Intro to RL & Policy Gradient

Xuchan (Jenny) Bao
CSC421 Tutorial 10, Mar 26/28, 2019
Outline:

- Brief intro to RL
- Policy Gradient
 - The log-derivative trick
 - Practical fixes: baseline & temporal structure
- OpenAI Gym
- Example: policy gradient on Gym environments
- References

Slides on intro & policy gradient are from / inspired by the Deep RL Bootcamp Lecture 4A: Policy Gradients by Pieter Abbeel https://www.youtube.com/watch?v=S_gwYj1Q-44
Brief Intro to RL

Represent agent with stochastic policy $\pi_\theta(a|s)$

![Diagram](Image)

Figure 3.1: The agent–environment interaction in a Markov decision process.

Policy Optimization in the RL Landscape

- Policy Optimization
- Dynamic Programming
 - modified policy iteration
- Policy Iteration
- Value Iteration
- Q-Learning
- DFO / Evolution
- Policy Gradients
- Actor-Critic Methods

From Deep RL Bootcamp Lecture 4A: Policy Gradients, Pieter Abbeel https://www.youtube.com/watch?v=S_qwYj1Q-44
From Deep RL Bootcamp Lecture 4A: Policy Gradients, Pieter Abbeel: https://www.youtube.com/watch?v=S_gwYj1Q-44

Conceptually:
- Optimize what you care about

Empirically:
- More compatible with rich architectures (including recurrence)
- More versatile
- More compatible with auxiliary objectives

Dynamic Programming
- Indirect, exploit the problem structure, self-consistency
- More compatible with exploration and off-policy learning
- More sample-efficient when they work
Policy Gradient

Suppose we have a trajectory: \(\tau = (s_0, a_0, s_1, a_1, \ldots, s_{H-1}, a_{H-1}, s_H) \)

And represent the reward for the whole trajectory: \(R(\tau) = \sum_{t=0}^{H-1} R(s_t, a_t) \)

The expected reward under policy \(\pi_\theta \) (utility function):

\[
U(\theta) = \mathbb{E}[\sum_{t=0}^{H} R(s_t, a_t); \pi_\theta] = \sum_{\tau} P(\tau; \theta) R(\tau)
\]

The goal is to find the optimal parameters to max the utility function.

\[
\max_{\theta} U(\theta) = \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)
\]
Policy Gradient: the log-derivative trick

Take the gradient:

\[\nabla_\theta U(\theta) = \nabla_\theta \sum_\tau P(\tau; \theta) R(\tau) \]

\[= \sum_\tau \nabla_\theta P(\tau; \theta) R(\tau) \]

\[= \sum_\tau \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_\theta P(\tau; \theta) R(\tau) \]

\[= \sum_\tau P(\tau; \theta) \frac{\nabla_\theta P(\tau; \theta)}{P(\tau; \theta)} R(\tau) \]

\[= \sum_\tau P(\tau; \theta) \nabla_\theta \log P(\tau; \theta) R(\tau) \]
Policy Gradient: approximate gradient with samples

Now we can approximate the gradient using Monte Carlo Samples!

$$\nabla_\theta U(\theta) = \sum_\tau P(\tau; \theta) \nabla_\theta \log P(\tau; \theta) R(\tau)$$

$$\approx \frac{1}{m} \sum_{i=1}^m \nabla_\theta \log P(\tau^{(i)}; \theta) R(\tau^{(i)})$$

Where $\tau^{(i)}$ are sample rollout trajectories under policy π_θ
Policy Gradient: approximate gradient with samples

Take a moment to appreciate this:

$$\nabla_\theta U(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} \nabla_\theta \log P(\tau^{(i)}; \theta) R(\tau^{(i)})$$

This gradient approximation is valid even when:

- The reward is discontinuous / unknown
- Sample space is a discrete set
Policy Gradient: intuition

\[
\nabla_{\theta} U(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P(\tau^{(i)}; \theta) R(\tau^{(i)})
\]

The gradient tries to:

- Increase probability of paths with positive rewards
- Decrease probability of paths with negative rewards

Does NOT try to change the paths themselves.

See any problems here?
Decomposing the paths into states & actions

\[\nabla_\theta U(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} \nabla_\theta \log P(\tau^{(i)}; \theta) R(\tau^{(i)}) \]

\[\nabla_\theta \log P(\tau^{(i)}; \theta) = \nabla_\theta \log \left[\prod_{t=0}^{H-1} P(s_{t+1}^{(i)}|s_t^{(i)}, a_t^{(i)}) \pi_\theta(a_t^{(i)}|s_t^{(i)}) \right] \]

\[= \nabla_\theta \left[\sum_{t=0}^{H-1} \log P(s_{t+1}^{(i)}|s_t^{(i)}, a_t^{(i)}) + \sum_{t=0}^{H-1} \log \pi_\theta(a_t^{(i)}|s_t^{(i)}) \right] \]

\[= \nabla_\theta \left[\sum_{t=0}^{H-1} \log \pi_\theta(a_t^{(i)}|s_t^{(i)}) \right] \]

Not a function of \(\theta \)
Policy Gradient: problems and fixes

The vanilla policy gradient estimator is unbiased, but very noisy.

- Requires lots of samples to make it work

Fixes:

- Baseline
- Temporal Structure
- Other (e.g. KL trust region)
Policy Gradient: baseline

\[\nabla_{\theta} U(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P(\tau^{(i)}; \theta)(R(\tau^{(i)}) - b) \]

Subtract the reward with a baseline \((b)\) does not change the optimization problem.

- The gradient estimation is still unbiased, but with lower variance

Intuition: we want to adjust path probabilities based on how the path reward compares to the **average**, not the path reward itself.

- Increase probability if the path reward is higher than average
- Decrease probability if the path reward is lower than average
Policy Gradient: temporal structure

Put together what we have:

\[\nabla_\theta U(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} \nabla_\theta \log P(\tau^{(i)}; \theta)(R(\tau^{(i)}) - b) \]

\[= \frac{1}{m} \sum_{i=1}^{m} \nabla_\theta \left[\sum_{t=0}^{H-1} \log \pi_\theta(a^{(i)}_t | s^{(i)}_t) \left(\sum_{t=0}^{H-1} R(s^{(i)}_t, a^{(i)}_t) - b \right) \right] \]

\[= \frac{1}{m} \sum_{i=1}^{m} \nabla_\theta \left[\sum_{t=0}^{H-1} \log \pi_\theta(a^{(i)}_t | s^{(i)}_t) \left(\sum_{k=0}^{t-1} R(s^{(i)}_t, a^{(i)}_t) + \sum_{k=t}^{H-1} R(s^{(i)}_t, a^{(i)}_t) - b \right) \right] \]

\[= \frac{1}{m} \sum_{i=1}^{m} \nabla_\theta \left[\sum_{t=0}^{H-1} \log \pi_\theta(a^{(i)}_t | s^{(i)}_t) \left(\sum_{k=t}^{H-1} R(s^{(i)}_t, a^{(i)}_t) - b \right) \right] \]

Past reward does not affect current action.
OpenAI Gym

https://gym.openai.com/

Widely-used testing platform for RL algorithms.

- pip install gym

Different kinds of environments, including discrete / continuous control, pixel-input Atari games, etc.

You can also create your own environments, following the Gym interface.
OpenAI Gym environments

Create an environment:

- `env = gym.make("<environment_name>")` ← e.g. `gym.make("CartPole-v1")`

Env methods you will need the most:

- `state = env.reset()`
- `next_state, reward, done, info = env.step(action)`
- `env.seed(seed=None)`
- `env.close()`

Useful attributes:

- `env.observation_space`
- `env.action_space`

More documentation at https://gym.openai.com/docs/
Example: Policy Gradient in PyTorch on a Gym Environment (CartPole-v1)
- Sutton et al, “Policy Gradient Methods for Reinforcement Learning with Function Approximation”, 1999
- Pieter Abbeel, Deep RL Bootcamp Lecture 4A: Policy Gradients https://www.youtube.com/watch?v=S_gwYj1Q-44