
CSC421/2516 Winter 2019 Homework 5

Homework 5

Deadline: Thursday, April 4, at 11:59pm.

Submission: You must submit your solutions as a PDF through MarkUs. You can produce the
file however you like (e.g. LaTeX, Microsoft Word, scanner) as long as it is readable.

Late Submission: MarkUs will remain open until 3 days after the deadline, after which no late
submissions will be accepted. The late penalty is 10% per day, rounded up.

Weekly homeworks are individual work. See the Course Information handout1 for detailed policies.

Due to the shortened time period, this assignment has only one question, worth 6 points. You get
the remaining 4 points for free.

1. Variational Free Energy [6pts] Here, your job is to derive some of the formulas relating
to the variational free energy (VFE) which we maximize when we train a VAE. Recall that
the VFE is defined as:

F(q) = Eq[log p(x | z)]−DKL(q(z) ‖ p(z)),

and KL divergence is defined as

DKL(q(z) ‖ p(z)) = Eq[log q(z)− log p(z)].

We assume the prior p(z) is a standard Gaussian:

p(z) = N (z; 0, I) =
D∏
i=1

pi(zi) =
D∏
i=1

N (zi; 0, 1).

And the variational approximation q(z) is a fully factorized (i.e. diagonal) Gaussian:

q(z) = N (z;µ,Σ) =

D∏
i=1

qi(zi) =

D∏
i=1

N (zi;µi, σi).

For reference, here are the formulas for the univariate and multivariate Gaussian distributions:

N (z;µ, σ) =
1√
2πσ

exp

(
−(z − µ)2

2σ2

)
N (z;µ,Σ) =

1

(2π)D/2|Σ|1/2
exp

(
−1

2
(z− µ)>Σ−1(z− µ)

)
(a) [1pt] Show that

F(q) = log p(x)−DKL(q(z) ‖ p(z |x)).

(Hint: expand out definitions and apply Bayes’ Rule.)

(b) [1pt] Show that the KL term decomposes as a sum of KL terms for individual dimensions.
In particular,

DKL(q(z) ‖ p(z)) =
∑
i

DKL(qi(zi) ‖ pi(zi)).

1http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/syllabus.pdf
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(c) [2pts] Give an explicit formula for the KL divergence DKL(qi(zi) ‖ pi(zi)). This should
be a mathematical expression involving µi and σi. If you like, you may suppress the i
subscripts in your solution.

(d) [2pts] One way to do gradient descent on the KL term is to apply the formula from part
(c). Another approach is to compute stochastic gradients using the reparameterization
trick:

∇θDKL(qi(zi) ‖ pi(zi)) = Eε[∇θti],

where

θ =

(
µi
σi

)
and

zi = µi + σiεi

ri = log qi(zi)

si = log pi(zi)

ti = ri − si

Show how to compute a stochastic estimate of ∇θDKL(qi(zi) ‖ pi(zi)) by doing backprop
on the above equations. You may find it helpful to draw the computation graph. If you
like, you may suppress the i subscripts in your solution.
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