
Intro to RL & Policy
Gradient

Xuchan (Jenny) Bao
CSC421 Tutorial 10, Mar 26/28, 2019

Outline:
- Brief intro to RL
- Policy Gradient

- The log-derivative trick
- Practical fixes: baseline & temporal structure

- OpenAI Gym
- Example: policy gradient on Gym environments
- References

Slides on intro & policy gradient are from / inspired by the Deep RL Bootcamp Lecture 4A:
Policy Gradients by Pieter Abbeel https://www.youtube.com/watch?v=S_gwYj1Q-44

https://www.youtube.com/watch?v=S_gwYj1Q-44

Brief Intro to RL
Represent agent with stochastic policy

From Sutton & Barto “Reinforcement Learning: An Introduction”, 1998

From Deep RL Bootcamp Lecture 4A: Policy Gradients, Pieter Abbeel https://www.youtube.com/watch?v=S_gwYj1Q-44

https://www.youtube.com/watch?v=S_gwYj1Q-44

From Deep RL Bootcamp Lecture 4A: Policy Gradients, Pieter Abbeel https://www.youtube.com/watch?v=S_gwYj1Q-44

https://www.youtube.com/watch?v=S_gwYj1Q-44

Policy Gradient
Suppose we have a trajectory:

And represent the reward for the whole trajectory:

The expected reward under policy (utility function):

The goal is to find the optimal parameters to max the utility function.

Policy Gradient: the log-derivative trick
Take the gradient:

Policy Gradient: approximate gradient with samples
Now we can approximate the gradient using Monte Carlo Samples!

Where are sample rollout trajectories under policy

Policy Gradient: approximate gradient with samples
Take a moment to appreciate this:

This gradient approximation is valid even when:

- The reward is discontinuous / unknown
- Sample space is a discrete set

Policy Gradient: intuition

The gradient tries to:

- Increase probability of paths with positive rewards
- Decrease probability of paths with negative rewards

Does NOT try to change the paths themselves.

See any problems here?

Decomposing the paths into states & actions

Not a function of

Policy Gradient: problems and fixes
The vanilla policy gradient estimator is unbiased, but very noisy.

- Requires lots of samples to make it work

Fixes:

- Baseline
- Temporal Structure
- Other (e.g. KL trust region)

Policy Gradient: baseline

Subtract the reward with a baseline (b) does not change the optimization problem.

- The gradient estimation is still unbiased, but with lower variance

Intuition: we want to adjust path probabilities based on how the path reward
compares to the average, not the path reward itself.

- Increase probability if the path reward is higher than average
- Decrease probability if the path reward is lower than average

Policy Gradient: temporal structure
 Put together
what we have:

Past reward does not affect current action

OpenAI Gym
https://gym.openai.com/

Widely-used testing platform for RL algorithms.

● pip install gym

Different kinds of environments, including discrete / continuous control, pixel-input
Atari games, etc.

You can also create your own environments, following the Gym interface.

https://gym.openai.com/

OpenAI Gym environments
Create an environment:

● env = gym.make(“<environment_name>”) ← e.g. gym.make(“CartPole-v1”)

Env methods you will need the most:

● state = env.reset()

● next_state, reward, done, info = env.step(action)

● env.seed(seed=None)

● env.close()

More documentation at https://gym.openai.com/docs/

Useful attributes:

● env.observation_space

● env.action_space

https://gym.openai.com/docs/

Example: Policy Gradient in PyTorch
on a Gym Environment (CartPole-v1)

References
- Sutton & Barto “Reinforcement Learning: An Introduction”, 1998
- Williams, “Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning”, 1992
- Sutton et al, “Policy Gradient Methods for Reinforcement Learning with Function Approximation”, 1999
- Pieter Abbeel, Deep RL Bootcamp Lecture 4A: Policy Gradients https://www.youtube.com/watch?v=S_gwYj1Q-44

https://www.youtube.com/watch?v=S_gwYj1Q-44

