Intro to RL & Policy
Gradient

Xuchan (Jenny) Bao
CSC421 Tutorial 10, Mar 26/28, 2019

Outline:

- Briefintro to RL
- Policy Gradient

- The log-derivative trick
- Practical fixes: baseline & temporal structure

- OpenAl Gym
- Example: policy gradient on Gym environments
- References

Slides on intro & policy gradient are from / inspired by the Deep RL Bootcamp Lecture 4A:
Policy Gradients by Pieter Abbeel https://www.youtube.com/watch?v=S_gwY|[1Q-44

https://www.youtube.com/watch?v=S_gwYj1Q-44

Brief Intro to RL

Represent agent with stochastic policy mg(a|s)

:l Agent]
state reward action

S R, A,

; Rl+l r
- .
; S,Hl Environment |<

Figure 3.1: The agent—environment interaction in a Markov decision process.

From Sutton & Barto “Reinforcement Learning: An Introduction”, 1998

Policy Optimization in the RL Landscape

Policy Optimization Dynamic Programming
/ / modified \
policy iteration
Ps \

DFO / Evolution Policy Gradients Policy Iteration Value Iteration
\ Q-Learning

Actor-Critic
Methods

From Deep RL Bootcamp Lecture 4A: Policy Gradients, Pieter Abbeel https://www.youtube.com/watch?v=S_gwY|1Q-44

https://www.youtube.com/watch?v=S_gwYj1Q-44

Policy Optimization |Dynamic Programming

= Conceptually:

Optimize what you care Indirect, exploit the problem
about structure, self-consistency
B Empirically: More compatible with rich More compatible with
architectures (including exploration and off-policy
recurrence) learning
More versatile More sample-efficient when
they work

More compatible with
auxiliary objectives

From Deep RL Bootcamp Lecture 4A: Policy Gradients, Pieter Abbeel https://www.youtube.com/watch?v=S_gwY|1Q-44

https://www.youtube.com/watch?v=S_gwYj1Q-44

Policy Gradient

Suppose we have a trajectory: 7 = (sg,a9,81,01, -, SH_1,GH—_1,SH)
H-1

And represent the reward for the whole trajectory: R(7) = Z R(st,at)
t=0

The expected reward under policy 7g (utility function):
H
U(0) =E[Y R(sy,a0);mg] = »_ P(r;0)R()
t=0 T

The goal is to find the optimal parameters to max the utility function.

max U(f) = max ET: P(7;0)R(7)

Policy Gradient: the log-derivative trick

Take the gradient:

oU(6) = Vo Y P(r;0)R(r)

= ZP (1:0)Vglog P(7;0)R(T)

Policy Gradient: approximate gradient with samples
Now we can approximate the gradient using Monte Carlo Samples!

VoU(0) = Z P(7;0)Vglog P(7;0)R(T)

m

— ng log P(74; 0)R(r™)

1=1

Where () are sample rollout trajectories under policy g

Policy Gradient: approximate gradient with samples

Take a moment to appreciate this:

m

VoU(6) mZva log P(r™;) R(r1")
=1

This gradient approximation is valid even when:

- The reward is discontinuous / unknown
- Sample space is a discrete set

Policy Gradient: intuition

m

VoU(6) Zvologl’(B REY)

=1

The gradient tries to:

- Increase probability of paths with positive rewards
- Decrease probability of paths with negative rewards

Does NOT try to change the paths themselves.

See any problems here?

Decomposing the paths into states & actions

VoU(0) ~ — Z Vo log P(+®:)R(+®)
=1
H-1

Vo log P(r0;0) = Volog[[] P(s\lsi”, ai”)me(ay”|si)]

t=0

H-1

[E:logP 5t+1|5t ,Qy J+ Z log g (a,)|s)]

t=0

H-1 Not a function of ¢

. VO[Z log mg (ay”)|s%)]
t=0

Policy Gradient: problems and fixes

The vanilla policy gradient estimator is unbiased, but very noisy.
- Requires lots of samples to make it work
Fixes:

- Baseline
- Temporal Structure
- Other (e.g. KL trust region)

Policy Gradient: baseline

Vol (0) Z Vo log P(7); 0)(R(rV) — b)

1=1
Subtract the reward with a baseline (b) does not change the optimization problem.
- The gradient estimation is still unbiased, but with lower variance

Intuition: we want to adjust path probabilities based on how the path reward
compares to the average, not the path reward itself.

- Increase probability if the path reward is higher than average
- Decrease probability if the path reward is lower than average

Policy Gradient: temporal structure

Put together v,U(9) ~ ng log P(79; 0)(R() — b)
what we have:

m H 1
ZEZW > logmo(a” s J[tZ; R(s(" . af") =¥
m H-1 H—1

= = ng Z log 7y a, |s Z R(s (lt —b)]

-0 Past reward does not affect current action

m H-1 H-1
= — | —b
- ZV() Z 0g Ty at |s {AZR]-i— Z R(s (zt)]
m H-1 H-1

:EZVQ Zlogﬂg at)|s ZR (Jt _b)]

OpenAl Gym

https://gym.openai.com/

Widely-used testing platform for RL algorithms.
e pip install gym

Different kinds of environments, including discrete / continuous control, pixel-input
Atari games, etc.

You can also create your own environments, following the Gym interface.

https://gym.openai.com/

OpenAl Gym environments

Create an environment;

e env = gym.make(“<environment_name>") <« e.g. gym.make(“CartPole-v1”)

Env methods you will need the most: Useful attributes:
e state = env.reset() e env.observation_space
e next_state, reward, done, info = env.step(action) ® env.action_space
e env.seed(seed=None)
e env.close()

More documentation at https://gym.openai.com/docs/

https://gym.openai.com/docs/

Example: Policy Gradient in PyTorch
on a Gym Environment (CartPole-v1)

References

- Sutton & Barto “Reinforcement Learning: An Introduction”, 1998

- Williams, “Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning”, 1992

- Sutton et al, “Policy Gradient Methods for Reinforcement Learning with Function Approximation”, 1999

- Pieter Abbeel, Deep RL Bootcamp Lecture 4A: Policy Gradients htips://www.youtube.com/watch?v=S_gwY]|10Q-44

https://www.youtube.com/watch?v=S_gwYj1Q-44

