
Lecture 5: Distributed Representations

Roger Grosse

1 Introduction

We’ll take a break from derivatives and optimization, and look at a partic-
ular example of a neural net that we can train using backprop: the neural
probabilistic language model. Here, the goal is to model the distribution
of English sentences (a task known as language modeling), and we do this
by reducing it to a sequential prediction task. I.e., we learn to predict the
distribution of the next word in a sentence given the previous words. This
lecture will also serve as an example of one of the most important concepts
about neural nets, that of a distributed representation. We can understand
this in contrast with a localized representation, where a particular piece
of information is stored in only one place. In a distributed representation,
information is spread throughout the representation. This turns out to be
really useful, since it lets us share information between related entities —
in the case of language modeling, between related words.

2 Motivation: Language Modeling

Language modeling is the problem of modeling the probability distribu-
tion of natural language text. I.e., we would like to be able to determine
how likely a given sentence is to be uttered. This is an instance of the more
general problem of distribution modeling, i.e. learning a model which
tries to approximate the distribution which some dataset is drawn from.
Why would we want to fit such a model? One of the most important use
cases is Bayesian inference.

Suppose we are building a speech recognition system. I.e., given an
acoustic signal a, we’d like to infer the sentence s (or a set of candidate
sentences) that was probably spoken. One way to do this is to build a
generative model. In this case, such a model consists of two probability
distributions:

• The observation model, represented as p(a | s), The notation p(· | ·) denotes the
conditional distribution.

which tells us how
likely a sentence is to lead to a given acoustic signal. You might, for
instance, build a model of the human vocal system. A lot of work has
gone into this, but we’re not going to talk about it here.

• The prior, represented as p(s), which tells us how likely a given sen-
tence is to be spoken, before we’ve seen a. This is the thing we’re
trying to estimate when we do language modeling.

Given these two distributions, we can combine them using Bayes’ Rule
to infer the posterior distribution over sentences, i.e. the probability
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distribution over sentences taking into account the observations. Recall
that Bayes’ Rule is as follows:

p(s |a) =
p(s) p(a | s)∑
s′ p(s′) p(a | s′)

. (1)

The denominator is simply a normalization term, and we rarely ever have
to compute it or deal with it explicitly. So we can leave the normalization
implicit, using the notation ∝ to denote proportionality:

p(s |a) ∝ p(s) p(a | s). (2)

Hence, Bayes’ Rule lets us combine our prior beliefs with an observation
model in a principled and elegant way.

Having a good prior distribution p(s) is very useful, since speech signals
are inherently ambiguous. E.g., “recognize speech” sounds very similar to
“wreck a nice beach”, but the former is much more likely to be spoken. This
is the sort of thing we’d like our language models to capture.

2.1 Autoregressive Models

Now we’re going to recast the distribution modeling task as a sequential
prediction task. Suppose we’re given a corpus of sentences s(1), . . . , s(N).
We’ll make the simplifying assumption that the sentences are independent.
This means that their probabilities multiply:

p(s(1), . . . , s(N)) =
N∏
i=1

p(s(i)). (3)

Hence, we can talk instead about modeling the distribution over sentences.
We’ll try to fit a model which represents a distribution pθ(s), parame-

terized by θ. The maximum likelihood criterion says we’d like to choose
the θ which maximizes the likelihood, or the probability of the observed
data:

max
θ

N∏
i=1

pθ(s(i)). (4)

At this point, you might be concerned that the probability of any particular
sentence will be vanishingly small. This is true, but we can fix that prob-
lem by working with log probabilities. Then the probability of the corpus
conveniently decomposes as a sum: Since it’s easier to work with

positive numbers, and log
probabilities are negative, we often
rephrase maximum likelihood as
minimizing negative log
probabilities.

log

N∏
i=1

p(s(i)) =

N∑
i=1

log p(s(i)). (5)

The log probability of monkeys typing the entire works of Shakespeare is
on a scale we can reasonably work with. What is this probability, under the

assumption that they type all keys
uniformly at random?

And if slightly better trained
monkeys are slightly more likely to type Hamlet, it will give us a smooth
training criterion we can optimize with gradient descent.

A sentence is a sequence of words A sentence is a sequence of words
w1, w2, . . . , wT . The chain rule of conditional probability implies that
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p(s) factorizes as the products of conditional probabilities of individual
words: Note that the Chain Rule applies

to any distribution, i.e. we’re not
making any assumptions here.p(s) = p(w1, . . . , wT ) = p(w1)p(w2 |w1) · · · p(wT |w1, . . . , wT−1). (6)

Hence, the language modeling problem is equivalent to being able to predict
the next word!

We typically make a Markov assumption, i.e. that the distribution
over the next word only depends on the preceding few words. I.e., if we use
a context of length 3, this means

p(wt |w1, . . . , wt−1) = p(wt |wt−3, wt−2, wt−1). (7)

Such a model is called memoryless, since it has no memory of what oc-
curred earlier in the sentence. When we decompose the distribution model-
ing problem into a sequential prediction task with limited context lengths,
we call that an autoregressive model. “Regressive” because it’s a predic-
tion problem Statisticians use “regression” to

refer to general supervised
prediction problems, not just least
squares.

, and “auto” because the sequences are used as both the inputs
and the targets.

2.2 n-Gram Language Models

The simplest sort of Markov model is a conditional probability table
(CPT), where we explicitly represent the distribution over the next word
given the context words. This is a table with a row for every possible
context word senence, and a column for every word, and the entry gives the
conditional probability. Since each row represents a probability distribution,
the entries must be nonnegative, and the entries in each row must sum to
1. Otherwise, the numbers can be anything.

The simplest way to estimate a CPT is using the empirical counts,
i.e. the number of times a sequence of words occurs in the training corpus.
For instance, We’ll show later in the course that

the formula corresponds to the
maximum likelihood estimate of
the CPT.p(w3 = cat |w1 = the, w2 = fat) =

count(the fat cat)

count(the fat)
(8)

This requires counting the number of occurrences of all sequences of length
2 and 3. Sequences of length n are called n-grams, and a model based on
counting such sequences is called an n-gram model. Gotcha: this example is a 3-gram

model, even though it uses a
context of length 2.

For n = 1, 2, 3, these
are called unigram, bigram, and trigram models. See here1 for some exam-
ples of language models. Notice that unigram models are totally incoherent
(since they sample all the words independently from the marginal distri-
bution over words), but trigram models capture a fair amount of syntactic
structure.

Observe that the number of possible contexts grows exponentially in n.
This means that except for very small n, you’re unlikely to see all possible
n-grams in the training corpus, and many or most of the counts will be 0.
This problem is referred to as data sparsity. The model described above is
somewhat of a straw man, and natural language processing researchers came

1https://lagunita.stanford.edu/c4x/Engineering/CS-224N/asset/slp4.pdf#

page=10
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up with a variety of clever ways for dealing with data sparsity, including
adding imaginary counts of all the words, and combining the predictions of
different context lengths.

But there’s one problem fundamental to the n-gram approach: it’s hard
to share information between related words. If we see the sentence “The
cat got squashed in the garden on Friday”, we should estimate a higher
probability o seeing the sentence “The dog got flattened in the yard on
Monday”, even though these two sentences have few words in common.
Distributed representations give a great way of doing this.

2.3 Distributed Representations

Conditional probability tables are a kind of localist representation, which
means a given piece of information (e.g. the probability of seeing “cat” after
“the fat”) is stored in just one place. If we’d like to share information be-
tween related words, we might want to use a distributed representation,
where the same piece of information would be distributed throughout the
whole representation. E.g., suppose we build a table of attributes of words:

academic politics plural person building

students 1 0 1 1 0
colleges 1 0 1 0 1

legislators 0 1 1 1 0
schoolhouse 1 0 0 0 1

as well as the effect (+ or −) of those attributes on the probabilities of
seeing possible next words:

bill is are papers built standing
academic − +
politics + −
plural − +
person +
building + +

Information about the distribution over the next word is distributed
throughout the representation. E.g., the fact that “students” is likely to be
followed by “are” comes from the fact that “students” is plural, combined
with the fact that plural nouns are likely to be followed by “are”. Since
“colleges” is also plural, this information is shared between “students” and
“colleges”.

3 Neural Probabilistic Language Model

Now let’s talk about a network that learns distributed representations of
language, called the neural probabilistic language model, or just neu-
ral language model. This network is basically a multilayer perceptron.
It’s an autoregressive model, so we have a prediction task where the input
is the sequence of context words, and the output is the distribution over
the next word. We associate each word in the dictionary with a unique and
arbitrary integer index.
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If we write out the negative log-likelihood for a sentence, it decomposes
as the sum of cross-entropies for predicting each word:

− log p(s) = − log
T∏
t=1

p(wt |w1, . . . , wt−1) (9)

= −
T∑
t=1

log p(wt |w1, . . . , wt−1) (10)

= −
T∑
t=1

log ytwt (11)

= −
T∑
t=1

V∑
v=1

ttv log ytv, (12)

where ytv = p(v |w1, . . . , wt−1) is the predicted probability of the next word,
and ttv is the one-hot encoding of the target word. So this justifies using
cross-entropy loss, just as we did in multiway classification.

The neural language model uses the following architecture:
Bengio�s neural net for predicting the next word 

              “softmax” units (one per possible next word)  

index of word at t-2 index of word at t-1 

learned distributed 
encoding of word t-2  

learned distributed 
encoding of word t-1 

units that learn to predict the output word from features of the input words 

table look-up table look-up 

skip-layer 
connections 

The only new concept here is the table look-up in the first layer. The
network learns a representation of every word in the dictionary as a vector,
and keeps these in a lookup table. This can be seen as a matrix R, where
each column gives the vector representation of one word. The network does
one table lookup for each of the context words, and the activation vector
for the embedding layer is the concatenation of the representations of all
the context words.

There’s another way to think of the embedding layer: suppose the con-
text words are represented with one-hot encodings. Then we can think of
the embedding layer as basically a linear layer whose weights are shared
between all the context words. Recall that a linear layer just computes
a matrix-vector product. In this case, we’re multiplying the representa-
tion matrix R by the one-hot vectors, which corresponds to pulling out the
corresponding column of R. You should convince yourself that

this is the case.
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After the embedding layer, there’s a hidden layer, followed by a softmax
output layer, which is what we’d expect if we’re using cross-entropy loss.
This architecture also includes a skip connection from the embedding layer
to the output layer; we’ll talk about skip connections later in the course,
but roughly speaking, they help information travel faster through the net-
work. This whole network can be trained using backpropagation, exactly
as we’ve discussed in the previous lecture. You’ll implement this for your
first homework assignment.

There are various synonyms for word representation:

• Embedding, to emphasize that it’s a location in a high-dimensional
space. As we’ll see, semantically related words should be close to-
gether.

• Feature vector, to emphasize that it picks out semantically relevant
features that might be useful for downstream tasks. This is analogous
to the polynomial feature mappings for polynomial regression, or the
oriented edge filters in our MNIST classifier.

• Encoding, to emphasize that it’s a sort of code, and that we can go
back and forth between the words and their encodings.

Observe that unlike n-gram models, the neural language model is very
compact, even for long context lengths. While the size of the CPTs grows
exponentially in the context length, the size of the network (number of
weights, or number of units) grows linearly in the context length. The number of weights is linear

only assuming the number of
hidden units stays fixed. But in
practice, we might need more
hidden units to represent longer
contexts.

This
means that we can efficiently account for much longer context lengths, such
as 10.

If all goes well, the learned representations will reflect the semantic
relationships between words. Here are two common ways to measure this:

• If two words are similar, the dot product of their representations,
r>1 r2, should be large.

• If two words are dissimilar, the Euclidean distance between their rep-
resentations, ‖r1 − r2‖, should be large.

These two criteria aren’t equivalent in general, but they are equivalent in
the case where r1 and r2 are both unit vectors: If the representations are unit

vectors, r>1 r2 is also referred to as
cosine similarity, since it is the
cosine of the angle between the
representations.

‖r1 − r2‖2 = (r1 − r2)
>(r1 − r2) (13)

= r>1 r1 − 2r>1 r2 + r>2 r2 (14)

= 2− 2r>1 r2 (15)

To visualize the learned word vectors, we need to somehow map them
down to two dimensions. There’s an algorithm called tSNE that does just
that. Roughly speaking, it tries to assign locations to all the words in two
dimensions to match the high-dimensional distances as closely as possible.
This is impossible to do exactly (e.g. you can’t map the vertices of a cube
to 2 dimensions while preserving all the distances), and the low-dimensional
representation introduces distortions. E.g., words that are far away in high
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dimensions might be put close together in 2-D. But it is still a pretty in-
structive visualization. Here2 is an example of a tSNE visualization of word
representations learned by a different model, but one based on similar prin-
ciples. Notice that semantically similar words get grouped together.

2http://www.cs.toronto.edu/ hinton/turian.png
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