works with Long Short Term Memory units (Hochreiter &
Schmidhuber, 1997), although there are many other RNN
variants that perform well on tasks with long term depen-
dencies (Cho et al., 2014; Jaeger et al., 2007; Koutnı́k et al.,
2014; Martens, 2010; Bengio et al., 2013).

Initially, we found it difficult to train LSTMs to accurately
evaluate programs. The compositional nature of computer
programs suggests that the LSTM would learn faster if we
first taught it the individual operators separately and then
taught the LSTM how to combine them. This approach can
be implemented with curriculum learning (Bengio et al.,
2009; Kumar et al., 2010; Lee & Grauman, 2011), which
prescribes gradually increasing the “difficulty level” of the
examples presented to the LSTM, and is partially motivated
by fact that humans and animals learn much faster when
their instruction provides them with hard but manageable
exercises. Unfortunately, we found the naive curriculum
learning strategy of Bengio et al. (2009) to be generally
ineffective and occasionally harmful. One of our key con-
tributions is the formulation of a new curriculum learning
strategy that substantially improves the speed and the qual-
ity of training in every experimental setting that we consid-
ered.

3. Subclass of programs
We train RNNs on class of simple programs that can be
evaluated in O (n) time and constant memory. This re-
striction is dictated by the computational structure of the
RNN itself, at it can only do a single pass over the pro-
gram using a very limited memory. Our programs use the
Python syntax and are based on a small number of oper-
ations and their composition (nesting). We consider the
following operations: addition, subtraction, multiplication,
variable assignment, if-statement, and for-loops, although
we forbid double loops. Every program ends with a single
“print” statement that outputs a number. Several example
programs are shown in Figure 1.

We select our programs from a family of distributions pa-
rameterized by length and nesting. The length parameter is
the number of digits in numbers that appear in the programs
(so the numbers are chosen uniformly from [1, 10length]).
For example, the programs are generated with length = 4
(and nesting = 3) in Figure 1.

Input:
j=8584
for x in range(8):

j+=920
b=(1500+j)
print((b+7567))

Target: 25011.

Input:
i=8827
c=(i-5347)
print((c+8704) if 2641<8500 else

5308)

Target: 1218.

Figure 1. Example programs on which we train the LSTM. The
output of each program is a single number. A “dot” symbol indi-
cates the end of a number and has to be predicted as well.

We are more restrictive with multiplication and the ranges
of for-loop, as these are much more difficult to handle.
We constrain one of the operands of multiplication and the
range of for-loops to be chosen uniformly from the much
smaller range [1, 4 · length]. This choice is dictated by the
limitations of our architecture. Our models are able to per-
form linear-time computation while generic integer mul-
tiplication requires superlinear time. Similar restrictions
apply to for-loops, since nested for-loops can implement
integer multiplication.

The nesting parameter is the number of times we are al-
lowed to combine the operations with each other. Higher
value of nesting results in programs with a deeper parse
tree. Nesting makes the task much harder for our LSTMs,
because they do not have a natural way of dealing with
compositionality, in contrast to Tree Neural Networks. It
is surprising that they are able to deal with nested expres-
sions at all.

It is important to emphasize that the LSTM reads the input
one character at a time and produces the output character
by character. The characters are initially meaningless from
the model’s perspective; for instance, the model does not
know that “+” means addition or that 6 is followed by 7.
Indeed, scrambling the input characters (e.g., replacing “a”
with “q”, “b” with “w”, etc.,) would have no effect on the
model’s ability to solve this problem. We demonstrate the
difficulty of the task by presenting an input-output example
with scrambled characters in Figure 2.

Example training inputs

Learning to Execute

Input:
vqppkn
sqdvfljmnc
y2vxdddsepnimcbvubkomhrpliibtwztbljipcc

Target: hkhpg

Figure 2. An example program with scrambled characters. It
helps illustrate the difficulty faced by our neural network.

3.1. Memorization Task

In addition to program evaluation, we also investigate the
task of memorizing a random sequence of numbers. Given
an example input 123456789, the LSTM reads it one char-
acter at a time, stores it in memory, and then outputs
123456789 one character at a time. We present and ex-
plore two simple performance enhancing techniques: input
reversing (from Sutskever et al. (2014)) and input doubling.

The idea of input reversing is to reverse the order of the
input (987654321) while keeping the desired output un-
changed (123456789). It seems to be a neutral operation as
the average distance between each input and its correspond-
ing target did not become shorter. However, input reversing
introduces many short term dependencies that make it eas-
ier for the LSTM to start making correct predictions. This
strategy was first introduced for LSTMs for machine trans-
lation by Sutskever et al. (2014).

The second performance enhancing technique is input dou-
bling, where we present the input sequence twice (so the
example input becomes 123456789; 123456789), while the
output is unchanged (123456789). This method is mean-
ingless from a probabilistic perspective as RNNs approx-
imate the conditional distribution p(y|x), yet here we at-
tempt to learn p(y|x, x). Still, it gives noticeable per-
formance improvements. By processing the input several
times before producing an output, the LSTM is given the
opportunity to correct the mistakes it made in the earlier
passes.

4. Curriculum Learning
Our program generation scheme is parametrized by length
and nesting. These two parameters allow us control the
complexity of the program. When length and nesting are
large enough, the learning problem nearly intractable. This
indicates that in order to learn to evaluate programs of a
given length = a and nesting = b, it may help to first learn
to evaluate programs with length ⌧ a and nesting ⌧ b.
We compare the following curriculum learning strategies:

No curriculum learning (baseline) The baseline approach
does not use curriculum learning. This means that we

generate all the training samples with length = a and
nesting = b. This strategy is most “sound” from statis-
tical perspective, as it is generally recommended to make
the training distribution identical to test distribution.

Naive curriculum strategy (naive)

We begin with length = 1 and nesting = 1. Once learning
stops making progress, we increase length by 1. We repeat
this process until its length reaches a, in which case we
increase nesting by one and reset length to 1.

We can also choose to first increase nesting and then length.
However, it does not make a noticeable difference in per-
formance. We skip this option in the rest of paper, and
increase length first in all our experiments. This strategy is
has been examined in previous work on curriculum learn-
ing (Bengio et al., 2009). However, we show that often it
gives even worse performance than baseline.

Mixed strategy (mix)

To generate a random sample, we first pick a random length
from [1, a] and a random nesting from [1, b] independently
for every sample. The Mixed strategy uses a balanced mix-
ture of easy and difficult examples, so at any time during
training, a sizable fraction of the training samples will have
the appropriate difficulty for the LSTM.

Combining the mixed strategy with naive curriculum
strategy (combined)

This strategy combines the mix strategy with the naive
strategy. In this approach, every training case is obtained
either by the naive strategy or by the mix strategy. As a
result, the combined strategy always exposes the network
at least to some difficult examples, which is the key way in
which it differs from the naive curriculum strategy. We no-
ticed that it reliably outperformed the other strategies in our
experiments. We explain why our new curriculum learning
strategies outperform the naive curriculum strategy in Sec-
tion 7.

We evaluate these four strategies on the program evaluation
task (Section 6.1) and on the memorization task (Section
6.2).

5. RNN with LSTM cells
In this section we briefly describe the deep LSTM (Sec-
tion 5.1). All vectors are n-dimensional unless explicitly
stated otherwise. Let hl

t 2 Rn be a hidden state in layer
l in timestep t. Let Tn,m : Rn ! Rm be a biased lin-
ear mapping (x ! Wx + b for some W and b). We
let � be element-wise multiplication and let h0

t be the in-
put at timestep k. We use the activations at the top layer
L (namely hL

t) to predict yt where L is the depth of our
LSTM.

A training input with characters scrambled

W. Zaremba and I. Sutskever, “Learning to Execute.” http://arxiv.org/abs/1410.4615

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 19 / 20

http://arxiv.org/abs/1410.4615

What can RNNs compute?

Some example results:

Under review as a conference paper at ICLR 2015

SUPPLEMENTARY MATERIAL

Input: length, nesting
stack = EmptyStack()
Operations = Addition, Subtraction, Multiplication, If-Statement,
For-Loop, Variable Assignment
for i = 1 to nesting do
Operation = a random operation from Operations
Values = List
Code = List
for params in Operation.params do
if not empty stack and Uniform(1) > 0.5 then
value, code = stack.pop()

else
value = random.int(10length)
code = toString(value)

end if
values.append(value)
code.append(code)

end for
new value= Operation.evaluate(values)
new code = Operation.generate code(codes)
stack.push((new value, new code))

end for
final value, final code = stack.pop()
datasets = training, validation, testing
idx = hash(final code) modulo 3
datasets[idx].add((final value, final code))

Algorithm 1: Pseudocode of the algorithm used to generate the distribution over the python pro-
gram. Programs produced by this algorithm are guaranteed to never have dead code. The type of the
sample (train, test, or validation) is determined by its hash modulo 3.

11 ADDITIONAL RESULTS ON THE MEMORIZATION PROBLEM

We present the algorithm for generating the training cases, and present an extensive qualitative evaluation of
the samples and the kinds of predictions made by the trained LSTMs.

We emphasize that these predictions rely on teacher forcing. That is, even if the LSTM made an incorrect
prediction in the i-th output digit, the LSTM will be provided as input the correct i-th output digit for predicting
the i + 1-th digit. While teacher forcing has no effect whenever the LSTM makes no errors at all, a sample that
makes an early error and gets the remainder of the digits correctly needs to be interpreted with care.

12 QUALITATIVE EVALUATION OF THE CURRICULUM STRATEGIES

12.1 EXAMPLES OF PROGRAM EVALUATION PREDICTION. LENGTH = 4, NESTING = 1

Input:
print(6652).

Target: 6652.
”Baseline” prediction: 6652.
”Naive” prediction: 6652.
”Mix” prediction: 6652.
”Combined” prediction: 6652.

Input:

10

Under review as a conference paper at ICLR 2015

Input:
b=9930
for x in range(11):b-=4369
g=b;
print(((g-8043)+9955)).

Target: -36217.
”Baseline” prediction: -37515.
”Naive” prediction: -38609.
”Mix” prediction: -35893.
”Combined” prediction: -35055.

Input:
d=5446
for x in range(8):d+=(2678 if 4803<2829 else 9848)
print((d if 5935<4845 else 3043)).

Target: 3043.
”Baseline” prediction: 3043.
”Naive” prediction: 3043.
”Mix” prediction: 3043.
”Combined” prediction: 3043.

Input:
print((((2578 if 7750<1768 else 8639)-2590)+342)).

Target: 6391.
”Baseline” prediction: -555.
”Naive” prediction: 6329.
”Mix” prediction: 6461.
”Combined” prediction: 6105.

Input:
print((((841 if 2076<7326 else 1869)*10) if 7827<317 else 7192)).

Target: 7192.
”Baseline” prediction: 7192.
”Naive” prediction: 7192.
”Mix” prediction: 7192.
”Combined” prediction: 7192.

Input:
d=8640;
print((7135 if 6710>((d+7080)*14) else 7200)).

Target: 7200.
”Baseline” prediction: 7200.
”Naive” prediction: 7200.
”Mix” prediction: 7200.
”Combined” prediction: 7200.

Input:
b=6968
for x in range(10):b-=(299 if 3389<9977 else 203)
print((12*b)).

15

Under review as a conference paper at ICLR 2015

Figure 8: Prediction accuracy on the memorization task for the four curriculum strategies. The input
length ranges from 5 to 65 digits. Every strategy is evaluated with the following 4 input modification
schemes: no modification; input inversion; input doubling; and input doubling and inversion. The
training time is limited to 20 epochs.

print((5997-738)).

Target: 5259.
”Baseline” prediction: 5101.
”Naive” prediction: 5101.
”Mix” prediction: 5249.
”Combined” prediction: 5229.

Input:
print((16*3071)).

Target: 49136.
”Baseline” prediction: 49336.
”Naive” prediction: 48676.
”Mix” prediction: 57026.
”Combined” prediction: 49626.

Input:
c=2060;
print((c-4387)).

Target: -2327.
”Baseline” prediction: -2320.
”Naive” prediction: -2201.
”Mix” prediction: -2377.
”Combined” prediction: -2317.

Input:
print((2*5172)).

11

Under review as a conference paper at ICLR 2015

Target: 47736.
”Baseline” prediction: -0666.
”Naive” prediction: 11262.
”Mix” prediction: 48666.
”Combined” prediction: 48766.

Input:
j=(1*5057);
print(((j+1215)+6931)).

Target: 13203.
”Baseline” prediction: 13015.
”Naive” prediction: 12007.
”Mix” prediction: 13379.
”Combined” prediction: 13205.

Input:
print(((1090-3305)+9466)).

Target: 7251.
”Baseline” prediction: 7111.
”Naive” prediction: 7099.
”Mix” prediction: 7595.
”Combined” prediction: 7699.

Input:
a=8331;
print((a-(15*7082))).

Target: -97899.
”Baseline” prediction: -96991.
”Naive” prediction: -19959.
”Mix” prediction: -95551.
”Combined” prediction: -96397.

12.4 EXAMPLES OF PROGRAM EVALUATION PREDICTION. LENGTH = 6, NESTING = 1

Input:
print((71647-548966)).

Target: -477319.
”Baseline” prediction: -472122.
”Naive” prediction: -477591.
”Mix” prediction: -479705.
”Combined” prediction: -475009.

Input:
print(1508).

Target: 1508.
”Baseline” prediction: 1508.
”Naive” prediction: 1508.
”Mix” prediction: 1508.
”Combined” prediction: 1508.

Input:

16

Take a look through the results (http://arxiv.org/pdf/1410.4615v2.pdf#page=10). It’s fun

to try to guess from the mistakes what algorithms it’s discovered.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 20 / 20

http://arxiv.org/pdf/1410.4615v2.pdf#page=10

