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@ Bayesian parameter estimation
@ MAP estimation

@ Gaussian discriminant analysis
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Data Sparsity

@ Maximum likelihood has a pitfall: if you have too little data, it can
overfit.

e E.g., what if you flip the coin twice and get H both times?

o Ne 2
_NH—I—NT_Z—l-O_

Ot

Because it never observed T, it assigns this outcome probability 0.
This problem is known as data sparsity.

If you observe a single T in the test set, the log-likelihood is —oc.
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Bayesian Parameter Estimation

@ In maximum likelihood, the observations are treated as random
variables, but the parameters are not.

@ The Bayesian approach treats the parameters as random variables as
well.
@ To define a Bayesian model, we need to specify two distributions:
o The prior distribution p(0), which encodes our beliefs about the
parameters before we observe the data
o The likelihood p(D|8), same as in maximum likelihood
@ When we update our beliefs based on the observations, we compute
the posterior distribution using Bayes' Rule:

p(0)p(D|06)
[ p(8")p(D]6")d6"

p(0|D) =
@ We rarely ever compute the denominator explicitly.
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Bayesian Parameter Estimation

@ Let’s revisit the coin example. We already know the likelihood:
L(6) = p(D) = 6" (1 — )7

@ It remains to specify the prior p(0).

o We can choose an uninformative prior, which assumes as little as
possible. A reasonable choice is the uniform prior.

e But our experience tells us 0.5 is more likely than 0.99. One
particularly useful prior that lets us specify this is the beta distribution:

Ma+b)

r(a)r(p)

e This notation for proportionality lets us ignore the normalization
constant:

p(6;a, b) = 62711 — )L,

p(6; a, b) o< H271(1 — )b~ 1.
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Bayesian Parameter Estimation

@ Beta distribution for various values of a, b:

— a=05,b=05
st — a=1, b=1
— a=5,b=5
— a=2,b=6
4| — a=200, b=100
3
2
1 N
85 0.2 04 0.6 0.8 .0

@ Some observations:
o The expectation E[f] = a/(a + b).
e The distribution gets more peaked when a and b are large.
e The uniform distribution is the special case where a = b = 1.

@ The main thing the beta distribution is used for is as a prior for the Bernoulli
distribution.
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Bayesian Parameter Estimation

@ Computing the posterior distribution:

p(8]D) o p(8)p(D]8)
x |07 (1 - 0)P72] oMo (1 — ) |
— 93_1+NH(1 _ Q)b—l‘f'NT'

@ This is just a beta distribution with parameters Ny + a and Nt + b.
@ The posterior expectation of 6 is:

Ny + a

E[f| D] =
917] Nn+ Nt +a+b

@ The parameters a and b of the prior can be thought of as
pseudo-counts.
o The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy, and it's very
useful.
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Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting Large data setting
Ny=2 Nr=0 Ny =55, Nt =45
3.0 9
— Prior — Prior
55| — Likelihood 8/l — Likelihood
—— Posterior 7| — Posterior
2.0 6
5
1.5 A
1.0| 3
2
0.5 1
%80 02 04 06 08 1.0 80 02 04 06 08 10

When you have enough observations, the data overwhelm the prior.

CSC 411: 14-Probabilistic Models 11



Bayesian Parameter Estimation

@ What do we actually do with the posterior?

@ The posterior predictive distribution is the distribution over future
observables given the past observations. We compute this by
marginalizing out the parameter(s):

p(D'|D) = [ p(6] D)o’ 6)db. (1)
@ For the coin flip example:
Oprea = Pr(x’ = H| D)
= /p(0 | D)Pr(x’ = H|6)df

= /Beta(@; Ny + a, Ny + b)-6do

= EBcta(G;NH+a,NT+b) [9]
~_ Nuta )
Nu+ Nr+a+b’
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Bayesian Parameter Estimation

Bayesian estimation of the mean temperature in Toronto

@ Assume observations are

i.i.d. Gaussian with known 0.5

standard deviation o and — Prior
unknown mean u — Posterior
0.20 — Posterior predictive

@ Broad Gaussian prior over p,

centered at 0 0.15
@ We can compute the posterior

and posterior predictive 0.10

distributions analytically (full

derivation in notes) 0.05
@ Why is the posterior predictive 000

distribution more spread out than =20 -15 -10 -5 o0 5 10 15 20
the posterior distribution?
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Bayesian Parameter Estimation

Comparison of maximum likelihood and Bayesian parameter estimation

@ The Bayesian approach deals better with data sparsity

@ Maximum likelihood is an optimization problem, while Bayesian
parameter estimation is an integration problem

o This means maximum likelihood is much easier in practice, since we
can just do gradient descent

e Automatic differentiation packages make it really easy to compute
gradients

e There aren't any comparable black-box tools for Bayesian parameter
estimation (although Stan can do quite a lot)
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Maximum A-Posteriori Estimation

@ Maximum a-posteriori (MAP) estimation: find the most likely
parameter settings under the posterior

@ This converts the Bayesian parameter estimation problem into a
maximization problem

Oniap = arg max p(6]D)
= arg max p(0,D)
= argmax p(6) p(D|6)

= arg max log p(0) + log p(D | 0)
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Maximum A-Posteriori Estimation

@ Joint probability in the coin flip example:

log p(0, D) = log p(0) + log p(D | 0)
= const + (a—1)logf + (b — 1) log(1l — 0) + Ny log 6 + Nt log(1 — 0)
= const + (Ny +a—1)logf + (Nr + b — 1) log(1 — 6)

@ Maximize by finding a critical point

NH+a—1 NT+b—1

d
0= —logp(0,D) = 7 10

de

@ Solving for 6,
Ny+a-—1

NH+NT+a+b—2

Oviap =
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Maximum A-Posteriori Estimation

Comparison of estimates in the coin flip example:

Formula Ny=2,Nr =0 Ny =55 Ny =45

Orie Nt 1 2 =0.55
Opred  WhaTS 4 ~0.67 57~ 0.548
Oarr At 3 -0.75 56~ 0.549

Oniap assigns nonzero probabilities as long as a, b > 1.
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Maximum A-Posteriori Estimation

Comparison of predictions in the Toronto temperatures example

1 observation 7 observations

0.08 0.08
— maximum likelihood — maximum likelihood

0.07] — full Bayesian 0.07 — full Bayesian
0.06 — MAP 0.06 — MAP
0.05 0.05
0.04 0.04
0.03 0.03
0.02 0.02
0.01 0.01
000 =15 =5 =5 0 5 10 15 20 0005 =16 5 6 5 10 15 20
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Gaussian Discriminant Analysis
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o Generative models - model p(x|t = k)

@ Instead of trying to separate classes, try to model what each class
"looks like".

@ Recall that p(x|t = k) may be very complex
p(xt, -+ Xd, y) = p(xalxe, - xd, y) - p(Xd—1lxa, ¥)P(Xd» ¥)

@ Naive bayes used a conditional independence assumption. What else
could we do? Choose a simple distribution.

@ Today we will discuss fitting Gaussian distributions to our data.
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Bayes Classifier

@ Let's take a step back...

@ Bayes Classifier

(x|t = k)p(t = k)
p(x)

h(x) = arg max p(t = k|x) = arg max i
= arg max p(x|t = k)p(t = k)

@ Talked about Discrete x, what if x is continuous?
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Classification: Diabetes Example

@ Observation per patient: White blood cell count & glucose value.

@ How can we model p(x|t = k)? Multivariate Gaussian
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

@ Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate normal (Gaussian) distribution

@ Multivariate Gaussian distribution:
t=k)= 1 L Tyt
p(x|t = )—WGXP _E(X_Nk) k(X = 1)

where |X | denotes the determinant of the matrix, and d is dimension of x
@ Each class k has associated mean vector p, and covariance matrix X«
@ ¥, has O(d?) parameters - could be hard to estimate (more on that later).
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Multivariate Data

@ Multiple measurements (sensors)
@ d inputs/features/attributes

@ N instances/observations/examples

ORI )
@ 0 @)
X X .. X
X = 1 2 d
ORI
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Multivariate Parameters

@ Mean
E[X] = [Mlv' e ’/~Ld]T

@ Covariance

01 J12 e O1d
; o2 03 - 0Oy

Y= Cov(x) =E[(x —p) (x—p)] = _
o1 Ogp - 0F

@ For Gaussians - all you need to know to represent! (not true in general)
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Multivariate Gaussian Distribution

@ x ~ N(u,X), a Gaussian (or normal) distribution defined as

1 1 _
WGXP *E(X*N)TZ Hx—p)

p(x) = or

/”I;"“t’\\\k o

RO
P00
OGS

@ Mahalanobis distance (x — px) T Z~1(x — jux) measures the distance from x
to p in terms of &

@ It normalizes for difference in variances and correlations
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Bivariate Normal

10 1 0 10

Probability Density

Figure: Probability density function
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Figure: Contour plot of the pdf
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Bivariate Normal

var(xi) = var(xz) var(xi) > var(xz) var(xi) < var(xz)

Probability Density

Figure: Probability density function
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Figure: Contour plot of the pdf
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Figure: Contour plot of the pdf
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Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Normal

Cov(x1.x2)=0. Var(x|)=Var(x2) Cov(xi.x2)=0. Valr(x1 )>Var(x2)
X
Cov(x,.x,)>0 Cov(x, X,)<0
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

@ GDA (GBC) decision boundary is based on class posterior:

log p(tk[x) = log p(x|t) + log p(tx) — log p(x)
d 1 1 _
= —5log(2m) = S log |7 | = S (x — ) I (x — ) +
+ log p(tx) — log p(x)

@ Decision boundary:
(x — ) T (x = juk) = (x — pe) TE; (x — ae) + Const

X" x —2u] T x = xTzzlx - 2u£TZglx + Const

@ Quadratic function in x

o What if ¥, = ¥,?
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Decision Boundary

g

o
I;v'.‘{dl”";;{’

XN
QRSN

discriminant:
P(t;|x)=0.5

p(C,1%)

posterior for t, O
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@ Learn the parameters for each class using maximum likelihood

@ Assume the prior is Bernoulli (we have two classes)

p(tld) = 6" (1 —¢)**

@ You can compute the ML estimate in closed form

1 N
_ (n) _
¢ = N ,?:1 1t = 1]

Z’n"zl 1t = k] - x(")

M =
‘ SV L[ = A]
1 ) (n) () T
Yy = —Zﬂ[t = K|(x'" = g ) (X = p4))

Zrl:lzl 1t = k] 7=
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Simplifying the Model

What if x is high-dimensional?

@ For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance
matrix has many parameters

@ Save some parameters by using a shared covariance for the classes

Any other idea you can think of?
@ MLE in this case:
L

Y= D = ) () = )T

n=1

Linear decision boundary.
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Decision Boundary: Shared Variances (between Classes)

variances may be
different
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Gaussian Discriminative Analysis vs Logistic Regression

@ Binary classification: If you examine p(t = 1|x) under GDA and assume
Yo =23 =X, you will find that it looks like this:

1

t b [
P( |x7¢7M07M17 ) 1+exp(—wa)

where w is an appropriate function of (¢, uo, p1, %), ¢ = p(t = 1)
@ Same model as logistic regression!

@ When should we prefer GDA to LR, and vice versa?
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Gaussian Discriminative Analysis vs Logistic Regression

@ GDA makes stronger modeling assumption: assumes class-conditional data is
multivariate Gaussian

@ If this is true, GDA is asymptotically efficient (best model in limit of large N)

@ But LR is more robust, less sensitive to incorrect modeling assumptions
(what loss is it optimizing?)

@ Many class-conditional distributions lead to logistic classifier

@ When these distributions are non-Gaussian (a.k.a almost always), LR usually
beats GDA

@ GDA can handle easily missing features (how do you do that with LR?)
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@ Naive Bayes: Assumes features independent given the class

d

p(xlt = k) = T] plxilt = K)

i=1

@ Assuming likelihoods are Gaussian, how many parameters required for Naive
Bayes classifier?

@ Equivalent to assuming X4 is diagonal.
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Gaussian Naive Bayes

@ Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

1 _(Xi - Mik)2
plxi ) V2o &P [ 2‘7/2k

(this is just a 1-dim Gaussian, one for each input dimension)

@ Model the same as Gaussian Discriminative Analysis with diagonal
covariance matrix

@ Maximum likelihood estimate of parameters
S Lt = K- X"
Soais 1t = 4]

2 ZnNzl ]]‘[t(n) k] ) (Xi(n) — l’l’ik)2
oh =
S [ = K]

Hik =

@ What decision boundaries do we get?
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Decision Boundary: isotropic

@ In this case: o x = o (just one parameter), class priors equal (e.g.,
p(tx) = 0.5 for 2-class case)

@ Going back to class posterior for GDA:

log p(tk|x) = logp(x|tk) + log p(tx) — log p(x)
d 1 1 _
=~ log(2m) — Jlog [T | = S (x — ) TT, T (x = ) +

+ log p(t«) — log p(x)
where we take ¥4 = 02/ and ignore terms that don't depend on k (don't

matter when we take max over classes):

g pl(tx) = ——5(x = ) (x = 1)
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Decision Boundary: isotropic

@ Same variance across all classes and input dimensions, all class priors equal

@ Classification only depends on distance to the mean. Why?
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Example

Full Covariances (acc 0.805) Shared Covariance (acc 0.717)
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Generative models - Recap

@ GDA - quadratic decision boundary.
@ With shared covariance "collapses” to logistic regression.
@ Generative models:

o Flexible models, easy to add/remove class.
e Handle missing data naturally

e More "natural” way to think about things, but usually doesn’t work as
well.

@ Tries to solve a hard problem in order to solve a easy problem.
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