
CSC321 Winter 2015 - Assignment 2
Convolutional Neural Nets

Due Date: Tuesday March 10, 2015 (at the start of the class).
TA: Ryan Kiros (csc321ta@cs.toronto.edu)

In this assignment we apply neural networks on images. We will be working with the USPS dataset of
digit images. We will train some fully connected networks as well as convolutional networks. There are two
main goals of this assignment.

• Understand how to construct neural networks in a modular way. The starter code is designed in a
way which should encourage you to think of layers as modules, forward and backpropagation as local
operations in these modules, and a full neural network as just a concatenation of these local modules.

• Understand convolutions. In the class, we saw two ways of interpreting convolutions. In this assign-
ment, you see implementations of both.

Part 0: Getting set up

Download the starter code. This includes the data as well.
Dataset: The USPS dataset consists of 16 × 16 handwritten digit images extracted from postal codes

people wrote on letters. There are 10 class labels corresponding to the digits 0, . . ., 9. The training set has
7291 images from which we hold out 1000 random ones for validation. The test set has 2007 images.

Testing the convolutions: The starter code includes an implementation of a convolve method written
in Cython (convolutions.pyx). It needs to be compiled in order to use it. However, if you are running this
assignment on the CDF machines, you do not need to compile this because a precompiled shared library
convolutions.so is included with the starter code. If you have a different setup, you will need to compile
it. To do that, run
python setup.py build_ext --inplace

This will produce convolutions.so which can be imported into python. The compilation requires you to
have Cython installed. It may give some warnings if your Numpy is old, but you can ignore them. Run the
play_with_convolutions.py script.
python play_with_convolutions.py

This script loads an image and convolves it with three filters which we saw in class. If this script runs fine
and shows you the output, then you are all set to use the convolve method.

Specifying network architectures: In this assignment we will be training many different network
architectures. To make it easy to specify these architectures, we will use configuration files written in YAML
(a fairly easy to use markup language). Check out some of the YAML files. They specify the type of layers,
number of hidden units and convolutional parameters. They also include hyperparameters such as the initial
weight scale, learning rate, momentum and l2 decay. Additionally, they also specifies where the data file is
located and the name of the checkpoint file that the model will output. The checkpoint file contains the
learned model parameters. The config file also specifies the number of epochs to run and batch size to use.

Part 1: Fully connected nets

In this part, you will complete the implementation of FCLayer.ComputeUp and FCLayer.ComputeDown meth-
ods in fc_layer.py and run some experiments using fully connected nets. The implementations can be done
in a total of 4-5 lines of code, although you are free to use more. DO NOT write loops.

1. [2 points] Implement FCLayer.ComputeUp. This method forward propagates activations.

1

2. [4 points] Implement FClayer.ComputeDown. This method backprops gradients.

3. Run the gradient checker to make sure your implementation is correct.
python grad_check.py logreg.yaml

If it says PASSED then you are ready to proceed.

4. At this point you will be able to train fully connected networks. We will first start off with logistic
regression. The model is described in logreg.yaml. This is essentially a neural net with no hidden
layers. You can train this model by running
python train.py logreg.yaml

As the model trains it will output the performance metrics evaluated after each epoch. After every
few updates, it will also show a random training example and the activations of all the layers for that
training example. After the model has finished training, the checkpoint file logreg.npz will contain
the model that achieved the best validation performance. To evaluate the final model, run
python evaluate.py logreg.yaml

This will load the checkpoint file and run the model on the training, validation and test sets. Record
these numbers.

5. Similarly, train and evaluate net_1layer.yaml. This is a one hidden layer neural net. Record the
numbers for the three sets.

6. Train and evaluate net_2layer.yaml. This is a two hidden layer neural net. Record the numbers for
the three sets.

7. [3 points] In your write up, put the recorded numbers into a table. This table should have three rows
and six columns. The rows correspond to the three models you trained. The columns correspond to
the six numbers : Avg cross entropy and classification accuracy for each of the three splits. 1 point for
each row.

8. [1 point] Now we can analyze these results and compare the three models. Which model would you
consider the best and why ? Which one gets the highest training accuracy ? Which one gets the
highest test accuracy ?

9. [Extra; 0 points] If you want to play more with fully connected nets, try changing the sizes of the
hidden layers, learning rates, momentum, may be add more layers and see which models work better
than others.

Part 2: Convolutional nets

In this part, you will complete the implementation of ConvLayer.ComputeUp and ConvLayer.ComputeDown

methods in conv_layer.py and run some experiments using convolutional nets.
Channels, kernels, strides and padding We will be using these terms when talking about con-

volutional network architectures. Here we describe these terms so that the network architectures can be
understood very clearly.

Suppose we have an image of spatial size 40 × 40 that consists of 3 channels. This means the image
has a width and height of 40 pixels, and at each pixel location, we have 3 numbers. For color images, the
three channels often correspond to RGB (red, green and blue) intensities. A channel is also called a feature
map - a map because it has spatial size, and feature because it represents some feature of the input. For
example, the first feature map represents the redness of the image, the second represents the greenness etc.
More generally, any hidden layer of a convolutional network will have some spatial size and some number
of channels. Therefore, any layer can be thought of as a cuboid having some width, height and number of
channels. For hidden layers, unlike the input, we don’t know what the channels represent. Their meaning
will be learned. But we need to pick the number of channels, just like we picked the number of hidden units
for fully connected layers.

2

5

5

3

8

A kernel (or synonymously, a filter) is the set of weights that are
“applied” on an input patch. A patch will have spatial size and number
of channels. For example, in the context of the input image described
before, we can talk about a 5 × 5 patch cutting across all three chan-
nels of the input. Such a patch will have 75 numbers. Therefore, the
weights/kernel/filter connected to this patch will have 75 parameters.
“Applying” the kernel on this patch means computing the dot product
of the two 75-d vectors. Applying the kernel convolutionally means ap-
plying the same kernel to different patches of the input. By applying the
kernel at different (overlapping) patches, we get one output map or output
channel. In general, we can apply k different filters convolutionally and
obtain k output maps. The term kernel or convolutional weights often
refers to this collection of multiple filters. Therefore, we can say some-
thing like, “a kernel of spatial size 5 × 5 having 3 input channels and 8
output channels”. This kernel would have 5 ∗ 5 ∗ 3 ∗ 8 parameters. It can be applied convolutionally on an
input of 3 channels and any spatial size. It will produce an output of 8 channels and some spatial size.

Strides: When we apply a kernel convolutionally, we would like to have some control over where the
kernel is applied. The default way of applying convolutions is to apply the filter at all locations in the
input. For computational or other reasons, we may not want to apply a filter at all locations but skip some
locations. The term stride describes after how many locations should the kernel be applied again. A stride
of 1, means that the kernel will be applied at all locations. A stride of 2, means that we skip 1 location, etc.

Padding: Boundary issues come up when we try to apply a kernel near the borders of the input. For
example, if we have a 5× 5 kernel, and we insist on having the kernel look at only real pixels, the first place
where we can apply the kernel is when its center rests on pixel (2, 2) of the input. We cannot apply it when
its center rests on (0, 0) because then part of the kernel will have no image pixels feeding in. This means
that pixels near the boundary of the image will receive much less attention. It is probably OK to ignore
this at the input layer for a big image. But this becomes a problem as we go higher in a convolutional net
and input sizes become small. For example, if we have a 13th hidden layer of spatial size 4× 4 and we want
to apply a 3 × 3 kernel, we only have 4 locations to apply it on out of the 16 present. In order to salvage
something from this bad situation, we can implicitly pad the input layer with a border of zeros along all four
sides. The width of this border is the padding. So if we choose a padding of 1, the input implicitly becomes
6 × 6 and now, we can apply the filter on 16 positions.

So now you understand what it means to “apply a 5 × 5 kernel with 8 input channels and 32 output
channels, convolutionally with a stride of 2 and padding of 2”.

The same terminology applies to pooling layers as well.
Some warm-up questions : You don’t have to submit the answers in the writeup.
Suppose the input to a convolution layer has a spatial size 16× 16 with 8 channels. We want to convolve

this input with a 5 × 5 kernel with 32 output channels.

1. What is the spatial size of the output if the convolutions are applied with a stride of 1 and no padding
?

2. How many total units do we have in the output layer ? The output layer can be thought of as a cuboid
with the three dimensions being spatial size along X (width), spatial size along Y (height) and the
number of channels.

3. How many parameters are there in the convolutional weights ? How many in the bias ? There is one
bias parameter per output channel.

4. How many weight parameters would there be if we wanted to have an output layer of the same size
as computed above, but which was fully connected to the input layer (that is, each output unit was
connected to each input unit) ?

3

5. How much padding should we use if we want the spatial size of the output to be the same as that of
the input. (Assuming a stride of 1) ?

6. If instead of applying the filters at each location (stride=1), we have a stride of 2, what would be the
spatial size of the output layer (assume no padding) ?

7. Suppose we have an input of size iy × ix. We convolve it with a kernel of size k × k with a stride of s
and a padding of p. Derive an expression for the size of the output layer in terms of iy, ix, k, s and p.

Implementing convolutions
In class, we mentioned two ways to think about convolutions.

• Method 1: Apply a filter at different regions of a signal by taking the dot product of the filter with
that region.

• Method 2: Go to each position in the signal and multiply the signal value into all the locations of the
filter. Translate the multiplied filters according to the position and add them up.

In the starter code, the first method is already implemented. You will be implementing the second method
using the given convolve method. Please see the comment describing this function in convolutions.pyx

to understand how to use it. You do not need to understand the details of how it works, just think of it as
a black box convolution method. Take a look at play_with_convolutions.py to see an example of using
this method.

x1 x2 x3 x4

y1 y2

w1 w2 w3 w1 w2 w3

In order to understand the two methods better, consider this 1-D ex-
ample. Suppose we have an input of length 4 : (x1, x2, x3, x4). We want
to convolve it with a kernel of length 3: (w1, w2, w3). The network is
shown alongside. We are using a stride of 1 and padding of 0. We will
now do forward prop and backprop on this network using both methods.

Forward prop
Method 1: Take the dot product of the filter with (x1, x2, x3) to get

y1 = w1x1 + w2x2 + w3x3.
Then take the dot product of the filter with (x2, x3, x4) to get y2 =
w1x2 + w2x3 + w3x4.

Method 2: Flip the filter, so we get (w3, w2, w1). Convolve (x1, x2, x3, x4) with (w3, w2, w1).
Multiply by x1 x1w3 x1w2 x1w1

Multiply by x2 x2w3 x2w2 x2w1

Multiply by x3 x3w3 x3w2 x3w1

Multiply by x4 x4w3 x4w2 x4w1

Add x1w3 x1w2 + x2w3 x1w1 + x2w2 + x3w3 x2w1 + x3w2 + x4w3 x3w1 + x4w2 x4w1

dropped dropped y1 y2 dropped dropped

We get the same y1 and y2 as in Method 1. Note that terms that did not involve all the weights were
dropped. The convolve method does the same, by default. In order to retain some of these terms, we would
have to use padding. For example, a padding of length 1 will implicitly add one zero on either side of the
input. Therefore, one extra term will be retained on either side.

Backprop (Input derivatives)
Now suppose we have derivatives (∂C

∂y1
, ∂C
∂y2

). Lets call them (d1, d2). We want to compute the derivatives

w.r.t the inputs. i.e., (∂C
∂x1

, ∂C
∂x2

, ∂C
∂x3

, ∂C
∂x4

)
Method 1:

x1 is connected to only y1. So it gets the derivative ∂C
∂x1

= w1d1

x2 is connected to both y1, y2. So it gets the derivative ∂C
∂x2

= w2d1 + w1d2

x3 is connected to both y1, y2. So it gets the derivative ∂C
∂x3

= w3d1 + w2d2

4

x4 is connected to only y2. So it gets the derivative ∂C
∂x4

= w3d2

Method 2:
Use the unflipped weights. Convolve (d1, d2) with (w1, w2, w3).

Multiply by d1 d1w1 d1w2 d1w3

Multiply by d2 d2w1 d2w2 d2w3

Add d1w1 d1w2 + d2w1 d1w3 + d2w2 d2w3
∂C
∂x1

∂C
∂x2

∂C
∂x3

∂C
∂x4

As we can see, using the convolution gives the same derivatives as got in method 1. Note that we need
to retain all the terms. This corresponds to using a padding of length 2. Recall, that in the forward pass we
used a padding of 0. In general, if we use a padding of p in the forward pass, we need a padding of k− p− 1
in the backward pass, where k is the kernel size.

Backprop (Weight derivatives)
Here again suppose we have derivatives (∂C

∂y1
, ∂C
∂y2

). Lets call them (d1, d2). We want to compute the

derivatives w.r.t the weights. i.e., (∂C
∂w1

, ∂C
∂w2

, ∂C
∂w3

).
Method 1:

Weight w1 connects (x1, y1) and (x2, y2). Therefore, ∂C
∂w1

= x1d1 + x2d2.

Weight w2 connects (x2, y1) and (x3, y2). Therefore, ∂C
∂w2

= x2d1 + x3d2.

Weight w3 connects (x3, y1) and (x4, y2). Therefore, ∂C
∂w3

= x3d1 + x4d2.

Method 2:
Flip the derivatives to get (d2, d1). Convolve the inputs (x1, x2, x3, x4) with the flipped derivatives (d2, d1).

Multiply by x1 x1d2 x1d1
Multiply by x2 x2d2 x2d1
Multiply by x3 x3d2 x3d1
Multiply by x4 x4d2 x4d1
Add x1d2 x1d1 + x2d2 x2d1 + x3d2 x3d1 + x4d2 x4d1

dropped ∂C
∂w1

∂C
∂w2

∂C
∂w3

dropped

We can see that by convolving the inputs with the flipped derivatives, we get the derivatives w.r.t the
weights. Here we dropped any terms that did not involve both derivatives. This corresponds to using a
padding of 0. In general, we would use the same padding as the forward prop.

To summarize:

• Fprop : convolve(inputs, flipped weights, padding=p)

• Bprop (to get derivatives w.r.t inputs) : convolve(derivatives, weights, padding=k-p-1)

• Bprop (to get derivatives w.r.t weights) : convolve(inputs, flipped derivatives, padding=p)

Once you understand this, implementing the 2D version will be straightforward.
Now we can get into experiments and implementation:

1. We can start training convolutional networks using method 1 which is already implemented. Train and
evaluate the convnet1_method1.yaml model.

2. [9 points]Implement Method 2 in ConvLayer.ComputeUp and ConvLayer.ComputeDown. This can be
done in a total of 3 lines of code, although you should feel free to use more. DO NOT write loops.

3. Run gradient check on convnet_gradcheck.yaml. This runs gradient check using your implementation
of Method 2. If this says PASSED your implementation is correct and you are ready to proceed. For
grad check, we are using a very small model for which gradient check works reliably. For bigger models,
gradient check may not be very accurate.

5

4. Train and evaluate the convnet1_method2.yaml model. This will train the convnet1 architecture
using your implementation of Method 2. This should produce the exact same run as Method 1 because
the same computation is being performed in a different way.

5. Train and evaluate the convnet2.yaml model. This network is the same as the first one, except that
it uses 5 × 5 filters instead of 3 × 3.

6. [2 points] Report the results for the two models (2 rows, 6 numbers each).

7. [1 points] Compare the two convolutional models and the three previously trained fully connected
models. Which one does better ? convolutional or fully connected ? Also mention how you decided
which model is better.

8. [6 points] The convnet2.yaml model has 6 layers - conv_1, maxpool_1, conv_2 , maxpool_2, fc_1
and output. For each layer, calculate

• The spatial size, number of channels and total number of hidden units. Fully connected layers
have a spatial size of 1 × 1.

• The number of connections. An output unit is “connected” to an input unit if the value of the
output unit depends on that input unit. You have to count the number of connections.

• The number of learnable parameters (For simplicity, ignore the biases).

Also, briefly explain how you computed these numbers.

9. [2 points] Compute the total number of learnable parameters in the best fully connected model and
the best convolutional model. One easy way to do this is to open the generated checkpoint files and
look at the shapes of the weight and bias matrices.

10. [Extra; 0 points] Train the convnet3.yaml model. This is a deeper model and will take quite a lot of
time to train. Also try playing with different architectures and hyperparameters. If you are looking for
more challenging datasets, you can work with the MNIST, NORB, CIFAR-10/100 or SVHN datasets.

What you have to submit

For reference, here is everything you need to hand in:

• A printout of what you wrote in the two methods FCLayer.ComputeUp and FCLayer.ComputeDown.
Please do not include any other code.

• A printout of what you wrote in the two methods ConvLayer.ComputeUp and ConvLayer.ComputeDown.
Please do not include any other code.

• The analysis of the results from part 1, including the table of numbers.

• The answers to questions and the analysis of the results from part 2, including the table of numbers.

• Optional: Which part of this assignment did you find the most valuable? The most difficult and/or
frustrating?

You may submit at most 2 pages for the analysis, although 1 page is sufficient and recommended. The
other printouts do not count towards the page limit.

This assignment is graded out of 30 points: 10 for Part 1, 20 for Part 2.

6

