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The Gaussian Distribution

1 For a D-dimensional vector x, the multivariate Gaussian
distribution takes the form:

1 1
W (x|, 3) = —5—exp == (x = T2 - )]
(22|32

] Motivations:

» Maximum of the entropy
» Central limit theorem

N =10




The Gaussian Distribution: Properties

 The law is a function of the Mahalanobis distance from x to u:

A =(x—w)'E 1 x —pw

[ The expectation of x under the Gaussian distribution is:

E[x] = u

O The covariance matrix of x is:

cov[x] =X



The Gaussian Distribution: Properties

 The law (quadratic function) is constant on elliptical surfaces:
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» A; are the eigenvalues of ¥
» u; are the associated eigenvectors



The Gaussian Distribution: more examples

1 Contours of constant probability density:

a) general form
b) diagonal
c) proportional to the identity matrix



Conditional Law

 Given a Gaussian distribution V' (x|u, ) with

X = (xa: xb)Tr U= (.uar .ub)T

y — (Zaa Zab) — (Aaa Aab)_1
Zpa Zpb Apg  App

1
s G =W - ) =
1 T 1 T
_E(xa — Ug) Nga(xg — pg) — E(xa — Ha) Aap(Xp — 1p)

1 N 1 T
_E(xb — tp) Apa(Xqg — pg) — E(xb — tp) App (Xp — 1)

d What’s the conditional distribution p(x,|xp)?



Conditional Law
d What’s the conditional distribution p(x,|x;)?

1 1
=5 (x—w)'2 M x—p = —ExTZ‘lx + x T2 "1 + const
» z:czllb — flgq
> Z:c:|1b.ua|b = Agallg — Nap (Xp — 11p)

1 Using the definition:
y — (Zaa z"ab) — (Aaa Aab)_1
Lpa Zpp Apg  App

_ -1
> Ngg = (Zaa - z:abzbblz:ba)

_ -1 _
> Agp = _(Zaa - z:abzbl}zba) z:abzbbl

Inverse partition identity:

-1 =
(A B) — ( M —MBD £ ) M = (A _ BD_1C)_1
C D —-D~icM D'+ D cMBD™1



Conditional Law

 The conditional distribution p(x,|x}) is a Gaussian with:
Hap = ta + ZapZpp (tp — Hp)
Zaib = Zaa — ZabZbb Xba

[ The form using precision matrix:

Ualp = Uaq T+ AaaA;lll) (xp — tp)

Aa|b = Agq



Marginal Law

O The marginal distribution is given by:
pixa) = [ PO 1),

O Picking out those terms that involve x;, we have

1 1 B T B 1 B
—Exl;rAbbxb + xl;rm = —E(xb — Ab%m) Abb(xb — Ab%m) + EmTAb%m
m = Appttp — Mpa(Xq — Ha)

U Integrate over x; (unnormalized Gaussian)
1 —1.\" ~1
exp {_i(xb — Abbm) Abb(xb — Abbm)} dxp

v The integral is equal to the normalization term



Marginal Law
[ After integrating over x;, we pick out the remaining terms:

—=xgA 2 (A A LTz t
2 XqlgaXq T xa( aalla t ab/v‘b) + 2 m-Appm + cons

m = Appp — Npa(xg — g)

O The marginal distribution is a Gaussian with

II-::[xa] = Uq COV[xa] = 2qa



Short Summary

xp, = 0.7
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y — (Zaa z:a,b) — (Aaa Aab)_1
Ypa Zpp Apg  App

[ Conditional distribution:
p(xglxp) = N(xalﬂalb’AZlgl
Hap = Ha — Naalap(Xp — tp)

1 Marginal distribution:
p(xa) = N(xal.ualzaa)
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Bayes’ theorem for Gaussian variables

 Setup:
p(x) = N (x|p, A7)
p(y|x) = N(y|Ax + b,L™1)

O What’s the marginal distribution p(y) and conditional
distribution p(x|y)?

v How about first compute p(z), where z = (x,y)"

v p(z) is a Gaussian distribution, consider the log of the
joint distribution

Inp(z) =Inp(x) + Inp(ylx)

1
= -5 - WA — p)

1
-5 (y —Ax + b)"L(y — Ax + b) + const



Bayes’ theorem for Gaussian variables

[ The same trick (consider the second order terms), we get

Elz] = (A,uu+ b)

A1 A-1A
covlz] = (AA—1 Lty AA‘lA)

 We can then get p(y) and p(x|y) by marginal and conditional
laws!



Maximum likelihood for the Gaussian

0 Assume we have X = (x4, ..., xy) " in which the observation
{x,} are assumed to be drawn independently from a
multivariate Gaussian, the log likelihood function is given by

ND N 1% o
Inp(X|g,3) = =—ZIn2m = S1nlz] = 5 ) Gy = 1027 (= 1)
n=1

U Setting the derivative to zero, we obtain the solution for the
maximum likelihood estimator:

N
d
—Inp(Xlps %) = > 2y — ) = 0
M n=1

N N
1 1 -
UML = N z Xn Ly = N 2 (% — pmr) (X — L)
n=1 n=1



Maximum likelihood for the Gaussian

 The empirical mean is unbiased in the sense

ElumL] = u

1 However, the maximum likelihood estimate for the covariance
has an expectation that is less that the true value:

N -1
E[XmL] = TZ

v" We can correct it by multiplying Xy by the factor %



Conjugate prior for the Gaussian

[ The maximum likelihood framework only gives point estimates
for the parameters, we would like to have uncertainty
estimation (confidence interval) for the estimation

v Introducing prior distributions over the parameters of the
Gaussian

0 We would like the posterior p(8|D) « p(6)p(D|0) has the
same form as the prior (Conjugate prior!)

v The conjugate prior for u is a Gaussian

v The conjugate prior for precision A is a Gamma distribution



The Gaussian Distribution: limitations
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A lot of parameters to estimate D + 2. structured

approximation (e.g., diagonal variance matrix)

L Maximum likelihood estimators are not robust to outliers:
Student’s t-distribution (bottom left)

[ Not able to describe periodic data: von Mises distribution

L Unimodel distribution: Mixture of Gaussian (bottom right)
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The Gaussian Distribution: frontiers

(] Gaussian Process
O Bayesian Neural Networks

[ Generative modeling (Variational Autoencoder)



