CSC421/2516 Lecture 20: Policy Gradient

Roger Grosse and Jimmy Ba
Most of this course was about supervised learning, plus a little unsupervised learning.

Final 3 lectures: reinforcement learning
- Middle ground between supervised and unsupervised learning
- An agent acts in an environment and receives a reward signal.

Today: policy gradient (directly do SGD over a stochastic policy using trial-and-error)

Next lecture: Q-learning (learn a value function predicting returns from a state)

Final lecture: policies and value functions are way more powerful in combination
Reinforcement learning

- An **agent** interacts with an **environment** (e.g. game of Breakout)
- In each time step t,
 - the agent receives **observations** (e.g. pixels) which give it information about the **state** s_t (e.g. positions of the ball and paddle)
 - the agent picks an **action** a_t (e.g. keystrokes) which affects the state
- The agent periodically receives a **reward** $r(s_t, a_t)$, which depends on the state and action (e.g. points)
- The agent wants to learn a **policy** $\pi_\theta(a_t | s_t)$
 - Distribution over actions depending on the current state and parameters θ
Markov Decision Processes

- The environment is represented as a Markov decision process \mathcal{M}.
- Markov assumption: all relevant information is encapsulated in the current state; i.e. the policy, reward, and transitions are all independent of past states given the current state.
- Components of an MDP:
 - initial state distribution $p(s_0)$
 - policy $\pi_\theta(a_t \mid s_t)$
 - transition distribution $p(s_{t+1} \mid s_t, a_t)$
 - reward function $r(s_t, a_t)$
- Assume a fully observable environment, i.e. s_t can be observed directly.
- Rollout, or trajectory $\tau = (s_0, a_0, s_1, a_1, \ldots, s_T, a_T)$
- Probability of a rollout

$$p(\tau) = p(s_0) \pi_\theta(a_0 \mid s_0) p(s_1 \mid s_0, a_0) \cdots p(s_T \mid s_{T-1}, a_{T-1}) \pi_\theta(a_T \mid s_T)$$
Markov Decision Processes

Continuous control in simulation, e.g. teaching an ant to walk

- State: positions, angles, and velocities of the joints
- Actions: apply forces to the joints
- Reward: distance from starting point
- Policy: output of an ordinary MLP, using the state as input
- More environments: https://gym.openai.com/envs/#mujoco
Markov Decision Processes

- **Return** for a rollout: \(r(\tau) = \sum_{t=0}^{T} r(s_t, a_t) \)
 - Note: we’re considering a finite horizon \(T \), or number of time steps; we’ll consider the infinite horizon case later.

- Goal: maximize the expected return, \(R = \mathbb{E}_{p(\tau)}[r(\tau)] \)
 - The expectation is over both the environment’s dynamics and the policy, but we only have control over the policy.
 - The stochastic policy is important, since it makes \(R \) a continuous function of the policy parameters.
 - Reward functions are often discontinuous, as are the dynamics (e.g. collisions)

![Diagram showing deterministic and stochastic policies](image)
REINFORCE

- **REINFORCE** is an elegant algorithm for maximizing the expected return $R = \mathbb{E}_{p(\tau)} [r(\tau)]$.
- **Intuition:** trial and error
 - Sample a rollout τ. If you get a high reward, try to make it more likely. If you get a low reward, try to make it less likely.
- Interestingly, this can be seen as stochastic gradient ascent on R.
REINFORCE

Recall the derivative formula for log:
\[\frac{\partial}{\partial \theta} \log p(\tau) = \frac{\partial}{\partial \theta} \frac{p(\tau)}{p(\tau)} \implies \frac{\partial}{\partial \theta} p(\tau) = p(\tau) \frac{\partial}{\partial \theta} \log p(\tau) \]

Gradient of the expected return:
\[\frac{\partial}{\partial \theta} \mathbb{E}_{p(\tau)} [r(\tau)] = \frac{\partial}{\partial \theta} \sum_{\tau} r(\tau) p(\tau) \]
\[= \sum_{\tau} r(\tau) \frac{\partial}{\partial \theta} p(\tau) \]
\[= \sum_{\tau} r(\tau) p(\tau) \frac{\partial}{\partial \theta} \log p(\tau) \]
\[= \mathbb{E}_{p(\tau)} \left[r(\tau) \frac{\partial}{\partial \theta} \log p(\tau) \right] \]

Compute stochastic estimates of this expectation by sampling rollouts.
• For reference:

\[
\frac{\partial}{\partial \theta} \mathbb{E}_{p(\tau)} [r(\tau)] = \mathbb{E}_{p(\tau)} \left[r(\tau) \frac{\partial}{\partial \theta} \log p(\tau) \right]
\]

• If you get a large reward, make the rollout more likely. If you get a small reward, make it less likely.

• Unpacking the REINFORCE gradient:

\[
\frac{\partial}{\partial \theta} \log p(\tau) = \frac{\partial}{\partial \theta} \log \left[p(s_0) \prod_{t=0}^{T} \pi_\theta(a_t | s_t) \prod_{t=1}^{T} p(s_t | s_{t-1}, a_{t-1}) \right]
\]

\[
= \frac{\partial}{\partial \theta} \log \prod_{t=0}^{T} \pi_\theta(a_t | s_t)
\]

\[
= \sum_{t=0}^{T} \frac{\partial}{\partial \theta} \log \pi_\theta(a_t | s_t)
\]

• Hence, it tries to make all the actions more likely or less likely, depending on the reward. I.e., it doesn’t do credit assignment.

• This is a topic for next lecture.
REINFORCE

Repeat forever:

Sample a rollout \(\tau = (s_0, a_0, s_1, a_1, \ldots, s_T, a_T) \)

\[
r(\tau) \leftarrow \sum_{k=0}^{T} r(s_k, a_k)
\]

For \(t = 0, \ldots, T \):

\[
\theta \leftarrow \theta + \alpha r(\tau) \frac{\partial}{\partial \theta} \log \pi_\theta(a_t | s_t)
\]

- Observation: actions should only be reinforced based on future rewards, since they can’t possibly influence past rewards.
- You can show that this still gives unbiased gradient estimates.

Repeat forever:

Sample a rollout \(\tau = (s_0, a_0, s_1, a_1, \ldots, s_T, a_T) \)

For \(t = 0, \ldots, T \):

\[
r_t(\tau) \leftarrow \sum_{k=t}^{T} r(s_k, a_k)
\]

\[
\theta \leftarrow \theta + \alpha r_t(\tau) \frac{\partial}{\partial \theta} \log \pi_\theta(a_t | s_t)
\]
Optimizing Discontinuous Objectives

- Edge case of RL: handwritten digit classification, but maximizing accuracy (or minimizing 0–1 loss)
- Gradient descent completely fails if the cost function is discontinuous:

 ![Graphs showing non-differentiable and discontinuous cost functions](image)

 - Non-differentiable: OK
 - Discontinuous: not OK

- Original solution: use a surrogate loss function, e.g. logistic-cross-entropy
- RL formulation: in each episode, the agent is shown an image, guesses a digit class, and receives a reward of 1 if it’s right or 0 if it’s wrong
- We’d never actually do it this way, but it will give us an interesting comparison with backprop
Optimizing Discontinuous Objectives

RL formulation
- one time step
- state \(x \): an image
- action \(a \): a digit class
- reward \(r(x, a) \): 1 if correct, 0 if wrong
- policy \(\pi(a | x) \): a distribution over categories
 - Compute using an MLP with softmax outputs – this is a policy network
Optimizing Discontinuous Objectives

Let z_k denote the logits, y_k denote the softmax output, t the integer target, and t_k the target one-hot representation.

To apply REINFORCE, we sample $a \sim \pi_\theta(\cdot | x)$ and apply:

$$\theta \leftarrow \theta + \alpha r(a, t) \frac{\partial}{\partial \theta} \log \pi_\theta(a | x)$$

$$= \theta + \alpha r(a, t) \frac{\partial}{\partial \theta} \log y_a$$

$$= \theta + \alpha r(a, t) \sum_k (a_k - y_k) \frac{\partial}{\partial \theta} z_k$$

Compare with the logistic regression SGD update:

$$\theta \leftarrow \theta + \alpha \frac{\partial}{\partial \theta} \log y_t$$

$$\leftarrow \theta + \alpha \sum_k (t_k - y_k) \frac{\partial}{\partial \theta} z_k$$
Reward Baselines

- For reference:
 \[\theta \leftarrow \theta + \alpha r(a, t) \frac{\partial}{\partial \theta} \log \pi_\theta(a \mid x) \]

- Clearly, we can add a constant offset to the reward, and we get an equivalent optimization problem.

- Behavior if \(r = 0 \) for wrong answers and \(r = 1 \) for correct answers
 - wrong: do nothing
 - correct: make the action more likely

- If \(r = 10 \) for wrong answers and \(r = 11 \) for correct answers
 - wrong: make the action more likely
 - correct: make the action more likely (slightly stronger)

- If \(r = -10 \) for wrong answers and \(r = -9 \) for correct answers
 - wrong: make the action less likely
 - correct: make the action less likely (slightly weaker)
Reward Baselines

- Problem: the REINFORCE update depends on arbitrary constant factors added to the reward.
- Observation: we can subtract a baseline \(b \) from the reward without biasing the gradient.

\[
\mathbb{E}_{p(\tau)} \left[(r(\tau) - b) \frac{\partial}{\partial \theta} \log p(\tau) \right] = \mathbb{E}_{p(\tau)} \left[r(\tau) \frac{\partial}{\partial \theta} \log p(\tau) \right] - b \mathbb{E}_{p(\tau)} \left[\frac{\partial}{\partial \theta} \log p(\tau) \right]
\]

\[
= \mathbb{E}_{p(\tau)} \left[r(\tau) \frac{\partial}{\partial \theta} \log p(\tau) \right] - b \sum_{\tau} p(\tau) \frac{\partial}{\partial \theta} \log p(\tau)
\]

\[
= \mathbb{E}_{p(\tau)} \left[r(\tau) \frac{\partial}{\partial \theta} \log p(\tau) \right] - b \sum_{\tau} \frac{\partial}{\partial \theta} p(\tau)
\]

\[
= \mathbb{E}_{p(\tau)} \left[r(\tau) \frac{\partial}{\partial \theta} \log p(\tau) \right] - 0
\]

- We’d like to pick a baseline such that good rewards are positive and bad ones are negative.
- \(\mathbb{E}[r(\tau)] \) is a good choice of baseline, but we can’t always compute it easily. There’s lots of research on trying to approximate it.
More Tricks

- We left out some more tricks that can make policy gradients work a lot better.
 - Natural policy gradient corrects for the geometry of the space of policies, preventing the policy from changing too quickly.
 - Rather than use the actual return, evaluate actions based on estimates of future returns. This is a class of methods known as actor-critic, which we’ll touch upon next lecture.

- Trust region policy optimization (TRPO) and proximal policy optimization (PPO) are modern policy gradient algorithms which are very effective for continuous control problems.
What’s so great about backprop and gradient descent?

- Backprop does credit assignment – it tells you exactly which activations and parameters should be adjusted upwards or downwards to decrease the loss on some training example.
- REINFORCE doesn’t do credit assignment. If a rollout happens to be good, all the actions get reinforced, even if some of them were bad.
- Reinforcing all the actions as a group leads to random walk behavior.
Discussion

Why policy gradient?

- Can handle discontinuous cost functions
- Don’t need an explicit model of the environment, i.e. rewards and dynamics are treated as black boxes
 - Policy gradient is an example of model-free reinforcement learning, since the agent doesn’t try to fit a model of the environment
 - Almost everyone thinks model-based approaches are needed for AI, but nobody has a clue how to get it to work
Evolution Strategies (optional)

- REINFORCE can handle discontinuous dynamics and reward functions, but it requires a differentiable network since it computes $\frac{\partial}{\partial \theta} \log \pi_\theta(a_t \mid s_t)$.

- Evolution strategies (ES) take the policy gradient idea a step further, and avoid backprop entirely.

- ES can use deterministic policies. It randomizes over the choice of policy rather than over the choice of actions.
 - I.e., sample a random policy from a distribution $p_\eta(\theta)$ parameterized by η and apply the policy gradient trick

$$\frac{\partial}{\partial \eta} \mathbb{E}_{\theta \sim p_\eta} [r(\tau(\theta))] = \mathbb{E}_{\theta \sim p_\eta} \left[r(\tau(\theta)) \frac{\partial}{\partial \eta} \log p_\eta(\theta) \right]$$

- The neural net architecture itself can be discontinuous.
Algorithm 1 Evolution Strategies

1: **Input:** Learning rate α, noise standard deviation σ, initial policy parameters θ_0
2: \textbf{for} $t = 0, 1, 2, \ldots$ \textbf{do}
3: \hspace{1em} Sample $\epsilon_1, \ldots, \epsilon_n \sim \mathcal{N}(0, I)$
4: \hspace{1em} Compute returns $F_i = F(\theta_t + \sigma \epsilon_i)$ for $i = 1, \ldots, n$
5: \hspace{1em} Set $\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{i=1}^{n} F_i \epsilon_i$
6: \textbf{end for}

Evolution Strategies (optional)

- The IEEE floating point standard is nonlinear, since small enough numbers get truncated to zero.

\[
\begin{array}{c}
\text{sign} & \text{exponent (8 bits)} & \text{fraction (23 bits)} \\
0 & 01111100 & 01000000000000000000000 \\
\end{array}
\]

\[= 0.15625\]

- This acts as a discontinuous activation function, which ES is able to handle.
- ES was able to train a good MNIST classifier using a “linear” activation function.
- \(\text{https://blog.openai.com/nonlinear-computation-in-linear-}\)