CSC421/2516 Lecture 6: Automatic Differentiation

Roger Grosse and Jimmy Ba
Overview

- Implementing backprop by hand is like programming in assembly language.
 - You’ll probably never do it, but it’s important for having a mental model of how everything works.
- Lecture 4 covered the math of backprop, which you are using to code it up for a particular network for Assignment 1
- This lecture: how to build an automatic differentiation (autodiff) library, so that you never have to write derivatives by hand
 - We’ll cover a simplified version of Autograd, a lightweight autodiff tool.
 - PyTorch’s autodiff feature is based on very similar principles.
Confusing Terminology

- **Automatic differentiation (autodiff)** refers to a general way of taking a program which computes a value, and automatically constructing a procedure for computing derivatives of that value.
 - In this lecture, we focus on reverse mode autodiff. There is also a forward mode, which is for computing directional derivatives.
- **Backpropagation** is the special case of autodiff applied to neural nets.
 - But in machine learning, we often use backprop synonymously with autodiff.
- **Autograd** is the name of a particular autodiff package.
 - But lots of people, including the PyTorch developers, got confused and started using “autograd” to mean “autodiff”
What Autodiff Is Not: Finite Differences

- We often use finite differences to check our gradient calculations.
 - One-sided version:
 \[
 \frac{\partial}{\partial x_i} f(x_1, \ldots, x_N) \approx \frac{f(x_1, \ldots, x_i + h, \ldots, x_N) - f(x_1, \ldots, x_i, \ldots, x_N)}{h}
 \]
 - Two-sided version:
 \[
 \frac{\partial}{\partial x_i} f(x_1, \ldots, x_N) \approx \frac{f(x_1, \ldots, x_i + h, \ldots, x_N) - f(x_1, \ldots, x_i - h, \ldots, x_N)}{2h}
 \]
Autodiff is not finite differences.

- Finite differences are expensive, since you need to do a forward pass for each derivative.
- It also induces huge numerical error.
- Normally, we only use it for testing.

Autodiff is both efficient (linear in the cost of computing the value) and numerically stable.
What Autodiff Is Not: Symbolic Differentiation

- Autodiff is not symbolic differentiation (e.g. Mathematica).
 - Symbolic differentiation can result in complex and redundant expressions.
 - Mathematica’s derivatives for one layer of soft ReLU (univariate case):
 \[
 \frac{e^{b+wx}w}{1+e^{b+wx}}
 \]
 - Derivatives for two layers of soft ReLU:
 \[
 \frac{e^{b1+b2+w1x+w2\log[1+e^{b1+w1x}]}w2x}{(1+e^{b1+w1x})(1+e^{b2+w2\log[1+e^{b1+w1x}]})}
 \]
- There might not be a convenient formula for the derivatives.
- The goal of autodiff is not a formula, but a procedure for computing derivatives.
Recall how we computed the derivatives of logistic least squares regression. An autodiff system should transform the left-hand side into the right-hand side.

Computing the loss:

\[z = wx + b \]
\[y = \sigma(z) \]
\[\mathcal{L} = \frac{1}{2} (y - t)^2 \]

Computing the derivatives:

\[\bar{\mathcal{L}} = 1 \]
\[\bar{y} = y - t \]
\[\bar{z} = \bar{y} \sigma'(z) \]
\[\bar{w} = \bar{z} x \]
\[\bar{b} = \bar{z} \]
What Autodiff Is

- An autodiff system will convert the program into a sequence of primitive operations (ops) which have specified routines for computing derivatives.
- In this representation, backprop can be done in a completely mechanical way.

Sequence of primitive operations:

\[
\begin{align*}
t_1 &= wx \\
z &= t_1 + b \\
t_3 &= -z \\
t_4 &= \exp(t_3) \\
t_5 &= 1 + t_4 \\
y &= 1/t_5 \\
t_6 &= y - t \\
t_7 &= t_6^2 \\
\mathcal{L} &= t_7/2
\end{align*}
\]

Original program:

\[
\begin{align*}
z &= wx + b \\
y &= \frac{1}{1 + \exp(-z)} \\
\mathcal{L} &= \frac{1}{2}(y - t)^2
\end{align*}
\]
What Autodiff Is

```python
import autograd.numpy as np
from autograd import grad

def sigmoid(x):
    return 0.5*(np.tanh(x) + 1)

def logistic_predictions(weights, inputs):
    # Outputs probability of a label being true according to logistic model.
    return sigmoid(np.dot(inputs, weights))

def training_loss(weights):
    # Training loss is the negative log-likelihood of the training labels.
    preds = logistic_predictions(weights, inputs)
    label_probabilities = preds * targets + (1 - preds) * (1 - targets)
    return -np.sum(np.log(label_probabilities))

# Define a function that returns gradients of training loss using Autograd.
training_gradient_fun = grad(training_loss)

# Optimize weights using gradient descent.
weights = np.array([[0.0, 0.0, 0.0]])
print "Initial loss:", training_loss(weights)
for i in xrange(100):
    weights -= training_gradient_fun(weights) * 0.01
print "Trained loss:", training_loss(weights)
```

... (load the data) ...

very sneaky!

Autograd constructs a function for computing derivatives
The rest of this lecture covers how Autograd is implemented.

Source code for the original Autograd package:
- https://github.com/HIPS/autograd

Autodidact, a pedagogical implementation of Autograd — you are encouraged to read the code.
- https://github.com/mattjj/autodidact
- Thanks to Matt Johnson for providing this!
Most autodiff systems, including Autograd, explicitly construct the computation graph.

Some frameworks like TensorFlow provide mini-languages for building computation graphs directly. Disadvantage: need to learn a totally new API.

Autograd instead builds them by tracing the forward pass computation, allowing for an interface nearly indistinguishable from NumPy.

The **Node** class (defined in `tracer.py`) represents a node of the computation graph. It has attributes:

- `value`, the actual value computed on a particular set of inputs
- `fun`, the primitive operation defining the node
- `args` and `kwargs`, the arguments the op was called with
- `parents`, the parent Nodes
Autograd’s fake NumPy module provides primitive ops which look and feel like NumPy functions, but secretly build the computation graph. They wrap around NumPy functions:
Building the Computation Graph

Example:

```python
def logistic(z):
    return 1. / (1. + np.exp(-z))

# that is equivalent to:
def logistic2(z):
    return np.reciprocal(np.add(1, np.exp(np.negative(z)))))

z = 1.5
y = logistic(z)
```
Recap: Vector-Jacobian Products

- Recall: the **Jacobian** is the matrix of partial derivatives:

 \[
 J = \frac{\partial y}{\partial x} = \begin{pmatrix}
 \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\
 \vdots & \ddots & \vdots \\
 \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n}
 \end{pmatrix}
 \]

- The backprop equation (single child node) can be written as a vector-Jacobian product (VJP):

 \[
 \bar{x}_j = \sum_i y_i \frac{\partial y_i}{\partial x_j} \quad \bar{x} = \bar{y}^\top J
 \]

- That gives a row vector. We can treat it as a column vector by taking

 \[
 \bar{x} = J^\top \bar{y}
 \]
Recap: Vector-Jacobian Products

Examples

- **Matrix-vector product**

 \[z = Wx \quad J = W \quad \overline{x} = W^\top \overline{z} \]

- **Elementwise operations**

 \[
 y = \exp(z) \quad J = \begin{pmatrix}
 \exp(z_1) & 0 & \cdots & 0 \\
 0 & \ddots & \ddots & 0 \\
 0 & \cdots & 0 & \exp(z_D)
 \end{pmatrix} \quad \overline{z} = \exp(z) \circ \overline{y}
 \]

- **Note**: we never explicitly construct the Jacobian. It’s usually simpler and more efficient to compute the VJP directly.
Backprop as Message Passing

Consider a naïve backprop implementation where the \(z \) module needs to compute \(\bar{z} \) using the formula:

\[
\bar{z} = \frac{\partial r}{\partial z} \bar{r} + \frac{\partial s}{\partial z} \bar{s} + \frac{\partial t}{\partial z} \bar{t}
\]

This breaks modularity, since \(z \) needs to know how it’s used in the network in order to compute partial derivatives of \(r \), \(s \), and \(t \).
Backprop as message passing:

- Each node receives a bunch of messages from its children, which it aggregates to get its error signal. It then passes messages to its parents.
- Each of these messages is a VJP.
- This formulation provides modularity: each node needs to know how to compute its outgoing messages, i.e. the VJPs corresponding to each of its parents (arguments to the function).
- The implementation of z doesn’t need to know where \bar{z} came from.
Vector-Jacobian Products

- For each primitive operation, we must specify VJPs for each of its arguments. Consider $y = \exp(x)$.
- This is a function which takes in the output gradient (i.e. \bar{y}), the answer (y), and the arguments (x), and returns the input gradient (\bar{x})
- `defvjp` (defined in `core.py`) is a convenience routine for registering VJPs. It just adds them to a dict.
- Examples from `numpy/numpy_vjps.py`

```python
defvjp(negative, lambda g, ans, x: -g)
defvjp(exp, lambda g, ans, x: ans * g)
defvjp(log, lambda g, ans, x: g / x)
defvjp(add, lambda g, ans, x, y: g, lambda g, ans, x, y: g)
defvjp(multiply, lambda g, ans, x, y: y * g, lambda g, ans, x, y: x * g)
defvjp(subtract, lambda g, ans, x, y: g, lambda g, ans, x, y: -g)
```
Backward Pass

- The backwards pass is defined in `core.py`.
- The argument `g` is the error signal for the end node; for us this is always $\overline{C} = 1$.

```python
def backward_pass(g, end_node):
    outgrads = {end_node: g}
    for node in toposort(end_node):
        outgrad = outgrads.pop(node)
        fun, value, args, kwargs, argnums = node.recipe
        for argnum, parent in zip(argnums, node.parents):
            vjp = primitive_vjps[fun][argnum]
            parent_grad = vjp(outgrad, value, *args, **kwargs)
            outgrads[parent] = add_outgrads(outgrads.get(parent), parent_grad)

    return outgrad

def add_outgrads(prev_g, g):
    if prev_g is None:
        return g
    return prev_g + g
```
Backward Pass

- grad (in `differential_operators.py`) is just a wrapper around `make_vjp` (in `core.py`) which builds the computation graph and feeds it to `backward_pass`.
- grad itself is viewed as a VJP, if we treat \overline{L} as the 1×1 matrix with entry 1.

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial w} \overline{L}$$

```python
def make_vjp(fun, x):
    """Trace the computation to build the computation graph, and return a function which implements the backward pass."""
    start_node = Node.new_root()
    end_value, end_node = trace(start_node, fun, x)
    def vjp(g):
        return backward_pass(g, end_node)
    return vjp, end_value

def grad(fun, argnum=0):
    def gradfun(*args, **kwargs):
        unary_fun = lambda x: fun(*subval(args, argnum, x), **kwargs)
        vjp, ans = make_vjp(unary_fun, args[argnum])
        return vjp(np.ones_like(ans))
    return gradfun
```
Recap

- We saw three main parts to the code:
 - tracing the forward pass to build the computation graph
 - vector-Jacobian products for primitive ops
 - the backwards pass

- Building the computation graph requires fancy NumPy gymnastics, but other two items are basically what I showed you.

- You’re encouraged to read the full code (< 200 lines!) at:

 https://github.com/mattjj/autodidact/tree/master/autograd
Differentiating through a Fluid Simulation

```python
def project(vx, vy):
    # Project the velocity field to be approximately mass-conserving,
    # using a few iterations of Gauss-Seidel.
    p = np.zeros(vx.shape)
    h = 1.0/vx.shape[0]
    div = -0.5 * h * (np.roll(vx, -1, axis=0) - np.roll(vx, 1, axis=0)
                     + np.roll(vy, -1, axis=1) - np.roll(vy, 1, axis=1))
    for k in range(10):
        p = (div + np.roll(p, 1, axis=0) + np.roll(p, -1, axis=0)
             + np.roll(p, 1, axis=1) + np.roll(p, -1, axis=1))/4.0
    vx -= 0.5*(np.roll(p, -1, axis=0) - np.roll(p, 1, axis=0))/h
    vy -= 0.5*(np.roll(p, -1, axis=1) - np.roll(p, 1, axis=1))/h
    return vx, vy

def advect(f, vx, vy):
    # Move field f according to x and y velocities (u and v)
    # using an implicit Euler integrator.
    rows, cols = f.shape
    cell_xs, cell_ys = np.meshgrid(np.arange(rows),
                                    np.arange(cols))
    center_xs = (cell_xs - vx).ravel()
    center_ys = (cell_ys - vy).ravel()

    # Compute indices of source cells.
    left_ix = np.floor(center_xs).astype(int)
    top_ix = np.floor(center_ys).astype(int)
    rw = center_xs - left_ix
    bw = center_ys - top_ix
    left_ix = np.mod(left_ix, rows)
    right_ix = np.mod(left_ix + 1, rows)
    top_ix = np.mod(top_ix, cols)
    bot_ix = np.mod(top_ix + 1, cols)

    flat_f = (1 - rw) * (((1 - bw)*f[left_ix, top_ix] \
                          + bw*f[left_ix, bot_ix]) / \
                        + rw * (((1 - bw)*f[right_ix, top_ix] \
                               + bw*f[right_ix, bot_ix]))

    return np.reshape(flat_f, (rows, cols))

def simulate(vx, vy, smoke, num_time_steps):
    for t in range(num_time_steps):
        vx_updated = advect(vx, vx, vy)
        vy_updated = advect(vy, vx, vy)
        vx, vy = project(vx_updated, vy_updated)
        smoke = advect(smoke, vx, vy)
    return smoke, frame_list
```

Roger Grosse and Jimmy Ba
CSC421/2516 Lecture 6: Automatic Differer
Differentiating through a Fluid Simulation

https://github.com/HIPS/autograd#end-to-end-examples
Gradient-Based Hyperparameter Optimization

regularization params

optimization params

training data

validation data

gradient descent

init Θ

θ

loss grad

update step

∇L

θ

loss grad

update step

∇L

θ_{final}

validation set error

L
Gradient-Based Hyperparameter Optimization

P(digit | image)

![Graph showing learning rate vs schedule index for different layers: Layer 1, Layer 2, Layer 3, Layer 4. The graph illustrates how the learning rate changes over the schedule index.](image)