CSC321 Lecture 4
The Perceptron Algorithm

Roger Grosse and Nitish Srivastava

January 17, 2017
Recap: Perceptron Model

Inputs: \(x \).
Parameters: \(w \).

\[
y = \begin{cases}
1 & \text{if } w^T x \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

An example of a binary linear classifier.
Recap: Perceptron Model

Inputs: x.
Parameters: w.

$$y = \begin{cases}
1 & \text{if } w^T x \geq 0 \\
0 & \text{otherwise}
\end{cases}$$

An example of a binary linear classifier.

- Binary: Two possible classification decisions (0 or 1).
Recap: Perceptron Model

Inputs: \(x \).
Parameters: \(w \).

\[
y = \begin{cases}
1 & \text{if } w^T x \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

An example of a binary linear classifier.

- Binary: Two possible classification decisions (0 or 1).
- Linear: \(w^T x \).
Recap: Perceptron Learning Algorithm

\[w \leftarrow 0 \]

Repeat until all data points are classified correctly:

Choose a data point \(x \) with target \(t \)
Compute

\[y = \begin{cases}
1 & \text{if } w^T x \geq 0 \\
0 & \text{otherwise}
\end{cases} \]

If \(y \neq t \), then update

\[w \leftarrow w + (t - y)x \]

Theoretical guarantee: if the data are linearly separable, it will make only a finite number of mistakes, then find a \(w \) which correctly classifies all training cases.

Note: after giving this lecture, we realized we’ve been inconsistent about what happens when an input lies on the decision boundary \(w^T x = 0 \). This isn’t a case we want to emphasize in this course. We won’t ask any exam or homework questions where inputs lie on the decision boundary. Sorry for the confusion.
Question 1: Perceptron example

Suppose we have the following data points, and no bias term:

- $x = (1, -2), t = 1$
- $x = (0, -1), t = 0$

The initial weight vector is $(0, -2)$.

- Draw the feasible regions in weight space.
 - Draw the axes in weight space w_1, w_2.
 - Draw each data point as a line that separates “good” and “bad” regions.
 - Shade the feasible region.

- Carry out the perceptron algorithm until you get a feasible solution.
 - It’s easiest to do it on the plot you made. Here is the algorithm -
 Choose a data point x with target t
 Compute

$$y = \begin{cases}
1 & \text{if } w^T x \geq 0 \\
0 & \text{otherwise}
\end{cases}$$

If $y \neq t$, then update

$$w \leftarrow w + (t - y)x$$
Question 2: Feature space

We’re given a problem with a single input and no bias parameter:
- $x = -1, t = 1$
- $x = 1, t = 0$
- $x = 3, t = 1$

Sketch the data in input space. Is this dataset linearly separable?
Question 2: Feature space

We’re given a problem with a single input and no bias parameter:
- $x = -1, \ t = 1$
- $x = 1, \ t = 0$
- $x = 3, \ t = 1$

Sketch the data in input space. Is this dataset linearly separable?

Design 2 basis functions (features) ϕ_1 and ϕ_2 such that
- $(\phi_1(-1), \phi_2(-1)), \ t = 1$
- $(\phi_1(1), \phi_2(1)), \ t = 0$
- $(\phi_1(3), \phi_2(3)), \ t = 1$

becomes linearly separable.

$$y = \begin{cases} 1 & \text{if } \mathbf{w}^T \Phi(x) \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

Sketch the feature space - axes will be $\phi_1(x)$ and $\phi_2(x)$.
Question 2: Feature space

We’re given a problem with a single input and no bias parameter:

- $x = -1, t = 1$
- $x = 1, t = 0$
- $x = 3, t = 1$

Sketch the data in input space. Is this dataset linearly separable?

Design 2 basis functions (features) ϕ_1 and ϕ_2 such that

- $(\phi_1(-1), \phi_2(-1)), t = 1$
- $(\phi_1(1), \phi_2(1)), t = 0$
- $(\phi_1(3), \phi_2(3)), t = 1$

becomes linearly separable.

$$y = \begin{cases}
1 & \text{if } w^T \Phi(x) \geq 0 \\
0 & \text{otherwise}
\end{cases}$$

Sketch the feature space - axes will be $\phi_1(x)$ and $\phi_2(x)$.

Sketch the constraints in weight space.
Question 3: Linear regression in weight space

Recall that linear regression fits the model -

\[y = wx + b. \]

Suppose we’re given the following training examples:

\[x = -1, \ t = -1 \quad x = 0, \ t = 1 \quad x = 1, \ t = 2 \]

The optimal solution is (approximately) \(w = 1.5 \), \(b = 0.67 \).

For each example, sketch the sets of points in weight space which predict each target exactly, and plot the optimal solution. (The axes are \(b \) and \(w \).) What do you notice?
Question 3: Linear regression in weight space
What linear classifiers can’t represent.

Recall that Geoff said perceptrons can’t distinguish between two different binary patterns with wrap-around if they have the same number of nonzero entries.

Here’s another way of looking at it.

• Show that if a linear classifier classifies all the inputs $x^{(1)}, \ldots, x^{(N)}$ the same, then it also classifies their average the same.
• What is the average input for patterns A and B?
Your questions from the quiz

- How to initialize weights and biases?
 - by default, initialize to 0; but this depends on the situation
Your questions from the quiz

- How to initialize weights and biases?
 - by default, initialize to 0; but this depends on the situation

- Perceptrons with something other than a binary threshold?
 - We will cover neural net models which make other types of predictions (and these are sometimes called perceptrons)
Thinking about high-dimensional spaces

Geoff says that to think about 14-D space, you should “think about 3-D space and say 14 really loudly.” But some intuitions don’t carry over:

- “Most” sets of D points in D dimensions are linearly separable.
- “Most” points (inside a hypercube, say) are about the same distance from each other.
- “Most” vectors are approximately orthogonal to each other.