
CSC 411 Lecture 20: Gaussian Processes

Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla

University of Toronto

UofT CSC 411: 20-Gaussian Processes 1 / 24

Overview

Last lecture: Bayesian linear regression, a parametric model

This lecture: Gaussian processes

Derive as a generalization of Bayesian linear regression, with possibly
infinitely many basis functions
Define a distribution directly over functions (i.e., a stochastic process)
Based on the Kernel Trick, one of the most important ideas in machine
learning
Conceptually cleaner, since we can specify priors directly over functions.
This lets us easily incorporate assumptions like smoothness, periodicity,
etc., which are hard to encode as priors over regression weights.

UofT CSC 411: 20-Gaussian Processes 2 / 24

Towards Gaussian Processes

Gaussian Processes are distributions over functions.

They’re actually a simpler and more intuitive way to think about
regression, once you’re used to them.

— GPML

UofT CSC 411: 20-Gaussian Processes 3 / 24

Towards Gaussian Processes

A Bayesian linear regression model defines a distribution over
functions:

f (x) = w>ψ(x)

Here, w is sampled from the prior N (µw,Σw).

Let f = (f1, . . . , fN) denote the vector of function values at
(x1, . . . , xN).

By the linear transformation rules for Gaussian random variables, the
distribution of f is a Gaussian with

E[fi] = µ>wψ(x)

Cov(fi , fj) = ψ(xi)
>Σwψ(xj)

In vectorized form, f ∼ N (µf ,Σf) with

µf = E[f] = Ψµw

Σf = Cov(f) = ΨΣwΨ>

UofT CSC 411: 20-Gaussian Processes 4 / 24

Towards Gaussian Processes

Recall that in Bayesian linear regression, we assume noisy Gaussian
observations of the underlying function.

yi ∼ N (fi , σ
2) = N (w>ψ(xi), σ

2).

The observations y are jointly Gaussian, just like f.

E[yi] = E[f (xi)]

Cov(yi , yj) =

{
Var(f (xi)) + σ2 if i = j

Cov(f (xi), f (xj)) if i 6= j

In vectorized form, y ∼ N (µy,Σy), with

µy = µf

Σy = Σf + σ2I

UofT CSC 411: 20-Gaussian Processes 5 / 24

Towards Gaussian Processes

Bayesian linear regression is just computing the conditional
distribution in a multivariate Gaussian!

Let y and y′ denote the observables at the training and test data.

They are jointly Gaussian:(
y
y′

)
∼ N

((
µy

µy′

)
,

(
Σyy Σyy′

Σy′y Σy′y′

))
.

The predictive distribution is a special case of the conditioning
formula for a multivariate Gaussian:

y′ | y ∼ N (µy′|y,Σy′|y)

µy′|y = µy′ + Σy′yΣ−1yy (y − µy)

Σy′|y = Σy′y′ −Σy′yΣ−1yy Σyy′

We’re implicitly marginalizing out w!

UofT CSC 411: 20-Gaussian Processes 6 / 24

Towards Gaussian Processes

The marginal likelihood is just the PDF of a multivariate Gaussian:

p(y |X) = N (y;µy,Σy)

=
1

(2π)d/2|Σy|1/2
exp

(
−1

2
(y − µy)>Σ−1y (y − µy)

)

UofT CSC 411: 20-Gaussian Processes 7 / 24

Towards Gaussian Processes

To summarize:

µf = Ψµw

Σf = ΨΣwΨ>

µy = µf

Σy = Σf + σ2I

µy′|y = µy′ + Σy′yΣ−1yy (y − µy)

Σy′|y = Σy′y′ −Σy′yΣ−1yy Σyy′

p(y |X) = N (y;µy,Σy)

After defining µf and Σf , we can forget about w!

What if we just let µf and Σf be anything?

UofT CSC 411: 20-Gaussian Processes 8 / 24

Gaussian Processes

When I say let µf and Σf be anything, I mean let them have an
arbitrary functional dependence on the inputs.

We need to specify

a mean function E[f (xi)] = µ(xi)
a covariance function called a kernel function:
Cov(f (xi), f (xj)) = k(xi , xj)

Let KX denote the kernel matrix for points X. This is a matrix whose
(i , j) entry is k(x(i), x(j)), and is called the Gram matrix.

We require that KX be positive semidefinite for any X. Other than
that, µ and k can be arbitrary.

UofT CSC 411: 20-Gaussian Processes 9 / 24

Gaussian Processes

We’ve just defined a distribution over function values at an arbitrary finite set of
points.

This can be extended to a distribution over functions using a kind of black magic
called the Kolmogorov Extension Theorem. This distribution over functions is
called a Gaussian process (GP).

We only ever need to compute with distributions over function values. The
formulas from a few slides ago are all you need to do regression with GPs.

But distributions over functions are conceptually cleaner.

How do you think these plots were generated?

UofT CSC 411: 20-Gaussian Processes 10 / 24

Kernel Trick

This is an instance of a more general trick called the Kernel Trick.

Many algorithms (e.g. linear regression, logistic regression, SVMs)
can be written in terms of dot products between feature vectors,
〈x, x′〉 = ψ(x)>ψ(x′).

A kernel implements an inner product between feature vectors,
typically implicitly, and often much more efficiently than the explicit
dot product.

For instance, the following feature vector is quadratic in size:

φ(x) = (1,
√

2x1, ...,
√

2xd ,
√

2x1x2,
√

2x1x3, ...
√

2xd−1xd , x
2
1 , ..., x

2
d)

But the quadratic kernel can compute the inner product in linear time:

k(x, x′) =
〈
φ(x), φ(x′)

〉
= 1 +

d∑
i=1

2xix
′
i +

d∑
i ,j=1

xixjx
′
i x
′
j = (1 +

〈
x, x′

〉
)2

UofT CSC 411: 20-Gaussian Processes 11 / 24

Kernel Trick

Many algorithms can be kernelized, i.e. written in terms of kernels,
rather than explicit feature representations.

We rarely think about the underlying feature space explicitly. Instead,
we build kernels directly.

Useful composition rules for kernels (to be proved in Homework 7):

A constant function k(x, x′) = α is a kernel.
If k1 and k2 are kernels and a, b ≥ 0, then ak1 + bk2 is a kernel.
If k1 and k2 are kernels, then the product k(x, x′) = k1(x, x′)k2(x, x′) is
a kernel. (Interesting and surprising fact!)

Before neural nets took over, kernel SVMs were probably the
best-performing general-purpose classification algorithm.

UofT CSC 411: 20-Gaussian Processes 12 / 24

Kernel Trick: Computational Cost

The kernel trick lets us implicitly use very high-dimensional (even
infinite-dimensional) feature spaces, but this comes at a cost.

Bayesian linear regression:

µ = σ−2ΣΨ>t

Σ−1 = σ−2Ψ>Ψ + S−1

Need to compute the inverse of a D × D matrix, which is an O(D3)
operation. (D is the number of features.)

GP regression:

µy′|y = µy′ + Σy′yΣ−1yy (y − µy)

Σy′|y = Σy′y′ −Σy′yΣ−1yy Σyy′

Need to invert an N × N matrix! (N is the number of training
examples.)

UofT CSC 411: 20-Gaussian Processes 13 / 24

Kernel Trick: Computational Cost

This O(N3) cost is typical of kernel methods. Most exact kernel
methods don’t scale to more than a few thousand data points.

Kernel SVMs can be scaled further, since you can show you only need
to consider the kernel over the support vectors, not the entire training
set. (This is part of why they were so useful.)

Scaling GP methods to large datasets is an active (and fascinating)
research area.

UofT CSC 411: 20-Gaussian Processes 14 / 24

GP Kernels

One way to define a kernel function is to give a set of basis functions
and put a Gaussian prior on w.

But we have lots of other options. Here’s a useful one, called the
squared-exp, or Gaussian, or radial basis function (RBF) kernel:

kSE(xi , xj) = σ2 exp

(
−
‖xi − xj‖2

2`2

)
More accurately, this is a kernel family with hyperparameters σ and `.

It gives a distribution over smooth functions:

UofT CSC 411: 20-Gaussian Processes 15 / 24

GP Kernels

kSE(xi , xj) = σ2 exp

(
− (xi − xj)

2

2`2

)
The hyperparameters determine key properties of the function.

Varying the output variance σ2:

Varying the lengthscale `:

UofT CSC 411: 20-Gaussian Processes 16 / 24

GP Kernels

The choice of hyperparameters heavily influences the predictions:

In practice, it’s very important to tune the hyperparameters (e.g. by
maximizing the marginal likelihood).

UofT CSC 411: 20-Gaussian Processes 17 / 24

GP Kernels

kSE(xi , xj) = σ2 exp

(
−

(xi − xj)
2

2`2

)

The squared-exp kernel is stationary because it only depends on
xi − xj . Most kernels we use in practice are stationary.

We can visualize the function k(0, x):

UofT CSC 411: 20-Gaussian Processes 18 / 24

GP Kernels (optional)

The periodic kernel encodes for a probability distribution over periodic
functions
The linear kernel results in a probability distribution over linear
functions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

UofT CSC 411: 20-Gaussian Processes 19 / 24

GP Kernels (optional)

The Matern kernel is similar to the squared-exp kernel, but less
smooth.

See Chapter 4 of GPML for an explanation (advanced).

Imagine trying to get this behavior by designing basis functions!

UofT CSC 411: 20-Gaussian Processes 20 / 24

GP Kernels (optional)

We get exponentially more flexibility by combining kernels.

The sum of two kernels is a kernel.
This is because valid covariance matrices (i.e. PSD matrices) are closed
under addition.

The sum of two kernels corresponds to the sum of functions.

Linear + Periodic

e.g. seasonal pattern w/ trend

Additive kernel

k(x , y , x ′, y ′) = k1(x , x ′) + k2(y , y ′)

UofT CSC 411: 20-Gaussian Processes 21 / 24

GP Kernels (optional)

A kernel is like a similarity function on the input space. The sum of
two kernels is like the OR of their similarity.

Amazingly, the product of two kernels is a kernel. (Follows from the
Schur Product Theorem.)

The product of two kernels is like the AND of their similarity
functions.

Example: the product of a squared-exp kernel (spatial similarity) and
a periodic kernel (similar location within cycle) gives a locally periodic
function.

UofT CSC 411: 20-Gaussian Processes 22 / 24

GP Kernels (optional)

Modeling CO2 concentrations:
trend + (changing) seasonal pattern + short-term variability + noise

Encoding the structure allows sensible extrapolation.

UofT CSC 411: 20-Gaussian Processes 23 / 24

Summary

Bayesian linear regression lets us determine uncertainty in our
predictions.

Bayesian Occam’s Razor is a sophisticated way of penalizing the
complexity of a distribution over functions.

Gaussian processes are an elegant framework for doing Bayesian
inference directly over functions.

The choice of kernels gives us much more control over what sort of
functions our prior would allow or favor.

UofT CSC 411: 20-Gaussian Processes 24 / 24

