CSC421/2516 Lecture 4:
Backpropagation

Roger Grosse and Jimmy Ba

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 1/23

Overview

@ We've seen that multilayer neural networks are powerful. But how can
we actually learn them?
o Backpropagation is the central algorithm in this course.

e lIt's is an algorithm for computing gradients.
e Really it's an instance of reverse mode automatic differentiation, which
is much more broadly applicable than just neural nets.
o Thisis “just” a clever and efficient use of the Chain Rule for derivatives.
o We'll see how to implement an automatic differentiation system next
week.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 2/23

-
Recap: Gradient Descent

@ Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

0.5 N !
%fbo0 500 0 500 1000 1500 2000
0

@ Weight space for a multilayer neural net: one coordinate for each weight or
bias of the network, in all the layers

@ Conceptually, not any different from what we've seen so far — just higher
dimensional and harder to visualize!

@ We want to compute the cost gradient d.7/dw, which is the vector of
partial derivatives.
o This is the average of d£/dw over all the training examples, so in this
lecture we focus on computing d£/dw.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 3/23

Univariate Chain Rule

@ We've already been using the univariate Chain Rule.

@ Recall: if f(x) and x(t) are univariate functions, then

d df dx
9 _ arex
a0 = 4

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 4/23

Univariate Chain Rule

Recall: Univariate logistic least squares model

=wx-+b
o(2)

%(y — 1)

D < N
I

Let’'s compute the loss derivatives.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 5/23

Univariate Chain Rule

How you would have done it in calculus class

C— %(J(Wx +b)—)

oL _ 9 1(0’(WX+b)7t)2:|

oL a1
= _ 2z b) — t)?
_ a6~ op |2 -0
ow Ow |2

_109 2
= 28W(cr(wx—l-b)— t)

_19 2
= 28b(U(WX—I—b)— t)

= (o(wx + b) — t)%(a(wx + b) —t)

:(J(Wx+b)7t)8i(o'(wx+b)ft) 9
= (o(wx + b) — t)o’ (wx + b)%(wx + b)

w

) 0
= (o(wx+b) = t)o'(wx + b) - (wx +b) (o(wx + b) — t)o’ (wx + b)

= (o(wx + b) — t)o’ (wx + b)x

What are the disadvantages of this approach?

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 6/23

Univariate Chain Rule

A more structured way to do it

Computing the derivatives:

Computing the loss: dr
— =y — t
AN gz dL
/
y= i(Z) z -4’ (2)
L=30- o _dc
ow dz
oL dC
ob dz

Remember, the goal isn't to obtain closed-form solutions, but to be able
to write a program that efficiently computes the derivatives.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 7/23

Univariate Chain Rule

@ We can diagram out the computations using a computation graph.

@ The nodes represent all the inputs and computed quantities, and the
edges represent which nodes are computed directly as a function of
which other nodes.

Compute Loss
_—

>~

"

Compute Derivatives
—

T t

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 8/23

Univariate Chain Rule

A slightly more convenient notation:

@ Use ¥ to denote the derivative d£/dy, sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

@ This is not a standard notation, but | couldn’t find another one that | liked.

Computing the loss: Computing the derivatives:

z=wx+b F=y—t

y=0(z) z=yod'(2)
1 —
/;:E(y_t)2 W =ZX
b=z

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 9/23

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the multivariate Chain Rule!

L,-Regularized regression Multiclass logistic regression

t [)1

Z.
t
%’Z _’y—>£7£reg N _>y1\}‘
W :R "E24>Z2—.y2/'/
7 t2
- b by w1
zZ = wx + why 2
y =o0(2) >
1 zp = wejX; + b
L=Z(y- t)2 J
2
_1 _ et
R= EW Yk = Ze ez
£reg:£+)\R LZ—Ztklog}/k
k

10/23

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation

N
Multivariate Chain Rule

@ Suppose we have a function f(x, y) and functions x(t) and y(t). (All
the variables here are scalar-valued.) Then

d of dx = Of dy / \
af(x(t)d’(t)):gﬁ“‘@g \ /

fx,y)=y+e¥
x(t) = cost
y(t) =t
@ Plug in to Chain Rule:
df ofdx 0fdy
dt oxdt | dydt
=(ye?¥)-(—sint) + (1 + xe¥) - 2t

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 11/23

N
Multivariable Chain Rule

@ In the context of backpropagation:

Mathematical expressions
to be evaluated

df 0fdx Ofdy

At~ Oz dt " oy dt \x/
Values alread ted t\ !
ues already compute
¢ by our pr)cngramp / y—

@ In our notation:

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation

12/23

|
Backpropagation

Full backpropagation algorithm:

Let vi,..., vy be a topological ordering of the computation graph
(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

Fori=1,...,N
forward pass

Compute v; as a function of Pa(v;)

T 'n=1

backward pass | Fori=N-—1,...,1

—_— R 81}j
Vi = D iech() Vi Fon

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 13/23

|
Backpropagation

Example: univariate logistic least squares regression

" t Backward pass:
\: > > RO
b/z L £7£I 8 »Creg =1
w >R - ac
:[, reg
Forward pass: =Lreg A
Z_WX+b chregd
= z
y=o0(2) —Tom
L= —t)? _
5 (y—1) y=°CL ac
R=1n? v
— 2" =L(y—t)
Lres = L+ AR

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation

14 /23

Backpropagation

Multilayer Perceptron (multiple outputs):

(1)
w, (1)

A 1\1‘\3
1
\

X —»Zl—>h 1—>y1\

X 2—»22—>h2%>y2

//

ll);

7E

Forward pass:

Zj

hj

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4:

5wl 4 Y
J
O’(Z,')

1 2
=5 ;(}’k — t)

Backward pass:

L=1
Vi = L (yx — ti)
w? =yich;
b2 =y
B =Y yow;
k
Z = hio’ (z)
wj!) =i
b =%

Backpropagation

15 /23

Vector Form

o Computation graphs showing individual units are cumbersome.

@ As you might have guessed, we typically draw graphs over the
vectorized variables.

w® w2 t
b b®

@ We pass messages back analogous to the ones for scalar-valued nodes.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 16 /23

Vector Form

@ Consider this computation graph:

z 1
2 2 Z—Y
Zy——»Ys3
@ Backprop rules:
_ __ Ok oy
Zj = Yk 327 z=-"Y
Zk: dz; 0z 7’
where dy/0z is the Jacobian matrix:
m .. n
N oz
2 \ow ... om
0z; Ozp

17 /23

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation

N
Vector Form

Examples
@ Matrix-vector product

z=wx Zow x=w'z
Ox
@ Elementwise operations
exp(z1) 0
y = exp(z) 9y _ " Z=-exp(z)oy
0z :
0 exp(zp)

o Note: we never explicitly construct the Jacobian. It's usually simpler
and more efficient to compute the VJP directly.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 18/23

Vector Form

Full backpropagation algorithm (vector form):
Let vq,...,vy be a topological ordering of the computation graph
(i.e. parents come before children.)
vy denotes the variable we're trying to compute derivatives of (e.g. loss).
It's a scalar, which we can treat as a 1-D vector.

Fori=1,...,N

forward pass)
Compute v; as a function of Pa(v;)

vy =1

backward pass Fori=N-1,...,1

— v, | —
. — -1 .
1 Vi = Zje(lh(w) ave Vi

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 19/23

Vector Form

MLP example in vectorized form:

W(ii Wij) 1‘\‘ Backward pass:
X—7—h—Y—L f=l
y=~L(y-t)
b b® W@ =yh'
Forward pass: b2 — v
z=WWx + b h=wW®Ty
h=o0(z) Z=hoo'(2)
y = WO®h 4+ p® WO = zx"
1 - =
£=le—yl? b =7

20/23

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation

Computational Cost
@ Computational cost of forward pass: one add-multiply operation per

weight
zi = Z WI.J(.I)XJ- + bgl)
J

@ Computational cost of backward pass: two add-multiply operations
per weight

x

@ Rule of thumb: the backward pass is about as expensive as two
forward passes.

@ For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 21/23

-
Closing Thoughts

@ Backprop is used to train the overwhelming majority of neural nets today.

e Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally implausible.

e No evidence for biological signals analogous to error derivatives.

o All the biologically plausible alternatives we know about learn much
more slowly (on computers).

e So how on earth does the brain learn?

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 22/23

-
Closing Thoughts

@ By now, we've seen three different ways of looking at gradients:

e Geometric: visualization of gradient in weight space
e Algebraic: mechanics of computing the derivatives
o Implementational: efficient implementation on the computer

@ When thinking about neural nets, it's important to be able to shift
between these different perspectives!

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 4: Backpropagation 23/23

