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Overview

Bayesian parameter estimation

MAP estimation

Gaussian discriminant analysis
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Data Sparsity

Maximum likelihood has a pitfall: if you have too little data, it can
overfit.

E.g., what if you flip the coin twice and get H both times?

θML =
NH

NH + NT
=

2

2 + 0
= 1

Because it never observed T, it assigns this outcome probability 0.
This problem is known as data sparsity.

If you observe a single T in the test set, the log-likelihood is −∞.
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Bayesian Parameter Estimation

In maximum likelihood, the observations are treated as random
variables, but the parameters are not.

The Bayesian approach treats the parameters as random variables as
well.

To define a Bayesian model, we need to specify two distributions:

The prior distribution p(θ), which encodes our beliefs about the
parameters before we observe the data
The likelihood p(D |θ), same as in maximum likelihood

When we update our beliefs based on the observations, we compute
the posterior distribution using Bayes’ Rule:

p(θ | D) =
p(θ)p(D |θ)∫

p(θ′)p(D |θ′)dθ′
.

We rarely ever compute the denominator explicitly.
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Bayesian Parameter Estimation

Let’s revisit the coin example. We already know the likelihood:

L(θ) = p(D) = θNH (1− θ)NT

It remains to specify the prior p(θ).

We can choose an uninformative prior, which assumes as little as
possible. A reasonable choice is the uniform prior.
But our experience tells us 0.5 is more likely than 0.99. One
particularly useful prior that lets us specify this is the beta distribution:

p(θ; a, b) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1.

This notation for proportionality lets us ignore the normalization
constant:

p(θ; a, b) ∝ θa−1(1− θ)b−1.
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Bayesian Parameter Estimation

Beta distribution for various values of a, b:

Some observations:

The expectation E[θ] = a/(a + b).
The distribution gets more peaked when a and b are large.
The uniform distribution is the special case where a = b = 1.

The main thing the beta distribution is used for is as a prior for the Bernoulli
distribution.
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Bayesian Parameter Estimation

Computing the posterior distribution:

p(θ | D) ∝ p(θ)p(D |θ)

∝
[
θa−1(1− θ)b−1

] [
θNH (1− θ)NT

]
= θa−1+NH (1− θ)b−1+NT .

This is just a beta distribution with parameters NH + a and NT + b.

The posterior expectation of θ is:

E[θ | D] =
NH + a

NH + NT + a + b

The parameters a and b of the prior can be thought of as
pseudo-counts.

The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy, and it’s very
useful.
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Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting
NH = 2, NT = 0

Large data setting
NH = 55, NT = 45

When you have enough observations, the data overwhelm the prior.
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Bayesian Parameter Estimation

What do we actually do with the posterior?

The posterior predictive distribution is the distribution over future
observables given the past observations. We compute this by
marginalizing out the parameter(s):

p(D′ | D) =

∫
p(θ | D)p(D′ |θ) dθ. (1)

For the coin flip example:

θpred = Pr(x ′ = H | D)

=

∫
p(θ | D)Pr(x ′ = H | θ)dθ

=

∫
Beta(θ;NH + a,NT + b) · θ dθ

= EBeta(θ;NH+a,NT+b)[θ]

=
NH + a

NH + NT + a+ b
, (2)

UofT CSC 411: 14-Probabilistic Models II 9 / 42



Bayesian Parameter Estimation

Bayesian estimation of the mean temperature in Toronto

Assume observations are
i.i.d. Gaussian with known
standard deviation σ and
unknown mean µ

Broad Gaussian prior over µ,
centered at 0

We can compute the posterior
and posterior predictive
distributions analytically (full
derivation in notes)

Why is the posterior predictive
distribution more spread out than
the posterior distribution?
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Bayesian Parameter Estimation

Comparison of maximum likelihood and Bayesian parameter estimation

The Bayesian approach deals better with data sparsity

Maximum likelihood is an optimization problem, while Bayesian
parameter estimation is an integration problem

This means maximum likelihood is much easier in practice, since we
can just do gradient descent
Automatic differentiation packages make it really easy to compute
gradients
There aren’t any comparable black-box tools for Bayesian parameter
estimation (although Stan can do quite a lot)
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Maximum A-Posteriori Estimation

Maximum a-posteriori (MAP) estimation: find the most likely
parameter settings under the posterior

This converts the Bayesian parameter estimation problem into a
maximization problem

θ̂MAP = arg max
θ

p(θ | D)

= arg max
θ

p(θ,D)

= arg max
θ

p(θ) p(D |θ)

= arg max
θ

log p(θ) + log p(D |θ)
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Maximum A-Posteriori Estimation

Joint probability in the coin flip example:

log p(θ,D) = log p(θ) + log p(D | θ)
= const+ (a− 1) log θ + (b − 1) log(1− θ) + NH log θ + NT log(1− θ)
= const+ (NH + a− 1) log θ + (NT + b − 1) log(1− θ)

Maximize by finding a critical point

0 =
d

dθ
log p(θ,D) =

NH + a− 1

θ
− NT + b − 1

1− θ

Solving for θ,

θ̂MAP =
NH + a− 1

NH + NT + a + b − 2
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Maximum A-Posteriori Estimation

Comparison of estimates in the coin flip example:

Formula NH = 2,NT = 0 NH = 55,NT = 45

θ̂ML
NH

NH+NT
1 55

100 = 0.55

θpred
NH+a

NH+NT+a+b
4
6 ≈ 0.67 57

104 ≈ 0.548

θ̂MAP
NH+a−1

NH+NT+a+b−2
3
4 = 0.75 56

102 ≈ 0.549

θ̂MAP assigns nonzero probabilities as long as a, b > 1.
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Maximum A-Posteriori Estimation

Comparison of predictions in the Toronto temperatures example

1 observation 7 observations
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Gaussian Discriminant Analysis
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Motivation

Generative models - model p(x|t = k)

Instead of trying to separate classes, try to model what each class
”looks like”.

Recall that p(x|t = k) may be very complex

p(x1, · · · , xd , y) = p(x1|x2, · · · , xd , y) · · · p(xd−1|xd , y)p(xd , y)

Naive bayes used a conditional independence assumption. What else
could we do? Choose a simple distribution.

Today we will discuss fitting Gaussian distributions to our data.
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Bayes Classifier

Let’s take a step back...

Bayes Classifier

h(x) = arg max p(t = k |x) = arg max
p(x|t = k)p(t = k)

p(x)

= arg max p(x|t = k)p(t = k)

Talked about Discrete x, what if x is continuous?
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Classification: Diabetes Example

Observation per patient: White blood cell count & glucose value.

How can we model p(x |t = k)? Multivariate Gaussian
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate normal (Gaussian) distribution

Multivariate Gaussian distribution:

p(x|t = k) =
1

(2π)d/2|Σk |1/2
exp

[
−1

2
(x− µk)TΣ−1

k (x− µk)

]
where |Σk | denotes the determinant of the matrix, and d is dimension of x

Each class k has associated mean vector µk and covariance matrix Σk

Σk has O(d2) parameters - could be hard to estimate (more on that later).
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Multivariate Data

Multiple measurements (sensors)

d inputs/features/attributes

N instances/observations/examples

X =


x
(1)
1 x

(1)
2 · · · x

(1)
d

x
(2)
1 x

(2)
2 · · · x

(2)
d

...
...

. . .
...

x
(N)
1 x

(N)
2 · · · x

(N)
d


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Multivariate Parameters

Mean
E[x] = [µ1, · · · , µd ]T

Covariance

Σ = Cov(x) = E[(x− µ)T (x− µ)] =


σ2
1 σ12 · · · σ1d

σ12 σ2
2 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σ2
d



For Gaussians - all you need to know to represent! (not true in general)
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Multivariate Gaussian Distribution

x ∼ N (µ,Σ), a Gaussian (or normal) distribution defined as

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]

Mahalanobis distance (x− µk)TΣ−1(x− µk) measures the distance from x
to µ in terms of Σ

It normalizes for difference in variances and correlations
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Bivariate Normal

Σ =

(
1 0
0 1

)
Σ = 0.5

(
1 0
0 1

)
Σ = 2

(
1 0
0 1

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Normal

var(x1) = var(x2) var(x1) > var(x2) var(x1) < var(x2)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Normal

Σ =

(
1 0
0 1

)
Σ =

(
1 0.5

0.5 1

)
Σ =

(
1 0.8

0.8 1

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Normal

Cov(x1, x2) = 0 Cov(x1, x2) > 0 Cov(x1, x2) < 0

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Normal
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Bivariate Normal
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

GDA (GBC) decision boundary is based on class posterior:

log p(tk |x) = log p(x|tk) + log p(tk)− log p(x)

= −d

2
log(2π)− 1

2
log |Σ−1

k | −
1

2
(x− µk)TΣ−1

k (x− µk) +

+ log p(tk)− log p(x)

Decision boundary:

(x− µk)TΣ−1
k (x− µk) = (x− µ`)

TΣ−1
` (x− µ`) + Const

xTΣ−1
k x− 2µT

k Σ−1
k x = xTΣ−1

` x− 2µT
` Σ−1

` x + Const

Quadratic function in x

What if Σk = Σ`?
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Decision Boundary

likelihoods)

posterior)for)t1)

discriminant:!!
P!(t1|x")!=!0.5!
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Learning

Learn the parameters for each class using maximum likelihood

Assume the prior is Bernoulli (we have two classes)

p(t|φ) = φt(1− φ)1−t

You can compute the ML estimate in closed form

φ =
1

N

N∑
n=1

1[t(n) = 1]

µk =

∑N
n=1 1[t(n) = k] · x(n)∑N

n=1 1[t(n) = k]

Σk =
1∑N

n=1 1[t(n) = k]

N∑
n=1

1[t(n) = k](x(n) − µt(n))(x(n) − µt(n))
T
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Simplifying the Model

What if x is high-dimensional?

For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance
matrix has many parameters

Save some parameters by using a shared covariance for the classes

Any other idea you can think of?

MLE in this case:

Σ =
1

N

N∑
n=1

(x(n) − µt(n))(x(n) − µt(n))
T

Linear decision boundary.
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Decision Boundary: Shared Variances (between Classes)

variances may be 
different 
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Gaussian Discriminative Analysis vs Logistic Regression

Binary classification: If you examine p(t = 1|x) under GDA and assume
Σ0 = Σ1 = Σ, you will find that it looks like this:

p(t|x, φ, µ0, µ1,Σ) =
1

1 + exp(−wTx)

where w is an appropriate function of (φ, µ0, µ1,Σ), φ = p(t = 1)

Same model as logistic regression!

When should we prefer GDA to LR, and vice versa?

UofT CSC 411: 14-Probabilistic Models II 35 / 42



Gaussian Discriminative Analysis vs Logistic Regression

GDA makes stronger modeling assumption: assumes class-conditional data is
multivariate Gaussian

If this is true, GDA is asymptotically efficient (best model in limit of large N)

But LR is more robust, less sensitive to incorrect modeling assumptions
(what loss is it optimizing?)

Many class-conditional distributions lead to logistic classifier

When these distributions are non-Gaussian (a.k.a almost always), LR usually
beats GDA

GDA can handle easily missing features (how do you do that with LR?)
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Naive Bayes

Naive Bayes: Assumes features independent given the class

p(x|t = k) =
d∏

i=1

p(xi |t = k)

Assuming likelihoods are Gaussian, how many parameters required for Naive
Bayes classifier?

Equivalent to assuming Σk is diagonal.
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Gaussian Naive Bayes

Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

p(xi |t = k) =
1√

2πσik
exp

[
−(xi − µik)2

2σ2
ik

]
(this is just a 1-dim Gaussian, one for each input dimension)

Model the same as Gaussian Discriminative Analysis with diagonal
covariance matrix

Maximum likelihood estimate of parameters

µik =

∑N
n=1 1[t(n) = k] · x (n)i∑N

n=1 1[t(n) = k]

σ2
ik =

∑N
n=1 1[t(n) = k] · (x (n)i − µik)2∑N

n=1 1[t(n) = k]

What decision boundaries do we get?
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Decision Boundary: isotropic

In this case: σi,k = σ (just one parameter), class priors equal (e.g.,
p(tk) = 0.5 for 2-class case)

Going back to class posterior for GDA:

log p(tk |x) = log p(x|tk) + log p(tk)− log p(x)

= −d

2
log(2π)− 1

2
log |Σ−1

k | −
1

2
(x− µk)TΣ−1

k (x− µk) +

+ log p(tk)− log p(x)

where we take Σk = σ2I and ignore terms that don’t depend on k (don’t
matter when we take max over classes):

log p(tk |x) = − 1

2σ2
(x− µk)T (x− µk)
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Decision Boundary: isotropic

* ? 

Same variance across all classes and input dimensions, all class priors equal

Classification only depends on distance to the mean. Why?
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Example
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Generative models - Recap

GDA - quadratic decision boundary.

With shared covariance ”collapses” to logistic regression.

Generative models:

Flexible models, easy to add/remove class.
Handle missing data naturally
More ”natural” way to think about things, but usually doesn’t work as
well.

Tries to solve a hard problem in order to solve a easy problem.
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