CSC321 Lecture 9
Recurrent neural nets

Roger Grosse and Nitish Srivastava

February 3, 2015

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 1/20

Overview

You just implemented a neural probabilistic language model for Assignment 1:

Word 4
A utput_bias
1

hid_to_outpjut_weights

‘ Hidden Layer ‘

‘\hws
embed_to_hid_weights

‘ Word Embedding 1 H Word Embedding 2 H Word Embedding 3 ‘

1

word_embedding_weights word_embedding_weights word_embgdding_weights

Index of Word 1 Index of Word 2 Index of Word 3

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 2 /20

Overview

Recall that we made a Markov assumption:
p(wi|wi,...,wi—1) = p(w; | wj_3, w2, w;_1).

This means the model is memoryless, i.e. it has no memory of anything
before the last few words.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 3 /20

Overview

Recall that we made a Markov assumption:
p(wi|wi,...,wi—1) = p(w; | wj_3, w2, w;_1).

This means the model is memoryless, i.e. it has no memory of anything
before the last few words.

But sometimes long-distance context can be important:

Rob Ford told the flabbergasted reporters assembled at the press
conference that

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 3 /20

Recurrent neural nets

RNNs are a kind of neural net model which use hidden units to remember
things over time. When we compute with them, we unroll them over time:

time 1
output units

output units

time 2
output units

time 3
output units

hidden units time 1 time 2 time 3
hidden units hidden units hidden units
input units time 1 time 2 time 3
input units input units input units
Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 4 /20

Recurrent neural nets

One way to use RNNs to model text:

target = target = target =
llquickll Ilbrownll "foxll
time 1 o time 2 .8 time 3
hidden units "~ | hidden units 7| hidden units
input = input = input =
"quick" "brown"

As with our language model, each word is represented as an indicator vector, the
model predicts a distribution, and we can train it with cross-entropy loss.

This model can learn long-distance dependencies.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 5/ 20

Recurrent neural nets

When we generate from the model (i.e. compute samples from its

distribution over sentences), the outputs feed back in to the network as
inputs.

time 1 o time 2 nd time 3 nl time 4
hidden units 7| hidden units | hidden units | hidden units
llquickll llbrownll llfox"

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 6 /20

Recurrent neural nets

Another approach is to model text one character at a time!

target = target = target =
prive ng "o

time 1 time 2 time 3
hidden units hidden units hidden units

input = input = input =
" ngn

This solves the problem of what to do about previously unseen words.
Note that long-term memory is essential at the character level!

Note: modeling language well at the character level requires multiplicative interactions,
which we're not going to talk about.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 7 /20

Recurrent neural nets

From Geoff's lecture video (optional Lecture H), an example of a
paragraph generated by an RNN language model one character at a time:

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters' sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

J. Martens and |. Sutskever, 2011. Learning recurrent neural networks with Hessian-free optimization.

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 8 /20

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

]
Question 1: RNN examples

Now let's look at some simple examples of RNNs.

This one sums its inputs:

linear
output

linear
hidden
unit

T=1 T=; T=3 T=

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 9 /20

]
Question 1: RNN examples

What do these RNNs do?

logistic
output
unit

linear
output
unit

bias= -3

hidden
unit

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 10 / 20

]
Question 1: RNN examples

This one determines if the total values of the first or second input are larger:

T=1 T=2 T=3

logistic
output
unit

linear
hidden

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 11 /20

Finite state machines

A major motivation for RNNs is that they can perform computations.
Finite state machines (FSMs) are a simple model of computation.

Intuitively, they perform computations that require only finite memory.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 12 /20

Finite state machines

A major motivation for RNNs is that they can perform computations.
Finite state machines (FSMs) are a simple model of computation.

Intuitively, they perform computations that require only finite memory.

We can represent a FSM as a graph.
@ Each node denotes a state that the FSM can be in.
@ It reads its input one symbol at a time.

@ After reading the input, it transitions to some other state according
to the edge label.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 12 /20

Finite state machines

What does this FSM do?

initial 0

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 13 /20

]
Question 2: Parity

Assume we have a sequence of binary inputs. We'll consider how to
determine the parity, i.e. whether the number of 1's is even or odd.

We can compute parity incrementally by keeping track of the parity of the
input so far:

Parity bits:

011 —
Input: 010

011
1101011

Each parity bit is the XOR of the input and the previous parity bit.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 14 /20

]
Question 2: Parity

Assume we have a sequence of binary inputs. We'll consider how to
determine the parity, i.e. whether the number of 1's is even or odd.

@ Write down a finite state machine
which determines the parity.

@ Fill in the weights and biases for the
RNN on the right so that it computes
the parity. All hidden and output units
are binary threshold units.

Hint: Have one hidden unit represent
the conjunction of the input and the
previous parity bit, and the other hidden
unit represent the disjunction.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 15 / 20

]
Question 2: Parity

This FSM determines the parity:

0 1 0

(initial state)

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 16 / 20

]
Question 2: Parity

We can't get by with just one
hidden unit, since we need to solve
the XOR problem at each time step.

Recall that a feed-forward network
can compute XOR if we have one
hidden unit compute the disjunction
of its inputs and the other one the
conjunction.

This RNN computes the parity using
this strategy. One hidden unit
computes the disjunction of the
input with the previous parity bit,
and the other computes the

conjunction.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 17 /20

]
Question 2: Parity

Parity is a classic example of a problem that's difficult to solve with a
standard feed-forward net, but easy to solve with an RNN.

Geoff said that “a recurrent network can emulate a finite state
automaton.”

@ In our last example, we designed an RNN by inspection. If you want a
fun challenge, try to come up with a procedure for converting a FSM
into an RNN.

@ The parity example makes a good test case.

@ Hint: you'll need lots of hidden units.

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 18 / 20

|
What can RNNs compute?

In 2014, Google researchers built an RNN that learns to execute simple
Python programs, one character at a time!

Input:
j=8584
for x in range(8):
J+=920
b=(1500+7)
print ((b+7567))
Target: 25011. Input:
vagppkn
sgdvfljmnc
y2vxdddsepnimcbvubkomhrpliibtwztbljipcc
Target: hkhpg
Input:
i=8827
o= (i-5347) A training input with characters scrambled
print ((c+8704) if 2641<8500 else
5308)

Target: 1218.

Example training inputs
W. Zaremba and |. Sutskever, “Learning to Execute.” http://arxiv.org/abs/1410.4615

Roger Grosse and Nitish Srivastava CSC321 Lecture 9 Recurrent neural nets February 3, 2015 19 /20

http://arxiv.org/abs/1410.4615

|
What can RNNs compute?

Some example results:

Input:

print (6652).
Target: 6652.
”Baseline” prediction: 6652.
Naive” prediction: 6652.
”Mix” prediction: 6652.

”Combined” prediction: 6652.

Input:

d=5446

for x in range(8):d+=(2678 if 4803<2829 else 9848)
print ((d if 5935<4845 else 3043)).

Target: 3043.
“’Baseline” prediction: 3043.
”’Naive” prediction: 3043.
”Mix” prediction: 3043.

”Combined” prediction: 3043.

print ((5997-738)) .

Target: 5259.
”’Baseline” prediction: 5101.
”Naive” prediction: 5101.
”Mix” prediction: 5249.

”Combined” prediction: 5229.

Input:

print (((1090-3305)+9466)) .
Target: 7251.
”Baseline” prediction: 7111.
”Naive” prediction: 7099.
”Mix” prediction: 7595.

”Combined” prediction: 7699.

Take a look through the results (http://arxiv.org/pdf/1410.4615v2.pdf#page=10). It's fun

to try to guess from the mistakes what algorithms it’s discovered.

Roger Grosse and Nitish Srivastava

CSC321 Lecture 9 Recurrent neural nets

February 3, 2015

20 / 20

http://arxiv.org/pdf/1410.4615v2.pdf#page=10

