CSC421/2516 Lecture 20:
Policy Gradient

Roger Grosse and Jimmy Ba

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 1/21

Overview

@ Most of this course was about supervised learning, plus a little
unsupervised learning.
o Final 3 lectures: reinforcement learning
e Middle ground between supervised and unsupervised learning
e An agent acts in an environment and receives a reward signal.
e Today: policy gradient (directly do SGD over a stochastic policy
using trial-and-error)
o Next lecture: Q-learning (learn a value function predicting returns
from a state)
@ Final lecture: policies and value functions are way more powerful in
combination

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 2/21

Reinforcement learning

e An agent interacts with an environment (e.g. game of Breakout)
@ In each time step t,
o the agent receives observations (e.g. pixels) which give it information
about the state s; (e.g. positions of the ball and paddle)
o the agent picks an action a; (e.g. keystrokes) which affects the state
@ The agent periodically receives a reward r(s;,a;), which depends on
the state and action (e.g. points)
@ The agent wants to learn a policy mg(a; | st)
e Distribution over actions depending on the current state and
parameters @

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 3/21

Markov Decision Processes

@ The environment is represented as a Markov decision process M.

@ Markov assumption: all relevant information is encapsulated in the
current state; i.e. the policy, reward, and transitions are all
independent of past states given the current state

@ Components of an MDP:

initial state distribution p(so)

policy mo(a; | s:)

transition distribution p(s¢11 | s, at)

reward function r(s;,a;)

@ Assume a fully observable environment, i.e. s; can be observed directly
e Rollout, or trajectory 7 = (so,ao,S1,a1,...,ST,aT)
@ Probability of a rollout

p(7) = p(so) me(ao | so) p(s1 |s0,a0) - - - p(sT|sT—1,a7-1) me(aT [sT)

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 4/21

Markov Decision Processes

Continuous control in simulation, e.g. teaching an ant to walk

@ State: positions, angles, and velocities of the joints

@ Actions: apply forces to the joints

@ Reward: distance from starting point

@ Policy: output of an ordinary MLP, using the state as input

@ More environments: https://gym.openai.com/envs/#mujoco

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 5/21

https://gym.openai.com/envs/#mujoco

Markov Decision Processes

@ Return for a rollout: r(7) = Ztho r(s¢, at)
e Note: we're considering a finite horizon T, or number of time steps;
we'll consider the infinite horizon case later.
® Goal: maximize the expected return, R = E,[r(7)]
@ The expectation is over both the environment’'s dynamics and the
policy, but we only have control over the policy.
@ The stochastic policy is important, since it makes R a continuous
function of the policy parameters.
e Reward functions are often discontinuous, as are the dynamics
(e.g. collisions)

return expected

return

0 0

deterministic policies stochastic policies

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 6/21

|
REINFORCE

o REINFORCE is an elegant algorithm for maximizing the expected
return R = Ep(7) [r(7)].
@ Intuition: trial and error

e Sample a rollout 7. If you get a high reward, try to make it more likely.
If you get a low reward, try to make it less likely.

@ Interestingly, this can be seen as stochastic gradient ascent on R.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 7/21

|
REINFORCE

@ Recall the derivative formula for log:

90 p(’r)
p(T)

o Gradient of the expected return:
0
a0 1= 55 Z (7
= Z r(T)f
= Zr(r % log p(7)

— By |r(r) g o (7))

2 log p(r) = Sp(r) = p(r) 5 log p(7)

o Compute stochastic estimates of this expectation by sampling rollouts.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 8/21

|
REINFORCE

o For reference:
0 0
59 e [M(T)] = Ep(ry (1) 55 log p(7)
o If you get a large reward, make the rollout more likely. If you get a

small reward, make it less likely.
@ Unpacking the REINFORCE gradient:

P P T T
20 log p(7) = % log {p(so) gwe(at |'s¢) EP(St |se—1, at_l)]
P T
= % |ogg7r9(at ‘ St)

LI
= ; 2 log mo(a: | st)

@ Hence, it tries to make all the actions more likely or less likely,
depending on the reward. l.e., it doesn’t do credit assignment.
e This is a topic for next lecture.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 9/21

REINFORCE
Repeat forever:
Sample a rollout 7 = (sg, ao, s1,a1,...,5T,aT)
r(r) < Zk of(Skvak)
Fort=0,...,T:

0«6+ OLF(T)% log mo(a: | st)

@ Observation: actions should only be reinforced based on future
rewards, since they can’t possibly influence past rewards.

@ You can show that this still gives unbiased gradient estimates.

Repeat forever:

Sample a rollout 7 = (sg, o, s1,a1,...,ST,aT)
Fort=20,...,T:

rl‘(T) <~ ZkT:t r(skaak)

0+ 0 + art(T)% |og7rg(at | St)

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 10/21

Optimizing Discontinuous Objectives

o Edge case of RL: handwritten digit classification, but maximizing
accuracy (or minimizing 0-1 loss)

@ Gradient descent completely fails if the cost function is discontinuous:

cost cost

0 0

Non-differentiable: OK Discontinuous: not OK
@ Original solution: use a surrogate loss function, e.g.
logistic-cross-entropy

@ RL formulation: in each episode, the agent is shown an image, guesses
a digit class, and receives a reward of 1 if it's right or 0 if it's wrong

@ We'd never actually do it this way, but it will give us an interesting
comparison with backprop

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 11/21

Optimizing Discontinuous Objectives

@ RL formulation
one time step
state x: an image
action a: a digit class
reward r(x,a): 1 if correct, O if wrong
policy m(a|x): a distribution over categories
o Compute using an MLP with softmax outputs — this is a policy network

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 12/21

Optimizing Discontinuous Objectives

@ Let z, denote the logits, yx denote the softmax output, t the integer
target, and tx the target one-hot representation.
e To apply REINFORCE, we sample a ~ mg(- | x) and apply:

06— 0+ ar(a,t)2 log mg(a | x)

00
=60+ar(a t)E lo
-) 89 gya
0
=0+ ar(@,t) Y (3 — i) 52k
k

@ Compare with the logistic regression SGD update:

0
0(—0—{'0[870 IOgyt

0
—0+a) (t- Yk) 5 2k
K

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 13 /21

N
Reward Baselines

@ For reference: 5
0«0+ ar(a,t)% log mg(a | x)

@ Clearly, we can add a constant offset to the reward, and we get an
equivalent optimization problem.
@ Behavior if r = 0 for wrong answers and r = 1 for correct answers
e wrong: do nothing
e correct: make the action more likely
o If r =10 for wrong answers and r = 11 for correct answers
e wrong: make the action more likely
e correct: make the action more likely (slightly stronger)
o If r = —10 for wrong answers and r = —9 for correct answers
e wrong: make the action less likely
e correct: make the action less likely (slightly weaker)

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 14 /21

Reward Baselines

@ Problem: the REINFORCE update depends on arbitrary constant

factors added to the reward.
@ Observation: we can subtract a baseline b from the reward without
biasing the gradient.

Epry [(r(7) —)80 log p(7)| = T) - r(r)6‘9 log p(’T) — bE {6‘9 log p(’T):|

N
= Ey(r r(T)%logp(T) *bzp 80 log p(7)

~ By |1(7) (,fi, 0 p(r)| ~ b 15p(7)

[0

e We'd like to pick a baseline such that good rewards are positive and
bad ones are negative.

e E[r(7)] is a good choice of baseline, but we can't always compute it
easily. There's lots of research on trying to approximate it.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 15/21

N
More Tricks

@ We left out some more tricks that can make policy gradients work a
lot better.
e Natural policy gradient corrects for the geometry of the space of
policies, preventing the policy from changing too quickly.
o Rather than use the actual return, evaluate actions based on estimates
of future returns. This is a class of methods known as actor-critic,

which we'll touch upon next lecture.
@ Trust region policy optimization (TRPO) and proximal policy
optimization (PPO) are modern policy gradient algorithms which are
very effective for continuous control problems.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 16 /21

Discussion

@ What's so great about backprop and gradient descent?

o Backprop does credit assignment — it tells you exactly which
activations and parameters should be adjusted upwards or downwards
to decrease the loss on some training example.

o REINFORCE doesn't do credit assignment. If a rollout happens to be
good, all the actions get reinforced, even if some of them were bad.

e Reinforcing all the actions as a group leads to random walk behavior.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 17 /21

Discussion

@ Why policy gradient?

e Can handle discontinuous cost functions
e Don't need an explicit model of the environment, i.e. rewards and
dynamics are treated as black boxes
@ Policy gradient is an example of model-free reinforcement learning,
since the agent doesn't try to fit a model of the environment
o Almost everyone thinks model-based approaches are needed for Al, but
nobody has a clue how to get it to work

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 18 /21

Evolution Strategies (optional)

@ REINFORCE can handle discontinuous dynamics and reward
functions, but it requires a differentiable network since it computes
% log mg(at | st)

e Evolution strategies (ES) take the policy gradient idea a step further,
and avoid backprop entirely.

@ ES can use deterministic policies. It randomizes over the choice of
policy rather than over the choice of actions.

o l.e., sample a random policy from a distribution p, (@) parameterized
by 7 and apply the policy gradient trick

3B, 7 (O)] = Bop, | r7(6)) 5 102 2(6)

@ The neural net architecture itself can be discontinuous.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 19/21

Evolution Strategies (optional)

Algorithm 1 Evolution Strategies

: Input: Learning rate «, noise standard deviation o, initial policy parameters 6y
s fort=0,1,2,... do

Sample €1, ...€, ~N(0,I)

Compute returns F; = F(0; + o¢;) fori =1,...,n

Set 93+1 — 6+ a% :?:1 Fie;
end for

AN e

https://arxiv.org/pdf/1703.03864.pdf

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 20/21

https://arxiv.org/pdf/1703.03864.pdf

Evolution Strategies (optional)

@ The IEEE floating point standard is nonlinear, since small enough
numbers get truncated to zero.

sign exponent (8 hits) fraction (23 bits)
| T I

ST [Ee S S [T saIaTs] = o 1565
3l 30 2322 (bit index) 0

le-38

@ This acts as a discontinuous activation
function, which ES is able to handle.

@ ES was able to train a good MNIST
classifier using a “linear” activation
function. -

4

float32
°

@ https://blog.openai.com/ "
nonlinear-computation-in-linear-:

-4 -2 0 2 4
actual number le-38

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 20: Policy Gradient 21/21

https://blog.openai.com/nonlinear-computation-in-linear-networks/
https://blog.openai.com/nonlinear-computation-in-linear-networks/

