
CSC421/2516 Winter 2019 Homework 2

Homework 2

Deadline: Monday, Feb. 11, at 11:59pm.

Submission: You must submit two files through MarkUs1:

• A PDF of your solutions. You can produce the file however you like (e.g. LaTeX, Microsoft
Word, scanner), as long as it is readable.

• Your completed maml.py

Late Submission: MarkUs will remain open until 3 days after the deadline, after which no late
submissions will be accepted. The late penalty is 10% per day, rounded up.

Weekly homeworks are individual work. See the Course Information handout2 for detailed policies.

1. MAML. [5pts] This question is meant to introduce a cool application of automatic differ-
entiation. Much like gradient-based hyperparameter optimization (last two slides of Lecture
6), it involves treating the gradient descent learning procedure itself as a computation graph,
and differentiating through it. While the algorithm would be a major pain to implement by
hand, it only requires a few extra lines of Autograd code compared to ordinary neural net
training.

Suppose you want to train an agent that learns to perform many different but related tasks,
such as having a robot arm pick up a variety of objects. The agent, through gaining experience
with many such tasks, ought to be able to improve the rate at which it can learn similar tasks.
This kind of learning is known as learning to learn, or meta-learning.

This question concerns a meta-learning algorithm called Model-Agnostic Meta-Learning
(MAML, pronounced “mammal”).3 The idea is that if you choose a good enough set
of initial weights for the network, it should be possible to learn a new task in only a few
steps of gradient descent. Hence, MAML trains a single, task-generic set of weights, with the
meta-objective defined as the loss on any particular task after K steps of gradient descent.
(K is a small number, such as 5.) The term “model-agnostic” is because MAML assumes
pretty much nothing about the model, other than that it’s trainable by gradient escent.

MAML was originally formulated in the more complex setting of reinforcement learning, but
we will consider the setting of simple univariate regression problems. We will sample random
univariate regression problems, where the inputs are sampled uniformly from the interval
[−3, 3], and the functions are sampled as random piecewise constant functions with breaks at
the integers. For instance,

1https://markus.teach.cs.toronto.edu/csc421-2019-01
2http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/syllabus.pdf
3You’re welcome to read the original paper, though this isn’t necessary to do this question: https://arxiv.org/

abs/1703.03400

1

https://markus.teach.cs.toronto.edu/csc421-2019-01
http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/syllabus.pdf
https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1703.03400


CSC421/2516 Winter 2019 Homework 2

It’s worth thinking a bit about how the meta-learner might solve this problem. Clearly,
5 iterations would not be enough to train a generic MLP from scratch. But suppose you
initialized the network such that each hidden unit computed a basis function which takes the
value 1 on the interval [k, k + 1] for some integer k, and 0 everywhere else. Then you could
fit the function simply by adjusting the weights in the output layer, which is just a linear
regression problem, and can therefore be solved pretty quickly. Hence, such a network would
be a great according to MAML’s objective. Of course, there are probably other good ways
for MAML to solve this problem, and we don’t know what it will actually do when we run it.

The code you actually have to write is mostly straightforward once you know how to use
Autograd. The challenging (and hopefully valuable) part is wrapping your head around how
the starter code works. This is defined in maml.py. Here are the functions and classes it
defines:

• net_predict: this implements the forward pass for an MLP. The parameters are stored
in a Python dict params.

• random_init: initializes the weights to a Gaussian with a small standard deviation.

• ToyDataGen: This class generates the random piecewise linear functions.

• gd_step: Performs one step of gradient descent. Note that this function returns a new
set of parameters, rather than modifying the arrays that were passed in.

• InnerObjective: The cost function for one regression dataset. This is just mean squared
error.

• MetaObjective: The MAML objective, i.e. the inner cost after num_steps steps of
gradient descent.

• train: Runs the actual training, i.e. repeatedly samples random regression datasets and
does gradient descent on the meta-objective.

Here is what you need to do. Each of these parts requires only a few lines of code, and you
should not need to do any messy derivations.

(a) [2pts] Implement gd_step. You should do this by calling ag.grad.

(b) [2pts] Implement MetaObjective.__call__. (This is Python syntax for the method
that gets called when you call the class instance as if it were a function, i.e. meta_obj(params).)
Your implementation should call gd_step.

(c) [1pt] Finish the implementation of train. I.e., sample a random regression dataset, and
do a gradient descent step on the meta-objective.

Once you finish the code, calling train will produce a visualization such as the following,
where the thinnest line corresponds to the initial parameters learned by MAML, and thicker
lines correspond to more steps of SGD:

2



CSC421/2516 Winter 2019 Homework 2

Observe that your solution will involve calling gd_step on a function which itself calls
gd_step. Since gd_step calls ag.grad, this means you are calling ag.grad on a compu-
tation graph which was itself generated by ag.grad. Understanding why this happens is an
important part of understanding the code.

Submit your code solution as maml.py. You don’t need to submit anything else for this
question.

2. Adam. [5pts] Adam4 is a widely used optimization algorithm which essentially combines
the benefits of RMSprop and momentum. Here is a slightly simplified version of the original
algorithm. All arithmetic operations, such as squaring or division, are applied elementwise.

m0 ← 0

v0 ← 0

t← 0

While θt not converged:

gt ← ∇J (θt−1)

mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g2

t

θt ← θt−1 − αAmt/(
√
vt + εA)

The hyperparameters of the algorithm are the learning rate αA, the moments timescales β1
and β2, and the damping term εA. The A subscript stands for “Adam,” to distinguish these
hyperparameters from the other algorithms discussed in this question.

Here is what you need to analyze:

(a) [1pt] Recall the RMSprop algorithm, rewritten here to match the notation of this ques-
tion:

v0 ← 0

t← 0

While θt not converged:

gt ← ∇J (θt−1)

vt ← γvt−1 + (1− γ)g2
t

θt ← θt−1 − αRgt/(
√
vt + εR)

The hyperparameters are αR, γ, and εR. Specify Adam hyperparameters (αA, β1, β2, εA)
which make Adam equivalent to RMSprop with hyperparameters (αR, γ, εR). You should
explain your answer, though a full derivation isn’t required.

(b) [2pts] Now consider SGD with momentum:

p0 ← 0

t← 0

While θt not converged:

pt ← µpt−1 − (1− µ)∇J (θt−1)

θt ← θt−1 + αSpt

4Here is the original paper, but you don’t need to read it to solve this question: https://arxiv.org/abs/1412.
6980

3

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980


CSC421/2516 Winter 2019 Homework 2

Specify Adam hyperparameters (αA, β1, β2, εA) which make Adam approximately equiv-
alent to momentum SGD with parameters (αS, µ). Explain your answer.

(c) [2pts] An important fact about Adam is that it is invariant to rescaling of the loss
function. I.e., suppose we have a loss function L(y, t), and we define a modified loss
function as L̃(y, t) = C · L(y, t) for some positive constant C. Show that for εA = 0,
Adam is invariant to this rescaling, i.e. it passes through the same sequence of iterates
θ0, . . . ,θT .

Hint: Denote the quantities computed by Adam on the modified loss function as g̃t, m̃t,
etc. Use induction to find relationships between these and the original gt, mt, etc.)

4


