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@ Tuesday, Dec. 11, from 7-10pm. See course web page for room
assignments.

@ Covers all lectures except the final week (Lectures 23 and 24)

@ Similar in format and difficulty to midterm (except that Questions 8
and 9 on the midterm were too hard)

@ You are only responsible for material covered in lecture, but topics
additionally covered in tutorials and homeworks will receive more
emphasis.

@ See e-mail announcement for what you need to know about Gaussians.

@ Practice exams will be posted.
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Overview

@ Most of this course has been concerned with getting ML algorithms
to do something useful (e.g. make good predictions, find patterns,
learn policies).

@ As ML starts to be applied to critical applications involving humans,
the field is wrestling with the societal impacts

e Security: what if an attacker tries to poison the training data, fool the
system with malicious inputs, “steal” the model, etc.?

e Privacy: avoid leaking (much) information about the data the system
was trained on (e.g. medical diagnosis)

e Fairness: ensure that the system doesn’'t somehow disadvantage
particular individuals or groups

e Transparency: be able to understand why one decision was made
rather than another

o Accountability: an outside auditor should be able to verify that the
system is functioning as intended

@ If some of these definitions sound vague, that's because formalizing
them is half the challenge!

UofT CSC 411: 23-Fairness 3/30



Overview: Fairness

WHY WAS | NOT SHOWN THIS AD?

Credit: Richard Zemel
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Overview: Fairness

FAIRNESS IN AUTOMATED DECISIONS

Advertising

Financial
aid
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Overview: Fairness

SUBTLER BIAS
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Overview: Fairness

@ This lecture: algorithmic fairness

o Goal: identify and mitigate bias in ML-based decision making, in all
aspects of the pipeline
@ Sources of bias/discrimination
o Data

o Imbalanced/impoverished data
o Labeled data imbalance (more data on white recidivism outcomes)
o Labeled data incorrect / noisy (historical bias)

o Model

o ML prediction error imbalanced
e Compound injustices (Hellman)

Credit: Richard Zemel
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Overview: Fairness

@ Notation

X: input to classifier

e S: sensitive feature (age, gender, race, etc.)
e Z: latent representation

e Y': prediction

o T: true label

@ We use capital letters to emphasize that these are random variables.
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Fairness Criteria

@ Most common way to define fair classification is to require some
invariance with respect to the sensitive attribute
o Demographic parity: Y A1 S
Equalized odds: Y 1L S| T
Equal opportunity: Y UL S| T =t, for some t
Equal (weak) calibration: T 1L S|Y
Equal (strong) calibration: T 1L S|Y and Y =Pr(T =1)
Fair subgroup accuracy: 1[T =Y] 1L S

@ L denotes stochastic independence

@ Many of these definitions are incompatible!

Credit: Richard Zemel
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Learning Fair Representations

o |dea: separate the responsibilities of the (trusted) society and
(untrusted) vendor

_q  Society Vendor
Y
< v
A

W

(R

S=0

@ Goal: find a representation Z that removes any information about the
sensitive attribute

@ Then the vendor can do whatever they want!

Image Credit: Richard Zemel
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Learning Fair Representations

@ A naive attempt: simply don't use the sensitive feature.
o Problem: the algorithm implicitly learn to predict the sensitive feature
from other features (e.g. race from zip code)
@ Another idea: limit the algorithm to a small set of features you're
pretty sure are safe and task-relevant

e This is the conservative approach, and commonly used for both human
and machine decision making

e But removing features hurts the classification accuracy. Maybe we can
make more accurate decisions if we include more features and somehow
enforce fairness algorithmically?

@ Can we learn fair representations, which can make accurate
classifications without implicitly using the sensitive attribute?
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Learning Fair Representation

Desiderata for the representation:
Retain information about X = high mutual information between X and Z

Obfuscate S = low mutual information between S and Z
Allow high classification accuracy =-  high mutual information between T and Z
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Learning Fair Representations

First approach: Zemel et al., 2013, “Learning fair representations”
@ Let Z be a discrete representation (like K-means)

@ Determine Z stochastically based on distance to a prototype for the
cluster (like the cluster center in K-means)

Pr(Z = k| x) oc exp(—d(x,vk)),

where d is some distance function (e.g. Euclidean distance)
o Use the Bayes classifier y = Pr(T = 1] 2)
@ Need to fit the prototypes v

UofT CSC 411: 23-Fairness 13 /30



Learning Fair Representations

@ Retain information about X: penalize reconstruction error

N
reconst - N Z i(I)HZ

@ Predict accurately: cross-entropy loss

N
1 i i I i
'Cpred = N z_; —t( ) |Ogy( ) — (]_ — 1_'( )) |0g(1 _ y( ))
@ Obfuscate S:
K

1
Laiscrim = Z
K k=1

1 ; 1
- > Pr(Z=k[xD) - —

0 i:s()=0 ! s =1

Pr(Z = k| x|,

where we assume for simplicity S € {0,1} and N is the count for
s=0.
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Learning Fair Representations

@ Obfuscate S:

K

1
Ldiscrim = R Z
k=1

Ni > Pr(Z:k|x("))fNi > Pr(Z:k|x(i))‘,

0 i:s(N=0 js(=1

@ Is this about individual-level or group-level fairness?
o If discrimination loss is 0, we satisfy demographic parity

K
Pr(Y:l\s("):n:Ni > S Pr(Z=k|x)Pr(Y =1]Z=k)
1
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11
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k=1 is(N=1
K 1 )
=" |+ Pr(Z = k|xD)| Pr(Y =1|Z = k)
0 -
k=1 i:s(N=0
=Pr(Y =1|s" =0)
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Learning Fair Representations

Datasets

1. German Credit
Task: classify individual as good or bad credit risk
Sensitive feature: Age

2. Adult Income
Size: 45,222 instances, 14 attributes
Task: predict whether or not annual income > 50K
Sensitive feature: Gender

3. Heritage Health
Size: 147,473 instances, 139 attributes
Task: predict whether patient spends any nights in hospital
Sensitive feature: Age
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Learning Fair Representations

Metrics
o Classification accuracy

@ Discrimination

N i N i
Ei:s(i):l y( ) o Zi:s(i):o .y( )
Ny No

German Adult Health

Accuracy Discrimination Accuracy Discrimination Accuracy Discrimination

Yellow = unrestricted; Blue = theirs
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Fair VAE

@ Discrete Z based on prototypes is very limiting. Can we learn a more
flexible representation?
@ Louizos et al., 2015, “The variational fair autoencoder”

@ The variational autoencoder (VAE) is a kind of autoencoder that
represents a probabilistic model, and can be trained with a variational
objective similar to the one we used for E-M.

e For this lecture, just think of it as an autoencoder.
e How can we learn an autoencoder such that the code vector z loses
information about s?7
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Fair VAE: Maximum Mean Discrepancy

@ Our previous non-discrimination criterion only makes sense for
discrete Z.

@ New criterion: ensure that p(Z |s) is indistinguishable for different
values of s.

e Maximum mean discrepancy (MMD) is a quantitative measure of
distance between two distributions. Pick a feature map .

MMD(p; ) = |[Eeplth(2)] - Eonqlto(2)]]
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Fair VAE: Maximum Mean Discrepancy

@ MMD can be kernelized by expressing it in terms of
Kz.7) = $(2) T(2).

o Let {z,-},{\l:‘)1 and {zf}lNzl1 be sets of samples from p and q. The
empirical MMD is given by:

2

1 13
ﬁo Z:'l/’(zi) - ﬁl ;'/’(Zi)

No  No N Ny No Ny
na E E k(z,,zJ)Jr " E E k(z,,zj 727 E E z,,zj
0 i=1 j=1 1 i=1 j=1 i=1 j=1

@ You can show that for certain kernels (e.g. RBF), the MMD is 0 iff
p=q. So MMD is a very powerful distance metric.
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Fair VAE

Train a VAE, with the constraint that the MMD between p(z|s = 0) and
p(z|s =1) is small.

reconstruction

prediction is
basedonz Y
-

i

decoder is given
s, otherwise reconstruction
would be impossible

code vector S

with MMD contraint

input vector

K
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Fair VAE: tSNE embeddings

@ tSNE is an unsupervised learning algorithm for visualizing
high-dimensional datasets. It tries to embed points in low dimensions
in a way that preserves distances as accurately as possible.

@ Here are tSNE embeddings of different distributions, color-coded by
the sensitive feature:

Original inputs VAE latent space Fair VAE latent space

Figure Credit: Louizos et al., 2015
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Individual Fairness

@ The work on fair representations was geared towards group fairness
@ Another notion of fairness is individual level: ensuring that similar
individuals are treated similarly by the algorithm
e This depends heavily on the notion of “similar”.
@ One way to define similarity is in terms of the “true label” T (e.g.
whether this individual is in fact likely to repay their loan)

e Can you think of a problem with this definition?
e The label may itself be biased
o if based on human judgments
o if, e.g., societal biases make it harder for one group to pay off their
loans
o We'll ignore this issue in our analysis. But keep in mind that you'd

need to carefully consider the assumptions when applying one of these
methods!
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Equal Opportunity

@ Now we'll turn to Hardt et al., 2016, “Equality of opportunity in
supervised learning” .

@ Assume we make a binary prediction by computing a real-valued score
R = f(X,S), and then thresholding this score to obtain the
prediction Y.

o As before, assume S € {0,1}.

@ Motivating example: predict whether an individual is likely to repay
their loan
@ Two notions of individual fairness:
e Equalized odds: equal false positive and false negative rates

Pr(Y=1|S=0,T=t)=Pr(Y=1|S=1,T=t) forte {01}
e Equal opportunity: equal false negative rates
Pr(Y=1|S=0,T=1)=Pr(Y=1|S=1,T=1)
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Equal Opportunity

o Consider derived predictors, which are a function of the real-valued
score R and the sensitive feature S.

o l.e., we don't need to check the original input X. This simplifies the
analysis.

@ Define a loss function L(Y, T). Since Y and T are binary, there are
4 values to specify.
@ They show that:
e Without a constraint, the optimal predictor is obtained from
thresholding R.
e With an equal opportunity constraints, the optimal predictor is

obtained by thresholding R, but with a different treshold for different
values of S.

e Satisfying equalized odds is overconstrained, and may require
randomizing Y.
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Equal Opportunity

@ Case study: FICO scores

@ Aim to predict whether an individual has less than an 18% rate of
default (which is the treshold for profitability)

Non-default rate by FICO score CDF of FICO score by group
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Figure: Hardt et al., 2016
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Equal Opportunity

@ The “race-blind” solution applies the same threshold for all the
groups.
@ Problem: non-defaulting black applicants are much less likely to be
approved than non-defaulting white applicants.
e Fraction of non-defaulting applicants in each group = fraction of area
under curve which is shaded
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Figure: Hardt et al., 2016
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Equal Opportunity

@ Can obtain equal opportunity, equalized odds, demographic parity by

setting group-specific thresholds (except equalized odds requires

randomizing).

FICO score thresholds (raw)
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Equal Opportunity

@ Different notions of fairness often come into conflict. E.g., demographic parity
conflicts with equal opportunity (left).

@ Some notions of fairness are harder to achieve than others, in terms of lost profit

(right).

@ Choosing the right criterion requires careful consideration of the causal
relationships between the variables.
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@ Fairness is a challenging issue to address
o Not something you can just measure on a validation set
o Philosophers and lawyers have been trying to define it for thousands of
years
e Different notions are incompatible. Need to carefully consider the
particular problem.
o individual vs. group
@ Explosion of interest in ML over the last few years
@ New conference on Fairness, Accountability, and Transparency (FAT*)
o New textbook: https://fairmlbook.org/
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https://fairmlbook.org/

