We’ll shift directions now, and spend most of the next 4 weeks talking about probabilistic models.

Today
- maximum likelihood estimation
- naïve Bayes
Motivating example: estimating the parameter of a biased coin

- You flip a coin 100 times. It lands heads $N_H = 55$ times and tails $N_T = 45$ times.
- What is the probability it will come up heads if we flip again?

Model: flips are independent Bernoulli random variables with parameter θ.

- Assume the observations are independent and identically distributed (i.i.d.)
The likelihood function is the probability of the observed data, as a function of θ.

In our case, it’s the probability of a *particular* sequence of H’s and T’s.

Under the Bernoulli model with i.i.d. observations,

$$L(\theta) = p(\mathcal{D}) = \theta^{N_H}(1 - \theta)^{N_T}$$

This takes very small values (in this case, $L(0.5) = 0.5^{100} \approx 7.9 \times 10^{-31}$)

Therefore, we usually work with log-likelihoods:

$$\ell(\theta) = \log L(\theta) = N_H \log \theta + N_T \log(1 - \theta)$$

Here, $\ell(0.5) = \log 0.5^{100} = 100 \log 0.5 = -69.31$
$N_H = 55, \ N_T = 45$
Good values of θ should assign high probability to the observed data. This motivates the maximum likelihood criterion.

Remember how we found the optimal solution to linear regression by setting derivatives to zero? We can do that again for the coin example.

$$\frac{d\ell}{d\theta} = \frac{d}{d\theta} \left(N_H \log \theta + N_T \log(1 - \theta) \right)$$

$$= \frac{N_H}{\theta} - \frac{N_T}{1 - \theta}$$

Setting this to zero gives the maximum likelihood estimate:

$$\hat{\theta}_{ML} = \frac{N_H}{N_H + N_T},$$
This is equivalent to minimizing cross-entropy. Let \(t_i = 1 \) for heads and \(t_i = 0 \) for tails.

\[
\mathcal{L}_{CE} = - \sum_i t_i \log \theta - (1 - t_i) \log(1 - \theta)
\]

\[
= -N_H \log \theta - N_T \log(1 - \theta)
\]

\[
= -\ell(\theta)
\]
Maximum Likelihood

- Recall the **Gaussian**, or **normal**, distribution:

\[\mathcal{N}(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right) \]

- The Central Limit Theorem says that sums of lots of independent random variables are approximately Gaussian.

- In machine learning, we use Gaussians a lot because they make the calculations easy.
Maximum Likelihood

- Suppose we want to model the distribution of temperatures in Toronto in March, and we’ve recorded the following observations:
 -2.5 -9.9 -12.1 -8.9 -6.0 -4.8 2.4
- Assume they’re drawn from a Gaussian distribution with known standard deviation $\sigma = 5$, and we want to find the mean μ.
- Log-likelihood function:

$$
\ell(\mu) = \log \prod_{i=1}^{N} \left[\frac{1}{\sqrt{2\pi} \cdot \sigma} \exp \left(-\frac{(x^{(i)} - \mu)^2}{2\sigma^2} \right) \right]
$$

$$
= \sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi} \cdot \sigma} \exp \left(-\frac{(x^{(i)} - \mu)^2}{2\sigma^2} \right) \right]
$$

$$
= \sum_{i=1}^{N} -\frac{1}{2} \log 2\pi - \log \sigma - \frac{(x^{(i)} - \mu)^2}{2\sigma^2}
$$

\text{constant!}
Maximum Likelihood

- Maximize the log-likelihood by setting the derivative to zero:

\[0 = \frac{d\ell}{d\mu} = -\frac{1}{2\sigma^2} \sum_{i=1}^{N} \frac{d}{d\mu} (x^{(i)} - \mu)^2 \]

\[= \frac{1}{\sigma^2} \sum_{i=1}^{N} x^{(i)} - \mu \]

- Solving we get \(\mu = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} \)
- This is just the mean of the observed values, or the empirical mean.
In general, we don’t know the true standard deviation σ, but we can solve for it as well.

Set the *partial* derivatives to zero, just like in linear regression.

$$0 = \frac{\partial \ell}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{i=1}^{N} x^{(i)} - \mu$$

$$0 = \frac{\partial \ell}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left[\sum_{i=1}^{N} -\frac{1}{2} \log 2\pi - \log \sigma - \frac{1}{2\sigma^2} (x^{(i)} - \mu)^2 \right]$$

$$= \sum_{i=1}^{N} -\frac{1}{2} \frac{\partial}{\partial \sigma} \log 2\pi - \frac{\partial}{\partial \sigma} \log \sigma - \frac{\partial}{\partial \sigma} \frac{1}{2\sigma^2} (x^{(i)} - \mu)^2$$

$$= \sum_{i=1}^{N} 0 - \frac{1}{\sigma} + \frac{1}{\sigma^3} (x^{(i)} - \mu)^2$$

$$= -\frac{N}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{N} (x^{(i)} - \mu)^2$$

\[\hat{\mu}_{ML} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} \]

\[\hat{\sigma}_{ML} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \mu)^2} \]
Sometimes there is no closed-form solution. E.g., consider the gamma distribution, whose PDF is

\[p(x) = \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx}, \]

where \(\Gamma \) is the gamma function, a generalization of the factorial function to continuous values.

There is no closed-form solution, but we can still optimize the log-likelihood using gradient ascent.
So far, maximum likelihood has told us to use empirical counts or statistics:

- **Bernoulli:** \(\theta = \frac{N_H}{N_H + N_T} \)
- **Gaussian:** \(\mu = \frac{1}{N} \sum x^{(i)}, \sigma^2 = \frac{1}{N} \sum (x^{(i)} - \mu)^2 \)

This doesn't always happen; the class of probability distributions that have this property is **exponential families**.
Maximum Likelihood

We’ve been doing maximum likelihood estimation all along!

- **Squared error loss (e.g. linear regression)**

 $$ p(t|y) = \mathcal{N}(t; y, \sigma^2) $$

 $$ - \log p(t|y) = \frac{1}{2\sigma^2} (y - t)^2 + \text{const} $$

- **Cross-entropy loss (e.g. logistic regression)**

 $$ p(t=1|y) = y $$

 $$ - \log p(t|y) = -t \log y - (1-t) \log(1-y) $$
Generative vs Discriminative

Two approaches to classification:

- **Discriminative** classifiers estimate parameters of decision boundary/class separator directly from labeled examples. Tries to solve: How do I separate the classes?
 - learn $p(y|x)$ directly (logistic regression models)
 - learn mappings from inputs to classes (least-squares, decision trees)

- **Generative approach**: model the distribution of inputs characteristic of the class (Bayes classifier). Tries to solve: What does each class "look" like?
 - Build a model of $p(x|y)$
 - Apply Bayes Rule
Bayes Classifier

- Aim to classify text into spam/not-spam (yes $c=1$; no $c=0$)
- Use bag-of-words features, get binary vector \mathbf{x} for each email
- Given features $\mathbf{x} = [x_1, x_2, \cdots, x_d]^T$ we want to compute class probabilities using Bayes Rule:

$$p(c|\mathbf{x}) = \frac{p(\mathbf{x}|c)p(c)}{p(\mathbf{x})}$$

- More formally:

$$\text{posterior} = \frac{\text{Class likelihood} \times \text{prior}}{\text{Evidence}}$$

- How can we compute $p(\mathbf{x})$ for the two class case? (Do we need to?)

$$p(\mathbf{x}) = p(\mathbf{x}|c = 0)p(c = 0) + p(\mathbf{x}|c = 1)p(c = 1)$$

- To compute $p(c|\mathbf{x})$ we need: $p(\mathbf{x}|c)$ and $p(c)$
Naïve Bayes

- Assume we have two classes: spam and non-spam. We have a dictionary of D words, and binary features $\mathbf{x} = [x_1, \ldots, x_D]$ saying whether each word appears in the e-mail.
- If we define a joint distribution $p(c, x_1, \ldots, x_D)$, this gives enough information to determine $p(c)$ and $p(x|c)$.
- Problem: specifying a joint distribution over $D + 1$ binary variables requires 2^{D+1} entries. This is computationally prohibitive and would require an absurd amount of data to fit.
- We'd like to impose structure on the distribution such that:
 - it can be compactly represented
 - learning and inference are both tractable
- Probabilistic graphical models are a powerful and wide-ranging class of techniques for doing this. We'll just scratch the surface here, but you’ll learn about them in detail in CSC412/2506.
Naïve Bayes makes the assumption that the word features x_i are conditionally independent given the class c.

- This means x_i and x_j are independent under the conditional distribution $p(x|c)$.
- Note: this doesn’t mean they’re independent. (E.g., “Viagra” and ”cheap” are correlated insofar as they both depend on c.)
- Mathematically,

$$p(c, x_1, \ldots, x_D) = p(c)p(x_1|c)\cdots p(x_D|c).$$

Compact representation of the joint distribution

- Prior probability of class: $p(c = 1) = \theta_c$
- Conditional probability of word feature given class: $p(x_j = 1|c) = \theta_{jc}$
- $2D + 1$ parameters total
We can represent this model using a directed graphical model, or Bayesian network:

This graph structure means the joint distribution factorizes as a product of conditional distributions for each variable given its parent(s).

Intuitively, you can think of the edges as reflecting a causal structure. But mathematically, this doesn’t hold without additional assumptions.

You’ll learn a lot about graphical models in CSC412/2506.
Naïve Bayes: Learning

- The parameters can be learned efficiently because the log-likelihood decomposes into independent terms for each feature.

$$\ell(\theta) = \sum_{i=1}^{N} \log p(c^{(i)}, x^{(i)})$$

$$= \sum_{i=1}^{N} \log p(c^{(i)}) \prod_{j=1}^{D} p(x_j^{(i)} | c^{(i)})$$

$$= \sum_{i=1}^{N} \left[\log p(c^{(i)}) + \sum_{j=1}^{D} \log p(x_j^{(i)} | c^{(i)}) \right]$$

$$= \sum_{i=1}^{N} \log p(c^{(i)}) + \sum_{j=1}^{D} \sum_{i=1}^{N} \log p(x_j^{(i)} | c^{(i)})$$

- Each of these log-likelihood terms depends on different sets of parameters, so they can be optimized independently.
Naïve Bayes: Learning

- Want to maximize \(\sum_{i=1}^{N} \log p(x_j^{(i)} | c^{(i)}) \)
- This is a minor variant of our coin flip example. Let \(\theta_{ab} = p(x_j = a | c = b) \). Note \(\theta_{1b} = 1 - \theta_{0b} \).
- Log-likelihood:

\[
\sum_{i=1}^{N} \log p(x_j^{(i)} | c^{(i)}) = \sum_{i=1}^{N} c^{(i)} x_j^{(i)} \log \theta_{11} + \sum_{i=1}^{N} c^{(i)} (1 - x_j^{(i)}) \log (1 - \theta_{11}) \\
+ \sum_{i=1}^{N} (1 - c^{(i)}) x_j^{(i)} \log \theta_{10} + \sum_{i=1}^{N} (1 - c^{(i)})(1 - x_j^{(i)}) \log (1 - \theta_{10})
\]

- Obtain maximum likelihood estimates by setting derivatives to zero:

\[
\theta_{11} = \frac{N_{11}}{N_{11} + N_{01}}, \quad \theta_{10} = \frac{N_{10}}{N_{10} + N_{00}}
\]

where \(N_{ab} \) is the counts for \(x_j = a \) and \(c = b \).
Naïve Bayes: Inference

- We predict the category by performing inference in the model.
- Apply Bayes’ Rule:

\[
p(c \mid x) = \frac{p(c)p(x \mid c)}{\sum_{c'} p(c')p(x \mid c')} = \frac{p(c) \prod_{j=1}^{D} p(x_j \mid c)}{\sum_{c'} p(c') \prod_{j=1}^{D} p(x_j \mid c')}
\]

- We need not compute the denominator if we’re simply trying to determine the mostly likely \(c \).
- Shorthand notation:

\[
p(c \mid x) \propto p(c) \prod_{j=1}^{D} p(x_j \mid c)
\]
Naïve Bayes is an amazingly cheap learning algorithm!

- Training time: estimate parameters using maximum likelihood
 - Compute co-occurrence counts of each feature with the labels.
 - Requires only one pass through the data!

- Test time: apply Bayes’ Rule
 - Cheap because of the model structure. (For more general models, Bayesian inference can be very expensive and/or complicated.)

We covered the Bernoulli case for simplicity. But our analysis easily extends to other probability distributions.

Unfortunately, it’s usually less accurate in practice compared to discriminative models.

- The problem is the “naïve” independence assumption.
- We’re covering it primarily as a stepping stone towards latent variable models.