
CSC421 Winter 2019 Programming Assignment 3

Programming Assignment 3: Attention-Based Neural Machine Trans-
lation

Deadline: March 22, 2019 at 11:59pm
Based on an assignment by Paul Vicol

Submission: You must submit two files through MarkUs1: a PDF file containing your writeup,
titled a3-writeup.pdf, and your code file nmt.ipynb. Your writeup must be typeset.

The programming assignments are individual work. See the Course Information handout2 for de-
tailed policies.

You should attempt all questions for this assignment. Most of them can be answered at least par-
tially even if you were unable to finish earlier questions. If you were unable to run the experiments,
please discuss what outcomes you might hypothetically expect from the experiments. If you think
your computational results are incorrect, please say so; that may help you get partial credit.

Introduction

In this assignment, you will train a few attention-based neural machine translation models to
translate words from English to Pig-Latin. Along the way, you’ll gain experience with several
important concepts in NMT, including gated recurrent neural networks and attention.

Pig Latin

Pig Latin is a simple transformation of English based on the following rules (applied on a per-word
basis):

1. If the first letter of a word is a consonant, then the letter is moved to the end of the word,
and the letters “ay” are added to the end: team → eamtay.

2. If the first letter is a vowel, then the word is left unchanged and the letters “way” are added
to the end: impress → impressway.

3. In addition, some consonant pairs, such as “sh”, are treated as a block and are moved to the
end of the string together: shopping → oppingshay.

To translate a whole sentence from English to Pig-Latin, we simply apply these rules to each word
independently:

i went shopping→ iway entway oppingshay

We would like a neural machine translation model to learn the rules of Pig-Latin implicitly,
from (English, Pig-Latin) word pairs. Since the translation to Pig Latin involves moving characters
around in a string, we will use character-level recurrent neural networks for our model.

Because English and Pig-Latin are so similar in structure, the translation task is almost a copy
task; the model must remember each character in the input, and recall the characters in a specific

1https://markus.teach.cs.toronto.edu/csc421-2019-01
2http://cs.toronto.edu/~rgrosse/courses/csc421_2019/syllabus.pdf

1

https://markus.teach.cs.toronto.edu/csc421-2019-01
http://cs.toronto.edu/~rgrosse/courses/csc421_2019/syllabus.pdf


CSC421 Winter 2019 Programming Assignment 3

order to produce the output. This makes it an ideal task for understanding the capacity of NMT
models.

Setting Up

We recommend that you use Colab(https://colab.research.google.com/) for the assignment,
as all the assignment notebooks have been tested on Colab. Otherwise, if you are working on your
own environment, you will need to install Python 2, PyTorch (https://pytorch.org), iPython
Notebooks, SciPy, NumPy and scikit-learn. Check out the websites of the course and relevant
packages for more details.

From the assignment zip file, you will find one python notebook file: nmt.ipynb. To setup
the Colab environment, you will need to upload the two notebook files using the upload tab at
https://colab.research.google.com/.

Data

The data for this task consists of pairs of words {(s(i), t(i))}Ni=1 where the source s(i) is an English
word, and the target t(i) is its translation in Pig-Latin. The dataset is composed of unique words
from the book “Sense and Sensibility,” by Jane Austen. The vocabulary consists of 29 tokens:
the 26 standard alphabet letters (all lowercase), the dash symbol -, and two special tokens <SOS>

and <EOS> that denote the start and end of a sequence, respectively. 3 The dataset contains 6387
unique (English, Pig-Latin) pairs in total; the first few examples are:

{ (the, ethay), (family, amilyfay), (of, ofway), ... }

In order to simplify the processing of mini-batches of words, the word pairs are grouped based
on the lengths of the source and target. Thus, in each mini-batch the source words are all the same
length, and the target words are all the same length. This simplifies the code, as we don’t have to
worry about batches of variable-length sequences.

Part 1: Encoder-Decoder Models and Teacher-Forcing [2 mark]

Translation is a sequence-to-sequence problem: in our case, both the input and output are sequences
of characters. A common architecture used for seq-to-seq problems is the encoder-decoder model [2],
composed of two RNNs, as follows:

The encoder RNN compresses the input sequence into a fixed-length vector, represented by
the final hidden state hT . The decoder RNN conditions on this vector to produce the translation,
character by character.

Input characters are passed through an embedding layer before they are fed into the encoder
RNN; in our model, we learn a 29× 10 embedding matrix, where each of the 29 characters in the
vocabulary is assigned a 10-dimensional embedding. At each time step, the decoder RNN outputs a
vector of unnormalized log probabilities given by a linear transformation of the decoder hidden state.
When these probabilities are normalized, they define a distribution over the vocabulary, indicating
the most probable characters for that time step. The model is trained via a cross-entropy loss
between the decoder distribution and ground-truth at each time step.

3Note that for the English-to-Pig-Latin task, the input and output sequences share the same vocabulary; this is
not always the case for other translation tasks (i.e., between languages that use different alphabets).

2

https://colab.research.google.com/
https://colab.research.google.com/
https://pytorch.org
https://colab.research.google.com/


CSC421 Winter 2019 Programming Assignment 3

c a t <EOS> <SOS> a t c a y

a t c a y <EOS>

Encoder Decoder

Training

Figure 1: Training the NMT encoder-decoder architecture.

c a t <EOS> <SOS>

a t c a y <EOS>

Encoder Decoder

Generation

Figure 2: Generating text with the NMT encoder-decoder architecture.

The decoder produces a distribution over the output vocabulary conditioned on the previous
hidden state and the output token in the previous timestep. A common practice used to train
NMT models is to feed in the ground-truth token from the previous time step to condition the
decoder output in the current step. This training procedure is known as “teacher-forcing” shown in
Figure 1. At test time, we don’t have access to the ground-truth output sequence, so the decoder
must condition its output on the token it generated in the previous time step, as shown in Figure 2.

Conceptual Questions

1. How do you think the architecture in Figure 1 will perform on long sequences, and why?
Consider the amount of information the decoder gets to see about the input sequence.

2. What are some techniques / modifications we can use to improve the performance of this
architecture on long sequences? List at least two.

3. What problem may arise when training with teacher forcing? Consider the differences that
arise when we switch from training to testing.

4. Can you think of any way to address this issue? Read the abstract and introduction of the
paper “Scheduled sampling for sequence prediction with recurrent neural networks” [1], and
answer this question in your own words.

Part 3: Gated Recurrent Unit (GRU) [2 marks]

Throughout the rest of the assignment, you will implement some attention-based neural machine
translation models, and finally train the model and examine the results.

3



CSC421 Winter 2019 Programming Assignment 3

Open the notebook nmt.ipynb on Colab and answer the following questions.

1. The forward pass of a Gated Recurrent Unit is defined by the following equations:

rt = σ(Wirxt +Whrht−1 + br) (1)

zt = σ(Wizxt +Whzht−1 + bz) (2)

gt = tanh(Winxt + rt � (Whnht−1 + bg)) (3)

ht = (1− z)� gt + z � ht−1, (4)

where� is the element-wise multiplication. Although PyTorch has a GRU built in (nn.GRUCell),
we’ll implement our own GRU cell from scratch, to better understand how it works. The note-
book has been divided into different sections. Find the GRU cell section of the notebook.
Complete the __init__ and forward methods of the MyGRUCell class, to implement the
above equations. A template has been provided for the forward method.

2. Train the GRU RNN in the “Training - RNN decoder” section. (Make sure you run all the
previous cells to load the training and utility functions.)

By default, the script runs for 100 epochs. At the end of each epoch, the script prints training
and validation losses, and the Pig-Latin translation of a fixed sentence, “the air conditioning
is working”, so that you can see how the model improves qualitatively over time. The script
also saves several items to the directory h20-bs64-rnn:

• The best encoder and decoder model paramters, based on the validation loss.

• A plot of the training and validation losses.

How do the results look, qualitatively? Does the model do better for certain types of words
than others?

3. Use this model to translate words in the next notebook cell using translate_sentence

function. Try a few of your own words by changing the variable TEST_SENTENCE. Which
failure modes can you identify?

Part 4: Implementing Attention [4 marks]

Attention allows a model to look back over the input sequence, and focus on relevant input tokens
when producing the corresponding output tokens. For our simple task, attention can help the
model remember tokens from the input, e.g., focusing on the input letter c to produce the output
letter c.

The hidden states produced by the encoder while reading the input sequence, henc1 , . . . , hencT can
be viewed as annotations of the input; each encoder hidden state henci captures information about
the ith input token, along with some contextual information. At each time step, an attention-based
decoder computes a weighting over the annotations, where the weight given to each one indicates
its relevance in determining the current output token.

In particular, at time step t, the decoder computes an attention weight α
(t)
i for each of the

encoder hidden states henci . The attention weights are defined such that 0 ≤ α(t)
i ≤ 1 and

∑
i α

(t)
i =

1. α
(t)
i is a function of an encoder hidden state and the previous decoder hidden state, f(hdect−1, h

enc
i ),

where i ranges over the length of the input sequence.

4



CSC421 Winter 2019 Programming Assignment 3

There are a few engineering choices for the possible function f . In this assignment, we will
implement two different attention models: 1) the additive attention using a two-layer MLP and 2)
the scaled dot product attention, which measures the similarity between the two hidden states.

To unify the interface across different attention modules, we consider attention as a function
whose inputs are triple (queries, keys, values), denoted as (Q,K, V ).

1. In the additive attention, we will learn the function f , parameterized as a two-layer fully-
connected network with a ReLU activation. This network produces unnormalized weights

α̃
(t)
i that are used to compute the final context vector:

α̃
(t)
i = f(Qt,Ki) = W2(max(0,W1[Qt;Ki] + b1)) + b2,

α
(t)
i = softmax(α̃(t))i,

ct =
T∑
i=1

α
(t)
i Vi.

Here, the notation [Qt;Ki] denotes the concatenation of vectors Qt and Ki. To obtain the
attention weights in between 0 and 1, we apply the softmax function over the unnormalized
attention. Once we have the attention weights, a context vector ct is computed as a linear
combination of the encoder hidden states, with coefficients given by the weights.

Implement the additive attention mechanism. Fill in the forward methods of the
AdditiveAttention class. Use the self.softmax function in the forward pass of the AdditiveAttention
class to normalize the weights.

...

+
Decoder Hidden States Encoder Hidden States

batch_size

batch_size

seq_len

hidden_sizehidden_size

batch_size

seq_len

1

Attention Weights

Figure 3: Dimensions of the inputs, Decoder Hidden States (query), Encoder Hidden States
(keys/values) and the attention weights (α(t)).

For the forward pass, you are given a batch of query of the current time step, which has di-
mension batch_size x hidden_size, and a batch of keys and values for each time step of the
input sequence, both have dimension batch_size x seq_len x hidden_size. The goal is to
obtain the context vector. We first compute the function f(Qt,K) for each query in the batch
and all corresponding keys Ki, where i ranges over seq_len different values. You must do this
in a vectorized fashion. Since f(Qt,Ki) is a scalar, the resulting tensor of attention weights
should have dimension batch_size x seq_len x 1. Some of the important tensor dimen-
sions in the AdditiveAttention module are visualized in Figure 3. The AdditiveAttention

5



CSC421 Winter 2019 Programming Assignment 3

module should return both the context vector batch_size x 1 x hidden_size and the at-
tention weights batch_size x seq_len x 1.

Depending on your implementation, you will need one or more of these functions (click to
jump to the PyTorch documentation):

• squeeze

• unsqueeze

• expand as

• cat

• view

• bmm

We have provided a template for the forward method of the AdditiveAttention class. You
are free to use the template, or code it from scratch, as long as the output is correct.

2. We will now apply the AdditiveAttention module to the RNN decoder. You are given
a batch of decoder hidden states as the query, hdect−1, for time t − 1, which has dimension
batch_size x hidden_size, and a batch of encoder hidden states as the keys and values,
henc = [henc1 , . . . , henci , . . . ] (annotations), for each timestep in the input sequence, which has
dimension batch_size x seq_len x hidden_size.

Qt ← hdect−1, K ← henc, V ← henc

We will use these as the inputs to the self.attention to obtain the context. The output
context vector is concatenated with the input vector and passed into the decoder GRU cell
at each time step, as shown in Figure 4.

...

+

h1
enc

α1 αT

Figure 4: Computing a context vector with attention.

Fill in the forward method of the RNNAttentionDecoder class, to implement the interface
shown in Figure 4. You will need to:

(a) Compute the context vector and the attention weights using self.attention

(b) Concatenate the context vector with the current decoder input.

(c) Feed the concatenation to the decoder GRU cell to obtain the new hidden state.

6

http://pytorch.org/docs/0.3.0/torch.html#torch.squeeze
http://pytorch.org/docs/0.3.0/torch.html#torch.unsqueeze
http://pytorch.org/docs/0.3.0/tensors.html?highlight=expand_as#torch.Tensor.expand_as
http://pytorch.org/docs/0.3.0/torch.html?highlight=cat#torch.cat
http://pytorch.org/docs/0.3.0/tensors.html?highlight=view#torch.Tensor.view
http://pytorch.org/docs/0.3.0/tensors.html?highlight=bmm#torch.bmm


CSC421 Winter 2019 Programming Assignment 3

3. Train the Attention RNN in the “Training - RNN attention decoder” section. How do the
results compare to RNN decoder without attention for certain type of words? Can you identity
any failure mode? How does the training speed compare? Why?

4. In lecture, we learnt about Scaled Dot-product Attention used in the transformer models. The
function f is a dot product between the linearly transformed query and keys using weight
matrices Wq and Wk:

α̃
(t)
i = f(Qt,Ki) =

(WqQt)
T (WkKi)√
d

,

α
(t)
i = softmax(α̃(t))i,

ct =

T∑
i=1

α
(t)
i WvVi,

where, d is the dimension of the query and the Wv denotes weight matrix project the value
to produce the final context vectors.

Implement the scaled dot-product attention mechanism. Fill in the __init__ and
forward methods of the ScaledDotAttention class. Use the PyTorch torch.bmm to compute
the dot product between the batched queries and the batched keys in the forward pass of
the ScaledDotAttention class for the unnormalized attention weights. Your forward pass
needs to work with both 2D query tensor (batch_size x (1) x hidden_size) and 3D
query tensor (batch_size x k x hidden_size).

Because we use the same interface between different attention modules, we can reuse the
previous RNN attention decoder with the scaled dot-product attention.

Train the Attention RNN using scaled dot-product attention in the “Training - RNN scaled
dot-product attention decoder” section. How do the results and training speed compare to
the additive attention? Why is there such different?

Part 5: Attention is All You Need [2 mark]

1. What are the advantages and disadvantages of using additive attention vs scaled dot-product
attention? List one advantage and one disadvantage for each method.

2. Fill in the forward method in the CausalScaledDotAttention. It will be mostly the same
as the ScaledDotAttention class. The additional computation is to mask out the attention
to the future time steps. You will need to add self.neg_inf to some of the entries in the
unnormalized attention weights. You may find torch.tril handy for this part.

3. We will now use ScaledDotAttention as the building blocks for a simplified transformer[3]
decoder. You are given a batch of decoder input embeddings, xdec across all time steps,
which has dimension batch_size x decoder_seq_len x hidden_size. and a batch of en-
coder hidden states, henc = [henc1 , . . . , henci , . . . ] (annotations), for each time step in the input
sequence, which has dimension batch_size x encoder_seq_len x hidden_size.

The transformer solves the translation problem using layers of attention modules. In each
layer, we first apply the CausalScaledDotAttention self-attention to the decoder inputs

7

https://pytorch.org/docs/stable/torch.html#torch.bmm
https://pytorch.org/docs/stable/torch.html#torch.tril


CSC421 Winter 2019 Programming Assignment 3

followed by ScaledDotAttention attention module to the encoder annotations, similar to
the attention decoder from the previous question. The output of the attention layers are fed
into an hidden layer using ReLU activation. The final output of the last transformer layer are
passed to the self.out to compute the word prediction. To improve the optimization, we add
residual connections between the attention layers and ReLU layers. The simple transformer
architecture is shown in Figure 5

Figure 5: Computing the output of a transformer layer.

Fill in the forward method of the TransformerDecoder class, to implement the interface
shown in Figure 5.

Train the transformer in the “Training - Transformer decoder” section. How do the translation
results compare to the previous decoders? How does the training speed compare?

4. Modify the transformer decoder __init__ to use non-causal attention for both self attention
and encoder attention. What do you observe when training this modified transformer? How
do the results compare with the causal model? Why?

5. In the lecture, we mentioned the transformer encoder will be able to learn the ordering of its
inputs without the explicit positional encoding. Why does our simple transformer decoder
work without the positional encoding?

Part 6: Attention Visualizations [2 marks]

One of the benefits of using attention is that it allows us to gain insight into the inner workings
of the model. By visualizing the attention weights generated for the input tokens in each decoder
step, we can see where the model focuses while producing each output token. In this part of the
assignment, you will visualize the attention learned by your model, and try to find interesting
success and failure modes that illustrate its behaviour.

The Attention visualization section loads the model you trained from the previous section
and uses it to translate a given set of words: it prints the translations and display heatmaps to
show how attention is used at each step. endcenter

8



CSC421 Winter 2019 Programming Assignment 3

1. Visualize different attention models using your own word by modifying TEST_WORD_ATTN.
Since the model operates at the character-level, the input doesn’t even have to be a real word
in the dictionary. You can be creative! You should examine the generated attention maps.
Try to find failure cases, and hypothesize about why they occur. Some interesting classes of
words you may want to try are:

• Words that begin with a single consonant (e.g., cake).

• Words that begin with two or more consonants (e.g., drink).

• Words that have unusual/rare letter combinations (e.g., aardvark).

• Compound words consisting of two words separated by a dash (e.g., well-mannered).
These are the hardest class of words present in the training data, because they are
long, and because the rules of Pig-Latin dictate that each part of the word (e.g., well
and mannered) must be translated separately, and stuck back together with a dash:
ellway-annerdmay.

• Made-up words or toy examples to show a particular behaviour.

Include attention maps for both success and failure cases in your writeup, along
with your hypothesis about why the models succeeds or fails.

What you need to submit

• One code file: nmt.ipynb.

• A PDF document titled a3-writeup.pdf containing your answers to the conceptual questions,
and the attention visualizations, with explanations.

References

[1] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for se-
quence prediction with recurrent neural networks. In Advances in Neural Information Processing
Systems, pages 1171–1179, 2015.

[2] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, pages 5998–6008, 2017.

9


