CSC421/2516 Lecture 22:
Go

Roger Grosse and Jimmy Ba

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 1/20

Overview

@ Most of the problem domains we've discussed so far were natural
application areas for deep learning (e.g. vision, language)

o We know they can be done on a neural architecture (i.e. the human
brain)
o The predictions are inherently ambiguous, so we need to find statistical
structure
@ Board games are a classic Al domain which relied heavily on
sophisticated search techniques with a little bit of machine learning
e Full observations, deterministic environment — why would we need
uncertainty?
@ This lecture is about AlphaGo, DeepMind’s Go playing system which
took the world by storm in 2016 by defeating the human Go
champion Lee Sedol

e Combines ideas from our last two lectures (policy gradient and value
function learning)

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 2/20

Overview

Some milestones in computer game playing:

@ 1949 — Claude Shannon proposes the idea of game tree search,
explaining how games could be solved algorithmically in principle

@ 1951 — Alan Turing writes a chess program that he executes by hand

@ 1956 — Arthur Samuel writes a program that plays checkers better
than he does

@ 1968 — An algorithm defeats human novices at Go
...silence...

@ 1992 — TD-Gammon plays backgammon competitively with the best
human players

@ 1996 — Chinook wins the US National Checkers Championship
@ 1997 — DeepBlue defeats world chess champion Garry Kasparov

After chess, Go was humanity's last stand

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 3/20

Go

@ Played on a 19 x 19 board
@ Two players, black and white, each place one stone per turn

o Capture opponent’s stones by surrounding them

I

%

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 4/20

N
Go

@ Goal is to control as much territory as possible:

N
’+:|=’w‘¢‘+:+.w O
B P e &

4

N e

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 5/20

Go

What makes Go so challenging:

@ Hundreds of legal moves from any position, many of which are
plausible

@ Games can last hundreds of moves

@ Unlike Chess, endgames are too complicated to solve exactly
(endgames had been a major strength of computer players for games
like Chess)

@ Heavily dependent on pattern recognition

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 6/20

Game Trees

@ Each node corresponds to a legal state of the game.
@ The children of a node correspond to possible actions taken by a player.

@ Leaf nodes are ones where we can compute the value since a win/draw
condition was met

\
/

B
i

e

| 4

bl

1

%/
i
Py
%%/

https://www.cs.cmu.edu/~adamchik/156-121/lectures/Game%20Trees/Game’%20Trees . html

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 7/20

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

Game Trees

@ To label the internal nodes, take the max over the children if it's
Player 1's turn, min over the children if it's Player 2's turn

3

78 o G B
E B BE

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Game%20Trees/Game’20Trees . html

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 8/20

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Game%20Trees/Game%20Trees.html

Game Trees

@ As Claude Shannon pointed out in 1949, for games with finite
numbers of states, you can solve them in principle by drawing out the
whole game tree.

@ Ways to deal with the exponential blowup

e Search to some fixed depth, and then estimate the value using an
evaluation function

o Prioritize exploring the most promising actions for each player
(according to the evaluation function)

@ Having a good evaluation function is key to good performance

e Traditionally, this was the main application of machine learning to
game playing

e For programs like Deep Blue, the evaluation function would be a
learned linear function of carefully hand-designed features

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 9/20

Monte Carlo Tree Search

@ In 2006, computer Go was revolutionized by a technique called Monte
Carlo Tree Search.

a Selection b Expansion c Evaluation d Backup
maxy @ +ulP) .) R Y . +e
T o I® it = gl
Q +ulP) ./max e be s & o e
LT) it
N | :

- |
(62 e - I G

Silver et al., 2016
@ Estimate the value of a position by simulating lots of rollouts,
i.e. games played randomly using a quick-and-dirty policy
@ Keep track of number of wins and losses for each node in the tree
@ Key question: how to select which parts of the tree to evaluate?

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 10 /20

Monte Carlo Tree Search

@ The selection step determines which part of the game tree to spend
computational resources on simulating.

@ This is an instance of the exploration-exploitation tradeoff from last
lecture

e Want to focus on good actions for the current player
e But want to explore parts of the tree we're still uncertain about
@ Uniform Confidence Bound (UCB) is a common heuristic; choose the
node which has the largest frequentist upper confidence bound on its
value:

2log N
N;

Wi+

@ u; = fraction of wins for action /, N; = number of times we've tried
action i/, N = total times we've visited this node

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 11/20

Monte Carlo Tree Search

Improvement of computer Go since MCTS (plot is within the amateur range)

T T T T T T T T T T T
7dan A

6dan |- Zen o
5dan - Zen 1
4dan |- Zen B
3dan - Zen =
2dan Zen ManyFaces 1
1dan Zen MaDyFa‘Q@m/ i B
1kyu Manyfag@pé'/ ’ B
2kyu Fuegd&';my/Fa;eAy”e; e
3kyu Aya' M’an’yF/Vaces B
/
4kyu ManyFaces E
g
Skyu
6kyu

7kyu

8kyu | MoGayafanyFaces* Bl
1 1 1

L I L I L L L I
Jul06 Jan07 Jul07 Jan08 Jul08 Jan09 Jul09 Jan10 Jul10 Jan11 Jul11 Jani12 Jul12

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 12 /20

Now for DeepMind’s computer Go player, AlphaGo...

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 13 /20

-
Predicting Expert Moves

@ Can a computer play Go without any search?
@ llya Sutskever's argument: experts players can identify a set of good moves in half
a second
@ This is only enough time for information to propagate forward through the
visual system — not enough time for complex reasoning
@ Therefore, it ought to be possible for a conv net to identify good moves

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 14 /20

-
Predicting Expert Moves

@ Can a computer play Go without any search?
@ llya Sutskever's argument: experts players can identify a set of good moves in half
a second
@ This is only enough time for information to propagate forward through the
visual system — not enough time for complex reasoning
@ Therefore, it ought to be possible for a conv net to identify good moves
@ Input: a 19 x 19 ternary (black/white/empty) image — about half the size of
MNIST!
@ Prediction: a distribution over all (legal) next moves
@ Training data: KGS Go Server, consisting of 160,000 games and 29 million
board/next-move pairs
@ Architecture: fairly generic conv net
@ When playing for real, choose the highest-probability move rather than sampling
from the distribution

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 14 /20

-
Predicting Expert Moves

@ Can a computer play Go without any search?
@ llya Sutskever's argument: experts players can identify a set of good moves in half
a second
@ This is only enough time for information to propagate forward through the
visual system — not enough time for complex reasoning
@ Therefore, it ought to be possible for a conv net to identify good moves
@ Input: a 19 x 19 ternary (black/white/empty) image — about half the size of
MNIST!
@ Prediction: a distribution over all (legal) next moves
@ Training data: KGS Go Server, consisting of 160,000 games and 29 million
board/next-move pairs
@ Architecture: fairly generic conv net
@ When playing for real, choose the highest-probability move rather than sampling
from the distribution
@ This network, which just predicted expert moves, could beat a fairly strong
program called GnuGo 97% of the time.
@ This was amazing — basically all strong game players had been based on
some sort of search over the game tree

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 14 /20

|
Self-Play and REINFORCE

@ The problem from training with expert data: there are only 160,000
games in the database. What if we overfit?
@ There is effecitvely infinite data from self-play
e Have the network repeatedly play against itself as its opponent
e For stability, it should also play against older versions of itself
@ Start with the policy which samples from the predictive distribution
over expert moves
e The network which computes the policy is called the policy network
o REINFORCE algorithm: update the policy to maximize the expected
reward r at the end of the game (in this case, r = +1 for win, —1 for
loss)
o If @ denotes the parameters of the policy network, a; is the action at
time t, and s; is the state of the board, and z the rollout of the rest
of the game using the current policy

R = Eaipo(ar | s0) [E[r(2) | st al]
CSC421/2516 Lecture 22: Go 15/20

-
Policy and Value Networks

Policy network Value network

@ We just saw the policy network.
But AlphaGo also has another Pop (@ls) ”e.(s')

network called a value network.

@ This network tries to predict, for a L °
given position, which player has the i‘
advantage.

@ This is just a vanilla conv net 4
trained with least-squares
regression.

@ Data comes from the board s s
positions and outcomes

encountered during self-play.
Silver et al., 2016

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 16 / 20

-
Policy and Value Networks

@ AlphaGo combined the policy and value networks with Monte Carlo
Tree Search

@ Policy network used to simulate rollouts

@ Value network used to evaluate leaf positions

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 17 /20

-
AlphaGo Timeline

e Summer 2014 — start of the project (internship project for Uof T
grad student Chris Maddison)

@ October 2015 — AlphaGo defeats European champion

o First time a computer Go player defeated a human professional without
handicap — previously believed to be a decade away

@ January 2016 — publication of Nature article “Mastering the game
of Go with deep neural networks and tree search”

@ March 2016 — AlphaGo defeats gradmaster Lee Sedol

@ October 2017 — AlphaGo Zero far surpasses the original AlphaGo
without training on any human data

o Decemter 2017 — it beats the best chess programs too, for good
measure

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 18 /20

-
AlphaGo

@ Most of the Go world expected AlphaGo to lose 5-0 (even after it had
beaten the European champion)

@ It won the match 4-1

@ Some of its moves seemed bizarre to human experts, but turned out
to be really good

@ Its one loss occurred when Lee Sedol played a move unlike anything in
the training data

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 19 /20

-
AlphaGo

Further reading:

@ Silver et al., 2016. Mastering the game of Go with deep neural
networks and tree search. Nature http://www.nature.com/
nature/journal/v529/n7587/full/nature16961.html

@ Scientific American: https://www.scientificamerican.com/
article/how-the-computer-beat-the-go-master/

@ Talk by the DeepMind CEO:
https://www.youtube.com/watch?v=aiwQsa_7ZIQ&list=
PLQYmG7hTraZCGIymT8wVVIXLWkKPNBoFN&index=8

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 22: Go 20/20

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://www.scientificamerican.com/article/how-the-computer-beat-the-go-master/
https://www.scientificamerican.com/article/how-the-computer-beat-the-go-master/
https://www.youtube.com/watch?v=aiwQsa_7ZIQ&list=PLqYmG7hTraZCGIymT8wVVIXLWkKPNBoFN&index=8
https://www.youtube.com/watch?v=aiwQsa_7ZIQ&list=PLqYmG7hTraZCGIymT8wVVIXLWkKPNBoFN&index=8

