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Introduction to Notation



Motivation

Uncertainty arises through:

• Noisy measurements

• Finite size of data sets

• Ambiguity

• Limited Model Complexity

Probability theory provides a consistent framework for the

quantification and manipulation of uncertainty.
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Sample Space

Sample space Ω is the set of all possible outcomes of an

experiment.

Observations ω ∈ Ω are points in the space also called sample

outcomes, realizations, or elements.

Events E ⊂ Ω are subsets of the sample space.
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Sample Space Coin Example

In this experiment we flip a coin twice:

Sample space All outcomes Ω = {HH,HT ,TH,TT}
Observation ω = HT valid sample since ω ∈ Ω

Event Both flips same E = {HH,TT} valid event since E ⊂ Ω
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Probability



Probability

The probability of an event E, P(E ), satisfies three axioms:

1: P(E ) ≥ 0 for every E

2: P(Ω) = 1

3: If E1,E2, . . . are disjoint then

P(
∞⋃
i=1

Ei ) =
∞∑
i=1

P(Ei )
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Joint and Conditional Probabilities

Joint Probability of A and B is denoted P(A,B)

Conditional Probability of A given B is denoted P(A|B).

• Assuming P(B) > 0, then P(A|B) = P(A,B)/P(B)

• Product Rule: P(A,B) = P(A|B)P(B) = P(B|A)P(A)
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Conditional Example

60% of ML students pass the final and 45% of ML students pass

both the final and the midterm.

What percent of students who passed the final also passed the

midterm?
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Conditional Example

60% of ML students pass the final and 45% of ML students pass

both the final and the midterm.

What percent of students who passed the final also passed the

midterm?

Reword: What percent passed the midterm given they passed the

final?

P(M|F ) = P(M,F )/P(F )

= 0.45/0.60

= 0.75
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Independence

Events A and B are independent if P(A,B) = P(A)P(B)

Events A and B are conditionally independent given C if

P(A,B|C ) = P(B|A,C )P(A|C ) = P(B|C )P(A|C )
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Marginalization and Law of Total Probability

Marginalization (Sum Rule)

P(X ) =
∑
Y

P(X ,Y )

Law of Total Probability

P(X ) =
∑
Y

P(X |Y )P(Y )
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Bayes’ Rule



Bayes’ Rule

Bayes’ Rule:

P(A|B) =
P(B|A)P(A)

P(B)
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Bayes’ Rule

Bayes’ Rule:

P(A|B) =
P(B|A)P(A)

P(B)

P(θ|x) =
P(x |θ)P(θ)

P(x)

Posterior =
Likelihood ∗ Prior

Evidence

Posterior ∝ Likelihood × Prior
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Bayes’ Example

Suppose you have tested positive for a disease. What is the

probability you actually have the disease?
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Bayes’ Example

Suppose you have tested positive for a disease. What is the

probability you actually have the disease?

This depends on accuracy and sensitivity of test and prior

probability of the disease:

P(T = 1|D = 1) = 0.95 (true positive)

P(T = 1|D = 0) = 0.10 (false positive)

P(D = 1) = 0.1 (prior)

So P(D = 1|T = 1) =?
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Bayes’ Example

Suppose you have tested positive for a disease. What is the

probability you actually have the disease?

P(T = 1|D = 1) = 0.95 (true positive)

P(T = 1|D = 0) = 0.10 (false positive)

P(D = 1) = 0.1 (prior)

So P(D = 1|T = 1) =?

Use Bayes’ Rule:

P(A|B) =
P(B|A)P(A)

P(B)

P(D = 1|T = 1) =
P(T = 1|D = 1)P(D = 1)

P(T = 1)
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Bayes’ Example

Suppose you have tested positive for a disease. What is the

probability you actually have the disease?

P(T = 1|D = 1) = 0.95 (true positive)

P(T = 1|D = 0) = 0.10 (false positive)

P(D = 1) = 0.1 (prior)

Use Bayes’ Rule:

P(D = 1|T = 1) =
P(T = 1|D = 1)P(D = 1)

P(T = 1)

P(D = 1|T = 1) =
0.95 ∗ 0.1

P(T = 1)
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Bayes’ Example

Suppose you have tested positive for a disease. What is the

probability you actually have the disease?

P(T = 1|D = 1) = 0.95 (true positive)

P(T = 1|D = 0) = 0.10 (false positive)

P(D = 1) = 0.1 (prior)

P(D = 1|T = 1) =
0.95 ∗ 0.1

P(T = 1)
(Bayes’ Rule)

By Law of Total Probability

P(T = 1) =
∑
D

P(T = 1|D)P(D)

= P(T = 1|D = 1)P(D = 1) + P(T = 1|D = 0)P(D = 0)

= 0.95 ∗ 0.1 + 0.1 ∗ 0.90

= 0.185
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Bayes’ Example

Suppose you have tested positive for a disease. What is the

probability you actually have the disease?

P(T = 1|D = 1) = 0.95 (true positive)

P(T = 1|D = 0) = 0.10 (false positive)

P(D = 1) = 0.1 (prior)

P(T = 1) = 0.185 (from Law of Total Probability)

P(D = 1|T = 1) =
0.95 ∗ 0.1

P(T = 1)

=
0.95 ∗ 0.1

0.185

= 0.51

Probability you have the disease given you tested positive is 51%
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Random Variables and Statistics



Random Variable

How do we connect sample spaces and events to data?

A random variable is a mapping which assigns a real number X (ω)

to each observed outcome ω ∈ Ω

For example, let’s flip a coin 10 times. X (ω) counts the number of

Heads we observe in our sequence. If ω = HHTHTHHTHT then

X (ω) = 6.
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I.I.D.

Random variables are said to be independent and identically

distributed (i.i.d.) if they are sampled from the same probability

distribution and are mutually independent.

This is a common assumption for observations. For example, coin

flips are assumed to be iid.

19



Discrete and Continuous Random Variables

Discrete Random Variables

• Takes countably many values, e.g., number of heads

• Distribution defined by probability mass function (PMF)

• Marginalization: p(x) =
∑

y p(x , y)

Continuous Random Variables

• Takes uncountably many values, e.g., time to complete task

• Distribution defined by probability density function (PDF)

• Marginalization: p(x) =
∫
y p(x , y)dy
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Probability Distribution Statistics

Mean: First Moment, µ

E [x ] =
∞∑
i=1

xip(xi ) (univariate discrete r.v.)

E [x ] =

∫ ∞
−∞

xp(x)dx (univariate continuous r.v.)

Variance: Second Moment, σ2

Var [x ] =

∫ ∞
−∞

(x − µ)2p(x)dx

= E [(x − µ)2]

= E [x2]− E [x ]2
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Gaussian Distribution



Univariate Gaussian Distribution

Also known as the Normal Distribution, N (µ, σ2)

N (x |µ, σ2) =
1√

2πσ2
exp{− 1

2σ2
(x − µ)2}
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Multivariate Gaussian Distribution

Multidimensional generalization of the Gaussian.

x is a D-dimensional vector

µ is a D-dimensional mean vector

Σ is a D × D covariance matrix with determinant |Σ|

N (x|µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp{−1

2
(x − µ)TΣ−1(x − µ)}
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Covariance Matrix

Recall that x and µ are D-dimensional vectors

Covariance matrix Σ is a matrix whose (i , j) entry is the covariance

Σij = Cov(xi , xj)

= E [(xi − µi )(xj − µj)]

= E [(xixj)]− µiµj

so notice that the diagonal entries are the variance of each

elements.

The covariant matrix has the property that it is symmetric and

positive-semidefinite (this is useful for whitening).
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Whitening Transform

Whitening is a linear transform that converts a d-dimensional

random vector x = (x1, . . . , xd)T

with mean µ = E [x] = (µ1, . . . , µd)T and

positive definite d × d covariance matrix Cov(x) = Σ

into a new random d-dimensional vector

z = (z1, . . . , zd)T = W x

with “white” covariance matrix, Cov(z) = I

The d × d covariance matrix W is called the whitening matrix.

Mahalanobis or ZCA whitening matrix: WZCA = Σ−
1
2
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Inferring Parameters



Inferring Parameters

We have data X and we assume it is sampled from some

distribution.

How do we figure out the parameters that ‘best’ fit that

distribution?

Maximum Likelihood Estimation (MLE)

θ̂MLE = argmax
θ

P(X |θ)

Maximum a Posteriori (MAP)

θ̂MAP = argmax
θ

P(θ|X )
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MLE for Univariate Gaussian Distribution

We are trying to infer the parameters for a Univariate Gaussian

Distribution, mean (µ) and variance (σ2).

N (x |µ, σ2) =
1√

2πσ2
exp{− 1

2σ2
(x − µ)2}

The likelihood that our observations x1, . . . , xN were generated by

a univariate Gaussian with parameters µ and σ2 is

Likelihood = p(x1 . . . xN |µ, σ2) =
N∏
i=1

1√
2πσ2

exp{− 1

2σ2
(xi − µ)2}
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MLE for Univariate Gaussian Distribution

For MLE we want to maximize this likelihood, which is difficult

because it is represented by a product of terms

Likelihood = p(x1 . . . xN |µ, σ2) =
N∏
i=1

1√
2πσ2

exp{− 1

2σ2
(xi − µ)2}

So we take the log of the likelihood so the product becomes a sum

Log Likelihood = log p(x1 . . . xN |µ, σ2)

=
N∑
i=1

log
1√

2πσ2
exp{− 1

2σ2
(xi − µ)2}

Since log is monotonically increasing max L(θ) = max log L(θ)
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MLE for Univariate Gaussian Distribution

The log Likelihood simplifies to

L(µ, σ) =
N∑
i=1

log
1√

2πσ2
exp{− 1

2σ2
(xi − µ)2}

= −1

2
N log(2πσ2)−

N∑
i=1

(xi − µ)2

2σ2

Which we want to maximize. How?
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MLE for Univariate Gaussian Distribution

To maximize we take the derivatives, set equal to 0, and solve:

L(µ, σ) = −1

2
N log(2πσ2)−

N∑
i=1

(xi − µ)2

2σ2

Derivative w.r.t. µ, set equal to 0, and solve for µ̂

∂L(µ, σ)

∂µ
= 0 =⇒ µ̂ =

1

N

N∑
i=1

xi

Therefore the µ̂ that maximizes the likelihood is the average of the

data points.

Derivative w.r.t. σ2, set equal to 0, and solve for σ̂2

∂L(µ, σ)

∂σ2
= 0 =⇒ σ̂2 =

1

N

N∑
i=1

(xi − µ̂)2
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MLE for a biased coin

Suppose we observe a single outcome from the toss of a biased

coin, which has probably θ of landing on heads.

log p(x |θ) = x log(θ) + (1− x) log(1− θ)

The MLE maximizes the log-likelihood,

θ̂MLE = x

where x is 0 or 1. There is a 100% chance of observing the same

outcome again!
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Suppose we observe a single outcome from the toss of a biased

coin, which has probably θ of landing on heads.
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MLE for a biased coin

Suppose we observe a single outcome from the toss of a biased

coin, which has probably θ of landing on heads.

log p(x |θ) = x log(θ) + (1− x) log(1− θ)

The MLE maximizes the log-likelihood,

θ̂MLE = x

where x is 0 or 1. There is a 100% chance of observing the same

outcome again!
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MAP for a biased coin

We can place a prior distribution on θ. In this case, θ ∼ Beta(2, 2)

(conjugate prior).

Then the posterior is,

p(θ|x) = Beta(x + 2, 3− x)

(Show this!)

Which gives the MAP estimate,

θ̂MAP =
x + 1

3

This is 1/3 if we see a tails and 2/3 if we see a heads.

Priors help us reach reasonable conclusions when we have limited

observations. MAP is consistent with MLE when we have infinite

observations.
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(conjugate prior).

Then the posterior is,

p(θ|x) = Beta(x + 2, 3− x)

(Show this!) Which gives the MAP estimate,
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