Homework 1

Deadline: Thursday, Jan. 24, at 11:59pm.

Submission: You must submit your solutions as a PDF file through MarkUs¹. You can produce the file however you like (e.g. LaTeX, Microsoft Word, scanner), as long as it is readable.

Late Submission: MarkUs will remain open until 3 days after the deadline, after which no late submissions will be accepted.

Weekly homeworks are individual work. See the Course Information handout² for detailed policies.

1. Hard-Coding a Network. [2pts] In this problem, you need to find a set of weights and biases for a multilayer perceptron which determines if a list of length 4 is in sorted order. More specifically, you receive four inputs x_1, \ldots, x_4 , where $x_i \in \mathbb{R}$, and the network must output 1 if $x_1 < x_2 < x_3 < x_4$, and 0 otherwise. You will use the following architecture:

All of the hidden units and the output unit use a hard threshold activation function:

$$\phi(z) = \begin{cases} 1 & \text{if } z \ge 0\\ 0 & \text{if } z < 0 \end{cases}$$

Please give a set of weights and biases for the network which correctly implements this function (including cases where some of the inputs are equal). Your answer should include:

- A 3×4 weight matrix $\mathbf{W}^{(1)}$ for the hidden layer
- A 3-dimensional vector of biases $\mathbf{b}^{(1)}$ for the hidden layer
- A 3-dimensional weight vector $\mathbf{w}^{(2)}$ for the output layer
- A scalar bias $b^{(2)}$ for the output layer

You do not need to show your work.

2. Backprop. Consider a neural network with N input units, N output units, and K hidden units. The activations are computed as follows:

$$\begin{aligned} \mathbf{z} &= \mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)} \\ \mathbf{h} &= \sigma(\mathbf{z}) \\ \mathbf{y} &= \mathbf{x} + \mathbf{W}^{(2)} \mathbf{h} + \mathbf{b}^{(2)}, \end{aligned}$$

¹https://markus.teach.cs.toronto.edu/csc421-2019-01

²http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/syllabus.pdf

where σ denotes the logistic function, applied elementwise. The cost will involve both **h** and **y**:

$$\begin{aligned} \mathcal{J} &= \mathcal{R} + \mathcal{S} \\ \mathcal{R} &= \mathbf{r}^\top \mathbf{h} \\ \mathcal{S} &= \frac{1}{2} \|\mathbf{y} - \mathbf{s}\|^2 \end{aligned}$$

for given vectors \mathbf{r} and \mathbf{s} .

- [1pt] Draw the computation graph relating $\mathbf{x}, \mathbf{z}, \mathbf{h}, \mathbf{y}, \mathcal{R}, \mathcal{S}$, and \mathcal{J} .
- [3pts] Derive the backprop equations for computing $\overline{\mathbf{x}} = \partial \mathcal{J} / \partial \mathbf{x}$. You may use σ' to denote the derivative of the logistic function (so you don't need to write it out explicitly).
- 3. Sparsifying Activation Function. [4pts] One of the interesting features of the ReLU activation function is that it sparsifies the activations and the derivatives, i.e. sets a large fraction of the values to zero for any given input vector. Consider the following network:

Note that each w_i refers to the weight on a *single* connection, not the whole layer. Suppose we are trying to minimize a loss function \mathcal{L} which depends only on the activation of the output unit y. (For instance, \mathcal{L} could be the squared error loss $\frac{1}{2}(y-t)^2$.) Suppose the unit h_1 receives an input of -1 on a particular training case, so the ReLU evaluates to 0. Based only on this information, which of the weight derivatives

$$\frac{\partial \mathcal{L}}{\partial w_1}, \ \frac{\partial \mathcal{L}}{\partial w_2}, \ \frac{\partial \mathcal{L}}{\partial w_3}$$

are **guaranteed** to be 0 for this training case? Write YES or NO for each. Justify your answers.