
CSC421/2516 Winter 2019 Homework 4

Homework 4

Deadline: Thursday, March 14, at 11:59pm.

Submission: You must submit your solutions as a PDF through MarkUs. You can produce the
file however you like (e.g. LaTeX, Microsoft Word, scanner) as long as it is readable.

Late Submission: MarkUs will remain open until 3 days after the deadline, after which no late
submissions will be accepted. The late penalty is 10% per day, rounded up.

Weekly homeworks are individual work. See the Course Information handout1 for detailed policies.

1. LSTM Gradient [4pts] Here, you’ll derive the Backprop Through Time equations for the
univariate version of the Long-Term Short-Term Memory (LSTM) architecture.

For reference, here are the computations it performs:

i(t) = σ(wixx
(t) + wihh

(t−1))

f (t) = σ(wfxx
(t) + wfhh

(t−1))

o(t) = σ(woxx
(t) + wohh

(t−1))

g(t) = tanh(wgxx
(t) + wghh

(t−1))

c(t) = f (t)c(t−1) + i(t)g(t)

h(t) = o(t) tanh(c(t))

(a) [3pts] Derive the Backprop Through Time equations for the activations and the gates:

h(t) =

c(t) =

g(t) =

o(t) =

f (t) =

i(t) =

You don’t need to vectorize anything or factor out any repeated subexpressions.

(b) [1pt] Derive the BPTT equation for the weight wix:

wix =

(The other weight matrices are basically the same, so we won’t make you write those
out.)

(c) [optional, no points] Based on your answers above, explain why the gradient doesn’t
explode if the values of the forget gates are very close to 1 and the values of the input
and output gates are very close to 0. (Your answer should involve both h(t) and c(t).)

1http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/syllabus.pdf

1

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/syllabus.pdf


CSC421/2516 Winter 2019 Homework 4

2. Multidimensional RNN [3pts] One of the predecessors to the PixelRNN architecture was
the multidimensional RNN (MDRNN). This is like the RNNs we discussed in lecture, except
that instead of a 1-D sequence, we have a 2-D grid structure. Analogously to how ordinary
RNNs have an input vector and a hidden vector for every time step, MDRNNs have an
input vector and hidden vector for every grid square. Each hidden unit receives bottom-up
connections from the corresponding input square, as well as recurrent connections from its
north and west neighbors as follows:

The activations are computed as follows:

h(i,j) = φ
(
W>

inx
(i,j) + W>

Wh(i−1,j) + W>
Nh

(i,j−1)
)
.

For simplicity, we assume there are no bias parameters. Suppose the grid is G×G, the input
dimension is D, and the hidden dimension is H.

(a) [1pt] How many weights does this architecture have? How many arithmetic operations
are required to compute the hidden activations? (You only need to give big-O, not an
exact count.)

(b) [1pt] Suppose that in each step, you can compute as many matrix-vector multiplications
as you like. How many steps are required to compute the hidden activations? Explain
your answer.

(c) [1pt] Give one advantage and one disadvantage of an MDRNN compared to a conv net.

3. Reversibility [3pts] In lecture, we discussed reversible generator architectures, which en-
able efficient maximum likelihood training. In this question, we consider another (perhaps
surprising) example of a reversible operation: gradient descent with momentum. Suppose the
parameter vector θ (and hence also the velocity vector p) are both D-dimensional. Recall
that the updates are as follows:

p(k+1) ← βp(k) − α∇J (θ(k))

θ(k+1) ← θ(k) + p(k+1)

If we denote s(k) = (θ(k),p(k)), then we can think of the above equations as defining a function
s(k+1) = f(s(k)).

(a) [1pt] Show how to compute the inverse, s(k) = f−1(s(k+1)).

(b) [2pts] Find the determinant of the Jacobian, i.e.

det ∂s(k+1)/∂s(k).

Hint: first write the Jacobian as a product of two matrices, one for each step of the above
algorithm.

2


