A Tutorial on **Bayesian Optimization** for Machine Learning

Ryan P. Adams School of Engineering and Applied Sciences Harvard University

> **Presented by the University of Toronto** CSC411/2515 Fall 2018 Teaching Staff

Source https:// www.iro.umontreal.ca/ ~bengioy/cifar/NCAP2014summerschool/slides/ Ryan adams 140814 bayes opt ncap.pdf

http://hips.seas.harvard.edu

HARVARD

SYSTEMS

Machine Learning Meta-Challenges

- Increasing Model Complexity
 More flexible models have more parameters.
- More Sophisticated Fitting Procedures
 Non-convex optimization has many knobs to turn.
- Less Accessible to Non-Experts
 Harder to apply complicated techniques.
- Results Are Less Reproducible
 Too many important implementation details are missing.

Example: Deep Neural Networks

- Resurgent interest in large neural networks.
- When well-tuned, very successful for visual object identification, speech recognition, comp bio, ...
- Big investments by Google, Facebook, Microsoft, etc.
- Many choices: number of layers, weight regularization, layer size, which nonlinearity, batch size, learning rate schedule, stopping conditions

Search for Good Hyperparameters?

- Define an objective function.
 Most often, we care about generalization performance.
 - Use cross validation to measure parameter quality.
- How do people currently search? Black magic.
 Grid search
 Random search
 Grad student descent
- Painful!

Requires many training cycles. Possibly noisy.

Can We Do Better? Bayesian Optimization

- Build a probabilistic model for the objective.
 Include hierarchical structure about units, etc.
- Compute the posterior predictive distribution.
 Integrate out all the possible true functions.
 We use Gaussian process regression.
- Optimize a cheap proxy function instead. The model is much cheaper than that true objective.

The main insight:

Make the proxy function exploit uncertainty to balance **exploration** against **exploitation**.

Today's Topics

- Review of Gaussian process priors
- Bayesian optimization basics
- Managing covariances and kernel parameters
- Accounting for the cost of evaluation
- Parallelizing training

The crossed out material is not necessary to cover in tutorial.

- Sharing information across related problems
- Better models for nonstationary functions
- Random projections for high-dimensional problems
- Accounting for constraints
- Leveraging partially-completed training runs

Gaussian Processes as Function Models

Nonparametric prior on functions specified in terms of a positive definite kernel.

the quick brown fox jumps over the lazy dog

strings (Haussler 1999)

proteins (Borgwardt 2007)

permutations (Kondor 2008)

- Gaussian process (GP) is a distribution on functions.
- Allows tractable Bayesian modeling of functions without specifying a particular finite basis.
- Input space (where we're optimizing) X
- Model scalar functions $f: \mathcal{X} \to \mathbb{R}$
- Positive definite covariance function $C: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
- Mean function $m: \mathcal{X} \to \mathbb{R}$

Any finite set of N points in \mathcal{X} , $\{x_n\}_{n=1}^N$ induces a homologous N-dimensional Gaussian distribution on \mathbb{R}^N , taken to be the distribution on $\{y_n = f(x_n)\}_{n=1}^N$

Any finite set of N points in \mathcal{X} , $\{x_n\}_{n=1}^N$ induces a homologous N-dimensional Gaussian distribution on \mathbb{R}^N , taken to be the distribution on $\{y_n = f(x_n)\}_{n=1}^N$

Any finite set of N points in \mathcal{X} , $\{x_n\}_{n=1}^N$ induces a homologous N-dimensional Gaussian distribution on \mathbb{R}^N , taken to be the distribution on $\{y_n = f(x_n)\}_{n=1}^N$

- Due to Gaussian form, closed-form solutions for many useful questions about finite data.
- Marginal likelihood:

$$\ln p(\boldsymbol{y} \mid \boldsymbol{X}, \theta) = -\frac{N}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{K}_{\theta}| - \frac{1}{2} \boldsymbol{y}^{\mathsf{T}} \boldsymbol{K}_{\theta}^{-1} \boldsymbol{y}$$

Predictive distribution at test points $\{\boldsymbol{x}_{m}\}_{m=1}^{M}$:
 $\boldsymbol{y}^{\text{test}} \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{\Sigma})$
 $\boldsymbol{m} = \boldsymbol{k}_{\theta}^{\mathsf{T}} \boldsymbol{K}_{\theta}^{-1} \boldsymbol{y}$ $\boldsymbol{\Sigma} = \boldsymbol{\kappa}_{\theta} - \boldsymbol{k}_{\theta}^{\mathsf{T}} \boldsymbol{K}_{\theta}^{-1} \boldsymbol{k}_{\theta}$

• We compute these matrices from the covariance: $[\mathbf{K}_{\theta}]_{n,n'} = C(\mathbf{x}_n, \mathbf{x}_{n'}; \theta)$ $[\mathbf{k}_{\theta}]_{n,m} = C(\mathbf{x}_n, \mathbf{x}_m; \theta)$ $[\mathbf{\kappa}_{\theta}]_{m,m'} = C(\mathbf{x}_m, \mathbf{x}_{m'}; \theta)$

Examples of GP Covariances

GPs Provide Closed-Form Predictions

Using Uncertainty in Optimization

- Find the minimum: $x^* = \arg \min_{x \in \mathcal{X}} f(x)$
- We can evaluate the objective pointwise, but do not have an easy functional form or gradients.
- After performing some evaluations, the GP gives us easy closed-form marginal means and variances.
- Exploration: Seek places with high variance.
- Exploitation: Seek places with low mean.
- The acquisition function balances these for our proxy optimization to determine the next evaluation.

Closed-Form Acquisition Functions

 The GP posterior gives a predictive mean function μ(x) and a predictive marginal variance function σ²(x)

$$\gamma(x) = \frac{f(x_{\text{best}}) - \mu(x)}{\sigma(x)}$$

- Probability of Improvement (Kushner 1964): $a_{\mathsf{PI}}(x) = \Phi(\gamma(x))$
- Expected Improvement (Mockus 1978):

 $a_{\mathsf{EI}}(x) = \sigma(x)(\gamma(x)\Phi(\gamma(x)) + \mathcal{N}(\gamma(x); 0, 1))$

• GP Upper Confidence Bound (Srinivas et al. 2010): $a_{LCB}(x) = \mu(x) - \kappa \sigma(x)$

Probability of Improvement

Expected Improvement

GP Upper (Lower) Confidence Bound

Distribution Over Minimum (Entropy Search)

Why Doesn't Everyone Use This?

These ideas have been around for *decades*. Why is Bayesian optimization in broader use?

- Fragility and poor default choices.
 Getting the function model wrong can be catastrophic.
- There hasn't been standard software available.
 It's a bit tricky to build such a system from scratch.
- Experiments are run sequentially.
 We want to take advantage of cluster computing.
- Limited scalability in dimensions and evaluations.
 We want to solve big problems.

Fragility and Poor Default Choices

Ironic Problem:

Bayesian optimization has its own hyperparameters!

- Covariance function selection
 This turns out to be crucial to good performance.
 The default choice for regression is *way* too smooth.
 Instead: use adaptive Matern 3/5 kernel.
- Gaussian process hyperparameters
 Typical empirical Bayes approach can fail horribly.
 Instead: use Markov chain Monte Carlo integration.
 Slice sampling means no additional parameters!

Covariance Function Choice

Choosing Covariance Functions

Structured SVM for Protein Motif Finding Miller et al (2012)

MCMC for GP Hyperparameters

- Covariance hyperparameters are often optimized rather than marginalized, typically in the name of convenience and efficiency.
- Slice sampling of hyperparameters (e.g., Murray and Adams 2010) is comparably fast and easy, but accounts for uncertainty in length scale, mean, and amplitude.
- Integrated Acquisition Function:

$$\hat{a}(x) = \int a(x; \theta) p(\theta | \{x_n, y_n\}_{n=1}^N) d\theta$$
$$\approx \frac{1}{K} \sum_{k=1}^K a(x; \theta^{(k)}) \qquad \theta^{(k)} \sim p(\theta | \{x_n, y_n\}_{n=1}^N)$$

 For a theoretical discussion of the implications of inferring hyperparameters with BayesOpt, see recent work by Wang and de Freitas (<u>http://arxiv.org/abs/1406.7758</u>)

Snoek, Larochelle & RPA, NIPS 2012

Integrating Out GP Hyperparameters

Posterior samples with three different length scales

Length scale specific expected improvement

Integrated expected improvement

MCMC for Hyperparameters

Logistic regression for handwritten digit recognition

The original source for these slides has advanced topics beyond this point. If interested please reference:

https://www.iro.umontreal.ca/~bengioy/ cifar/NCAP2014-summerschool/slides/ Ryan_adams_140814_bayesopt_ncap.p df