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Overview

@ Today we'll cover the first unsupervised learning algorithm for this
course: principal component analysis (PCA)
@ Dimensionality reduction: map the data to a lower dimensional space
o Save computation/memory
o Reduce overfitting
e Visualize in 2 dimensions
@ PCA is a linear model, with a closed-form solution. It's useful for
understanding lots of other algorithms.
e Autoencoders
e Matrix factorizations (next lecture)
@ Today's lecture is very linear-algebra-heavy.

e Especially orthogonal matrices and eigendecompositions.
e Don't worry if you don't get it immediately — next few lectures won't
build on it

e Not on midterm (which only covers up through L9)
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Projection onto a Subspace

i:Uz-'i';,u,:zlu1+22uQ+u

z=UT(x— p)

@ Here, the columns of U form an orthonormal basis for a subspace S.

@ The projection of a point x onto § is the point X € S closest to x. In
machine learning, X is also called the reconstruction of x.

@ z is its representation, or code.
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Projection onto a Subspace

If we have a K-dimensional subspace in a

D-dimensional input space, then x € RP and

z € RK.

If the data points x all lie close to the

subspace, then we can approximate distances,

dot products, etc. in terms of these same )
operations on the code vectors z. T .

If K < D, then it's much cheaper to work
with z than x. uz\/, .\.
A mapping to a space that’s easier to -
manipulate or visualize is called a IV
representation, and learning such a mapping

is representation learning.

Mapping data to a low-dimensional space is
called dimensionality reduction.
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Learning a Subspace

@ How to choose a good subspace S§7
o Need to choose a vector 1 and a D x K matrix U with orthonormal
columns.
o Set i to the mean of the data, p = & S°N | x()
@ Two criteria:
e Minimize the reconstruction error

min — Z [x() — %())2

o Maximize the variance of the code vectors

maxZVar z) = NZZ —z)?
= e 2
1 ,
=N Z (B Exercise: show Z =0

o Note: here, Z denotes the mean, not a derivative.
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Learning a Subspace

@ These two criteria are equivalent! l.e., we'll show
1L 1 ,
2 I = D)2 = const — & 371202
i=1 i

@ Observation: by unitarity,
1K — | = U2 = |12

o By the Pythagorean Theorem,

1< 1<
= 2 i =(i)2
§ 2 IR =l > -2
i=1 i=1
projected variance reconstruction error
1 N
i 2
= 5 2 k=l
i=1

constant
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize the
reconstruction error, is called principal component analysis (PCA).

Recall:

@ Spectral Decomposition: a symmetric matrix A has a full set of
eigenvectors, which can be chosen to be orthogonal. This gives a
decomposition

A=QAQ',

where Q is orthogonal and A is diagonal. The columns of Q are
eigenvectors, and the diagonal entries \; of A are the corresponding
eigenvalues.

@ |l.e., symmetric matrices are diagonal in some basis.

@ A symmetric matrix A is positive semidefinite iff each A\; > 0.
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Principal Component Analysis

Consider the empirical covariance matrix:

N
1 i i T
Z—N;(x()—u)(x()—u)

Recall: Covariance matrices are symmetric and positive semidefinite.

The optimal PCA subspace is spanned

by the top K eigenvectors of X.

e More precisely, choose the first K of

any orthonormal eigenbasis for X.
o The general case is tricky, but we'll

show this for K = 1.

These eigenvectors are called principal

components, analogous to the principal

axes of an ellipse.
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Deriving PCA

@ For K =1, we are fitting a unit vector u, and the code is a scalar

z=u'(x—p).

¥ T = 5 YT - )

=u'Xu
=u'QAQ u Spectral Decomposition
—a'Aa fora=Q'u
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Deriving PCA

Maximize a' Aa = ZjDzl Aja: fora=QTu.
e This is a change-of-basis to the eigenbasis of X.

Assume the \; are in sorted order. For simplicity, assume they are all
distinct.

Observation: since u is a unit vector, then by unitarity, a is also a unit
vector. l.e., jaf =1.

By inspection, set a; = £1 and a; = 0 for j # 1.
Hence, u = Qa = q; (the top eigenvector).

A similar argument shows that the kth principal component is the kth
eigenvector of . If you're interested, look up the Courant-Fischer
Theorem.
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Decorrelation

@ Interesting fact: the dimensions of z are decorrelated. For now, let
Cov denote the empirical covariance.

Cov(z) = Cov(U T (x — p))
=U" Cov(x)U
=U'zU
=U'QAQ"U
= (I 0) A ((I)) by orthogonality
= top left K x K block of A

@ If the covariance matrix is diagonal, this means the features are
uncorrelated.

@ This is why PCA was originally invented (in 1901!).
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Recap:
@ Dimensionality reduction aims to find a low-dimensional
representation of the data.
o PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction error.
@ The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

o PCA gives a set of decorrelated features.
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Applying PCA to faces

Consider running PCA on 2429 19x19 grayscale images (CBCL data)

Can get good reconstructions with only 3 components

Pl S s o el gl s

PCA for pre-processing: can apply classifier to latent representation

o For face recognition PCA with 3 components obtains 79% accuracy on
face/non-face discrimination on test data vs. 76.8% for a Gaussian
mixture model (GMM) with 84 states. (We'll cover GMMs later in the
course.)

Can also be good for visualization
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Applying PCA to faces: Learned basis

Principal components of face images ( “eigenfaces”)
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Applying PCA to digits

reconstructed with 2 bases reconstructed with 10 bases
reconstructed with 100 bases reconstructed with 506 bases

HEEEHB
2,
BEEBEa
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Next: two more interpretations of PCA, which have interesting
generalizations.

@ Autoencoders

@ Matrix factorization (next lecture)
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Autoencoders

@ An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

@ To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

784 units

100 units

reconstruction

decoder

code vector 20 units

100 units
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Linear Autoencoders

Why autoencoders?
@ Map high-dimensional data to two dimensions for visualization

@ Learn abstract features in an unsupervised way so you can apply them
to a supervised task

e Unlabled data can be much more plentiful than labeled data

Uof T CSC 411: 12-PCA 18/23



Linear Autoencoders

@ The simplest kind of autoencoder has one
hidden layer, linear activations, and squared

error loss. X ’ D units ‘
A
W decoder
~ ~112 2
L(x,%) = [[x —X||
VA K units
@ This network com x = WoWx, which i [}
.s etwo .co putes >Wix, ch is W, encoder
a linear function.

e If K > D, we can choose W5 and W; such X ‘ D units ‘
that W,W; is the identity matrix. This isn't
very interesting.

@ But suppose K < D:

e W; maps x to a K-dimensional space, so it's doing dimensionality
reduction.
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Linear Autoencoders

@ Observe that the output of the autoencoder must lie in a
K-dimensional subspace spanned by the columns of W5.

@ We saw that the best possible K-dimensional subspace in terms of
reconstruction error is the PCA subspace.

@ The autoencoder can achieve this by setting W; = U" and W, = U.

@ Therefore, the optimal weights for a linear autoencoder are just the
principal components!

>'e ‘ D units ‘
3
U decoder
Z | Kunits
I
UT encoder
X ‘ D units ‘
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Nonlinear Autoencoders

@ Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

@ This manifold is the image of the decoder.
@ This is a kind of nonlinear dimensionality reduction.

A
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Nonlinear Autoencoders

@ Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)

real

D /23 4 5 &7 8 QFam

30-D
PCA
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Nonlinear Autoencoders

Here's a 2-dimensional autoencoder representation of newsgroup articles.
They're color-coded by topic, but the algorithm wasn’t given the labels.

Interbank Markets Monetary/Economic
- Y - -
i L

Disasters and
Accidents

Leading Ecnomic
Indicators ;

Government

Accounts/ . Borrowings

Earnings
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