CSC 411 Lecture 12: Principal Component Analysis

Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla

University of Toronto

- Today we'll cover the first unsupervised learning algorithm for this course: principal component analysis (PCA)
- Dimensionality reduction: map the data to a lower dimensional space
 - Save computation/memory
 - Reduce overfitting
 - Visualize in 2 dimensions
- PCA is a linear model, with a closed-form solution. It's useful for understanding lots of other algorithms.
 - Autoencoders
 - Matrix factorizations (next lecture)
- Today's lecture is very linear-algebra-heavy.
 - Especially orthogonal matrices and eigendecompositions.
 - Don't worry if you don't get it immediately next few lectures won't build on it
 - Not on midterm (which only covers up through L9)

Projection onto a Subspace

- Here, the columns of **U** form an orthonormal basis for a subspace S.
- The projection of a point x onto S is the point x̃ ∈ S closest to x. In machine learning, x̃ is also called the reconstruction of x.
- z is its representation, or code.

Projection onto a Subspace

- If we have a *K*-dimensional subspace in a *D*-dimensional input space, then $\mathbf{x} \in \mathbb{R}^{D}$ and $\mathbf{z} \in \mathbb{R}^{K}$.
- If the data points x all lie close to the subspace, then we can approximate distances, dot products, etc. in terms of these same operations on the code vectors z.
- If K le D, then it's much cheaper to work with z than x.
- A mapping to a space that's easier to manipulate or visualize is called a representation, and learning such a mapping is representation learning.
- Mapping data to a low-dimensional space is called dimensionality reduction.

Learning a Subspace

- How to choose a good subspace S?
 - Need to choose a vector $\boldsymbol{\mu}$ and a $D \times K$ matrix \mathbf{U} with orthonormal columns.
- Set μ to the mean of the data, $\mu = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$
- Two criteria:
 - Minimize the reconstruction error

$$\min \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} - \tilde{\mathbf{x}}^{(i)}\|^2$$

• Maximize the variance of the code vectors

$$\max \sum_{j} \operatorname{Var}(z_{j}) = \frac{1}{N} \sum_{j} \sum_{i} (z_{j}^{(i)} - \bar{z}_{i})^{2}$$
$$= \frac{1}{N} \sum_{i} ||\mathbf{z}^{(i)} - \bar{\mathbf{z}}||^{2}$$
$$= \frac{1}{N} \sum_{i} ||\mathbf{z}^{(i)}||^{2} \qquad \text{Exercise: show } \bar{\mathbf{z}} = 0$$

 ${\ensuremath{\,\circ\,}}$ Note: here, \bar{z} denotes the mean, not a derivative.

Learning a Subspace

• These two criteria are equivalent! I.e., we'll show

$$\frac{1}{N}\sum_{i=1}^{N} \|\mathbf{x}^{(i)} - \tilde{\mathbf{x}}^{(i)}\|^2 = \operatorname{const} - \frac{1}{N}\sum_{i} \|\mathbf{z}^{(i)}\|^2$$

Observation: by unitarity,

$$\|\mathbf{ ilde{x}}^{(i)}-oldsymbol{\mu}\|=\|\mathbf{U}\mathbf{z}^{(i)}\|=\|\mathbf{z}^{(i)}\|$$

• By the Pythagorean Theorem,

Choosing a subspace to maximize the projected variance, or minimize the reconstruction error, is called principal component analysis (PCA).

Recall:

• Spectral Decomposition: a symmetric matrix **A** has a full set of eigenvectors, which can be chosen to be orthogonal. This gives a decomposition

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top},$$

where **Q** is orthogonal and **A** is diagonal. The columns of **Q** are eigenvectors, and the diagonal entries λ_j of **A** are the corresponding eigenvalues.

- I.e., symmetric matrices are diagonal in some basis.
- A symmetric matrix **A** is positive semidefinite iff each $\lambda_j \ge 0$.

Principal Component Analysis

• Consider the empirical covariance matrix:

$$\mathbf{\Sigma} = rac{1}{N}\sum_{i=1}^{N}(\mathbf{x}^{(i)}-\boldsymbol{\mu})(\mathbf{x}^{(i)}-\boldsymbol{\mu})^{ op}$$

- Recall: Covariance matrices are symmetric and positive semidefinite.
- The optimal PCA subspace is spanned by the top K eigenvectors of Σ.
 - More precisely, choose the first K of any orthonormal eigenbasis for Σ.
 - The general case is tricky, but we'll show this for K = 1.
- These eigenvectors are called principal components, analogous to the principal axes of an ellipse.

Deriving PCA

• For K = 1, we are fitting a unit vector **u**, and the code is a scalar $z = \mathbf{u}^{\top} (\mathbf{x} - \boldsymbol{\mu})$.

$$\frac{1}{N} \sum_{i} [z^{(i)}]^{2} = \frac{1}{N} \sum_{i} (\mathbf{u}^{\top} (\mathbf{x}^{(i)} - \boldsymbol{\mu}))^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbf{u}^{\top} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) (\mathbf{x}^{(i)} - \boldsymbol{\mu})^{\top} \mathbf{u}$$

$$= \mathbf{u}^{\top} \left[\frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) (\mathbf{x}^{(i)} - \boldsymbol{\mu})^{\top} \right] \mathbf{u}$$

$$= \mathbf{u}^{\top} \boldsymbol{\Sigma} \mathbf{u}$$

$$= \mathbf{u}^{\top} \mathbf{Q} \mathbf{A} \mathbf{Q}^{\top} \mathbf{u}$$

$$= \mathbf{a}^{\top} \mathbf{A} \mathbf{a}$$

$$= \sum_{j=1}^{D} \lambda_{j} a_{j}^{2}$$
Spectral Decomposition

Deriving PCA

- Maximize $\mathbf{a}^{\top} \mathbf{\Lambda} \mathbf{a} = \sum_{j=1}^{D} \lambda_j a_j^2$ for $\mathbf{a} = \mathbf{Q}^{\top} \mathbf{u}$.
 - This is a change-of-basis to the eigenbasis of $\pmb{\Sigma}.$
- Assume the λ_i are in sorted order. For simplicity, assume they are all distinct.
- Observation: since **u** is a unit vector, then by unitarity, **a** is also a unit vector. I.e., $\sum_{j} a_{j}^{2} = 1$.
- By inspection, set $a_1 = \pm 1$ and $a_j = 0$ for $j \neq 1$.
- Hence, $\mathbf{u} = \mathbf{Q}\mathbf{a} = \mathbf{q}_1$ (the top eigenvector).
- A similar argument shows that the kth principal component is the kth eigenvector of Σ. If you're interested, look up the Courant-Fischer Theorem.

Decorrelation

• Interesting fact: the dimensions of **z** are decorrelated. For now, let Cov denote the empirical covariance.

$$Cov(z) = Cov(\mathbf{U}^{\top}(\mathbf{x} - \boldsymbol{\mu}))$$

= $\mathbf{U}^{\top} Cov(\mathbf{x})\mathbf{U}$
= $\mathbf{U}^{\top} \boldsymbol{\Sigma} \mathbf{U}$
= $\mathbf{U}^{\top} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{U}$
= $(\mathbf{I} \quad \mathbf{0}) \boldsymbol{\Lambda} \begin{pmatrix} \mathbf{I} \\ \mathbf{0} \end{pmatrix}$ by orthogonality
= top left $K \times K$ block of $\boldsymbol{\Lambda}$

- If the covariance matrix is diagonal, this means the features are uncorrelated.
- This is why PCA was originally invented (in 1901!).

Recap:

- Dimensionality reduction aims to find a low-dimensional representation of the data.
- PCA projects the data onto a subspace which maximizes the projected variance, or equivalently, minimizes the reconstruction error.
- The optimal subspace is given by the top eigenvectors of the empirical covariance matrix.
- PCA gives a set of decorrelated features.

- Consider running PCA on 2429 19x19 grayscale images (CBCL data)
- Can get good reconstructions with only 3 components

- PCA for pre-processing: can apply classifier to latent representation
 - For face recognition PCA with 3 components obtains 79% accuracy on face/non-face discrimination on test data vs. 76.8% for a Gaussian mixture model (GMM) with 84 states. (We'll cover GMMs later in the course.)
- Can also be good for visualization

Applying PCA to faces: Learned basis

Principal components of face images ("eigenfaces")

Applying PCA to digits

Next: two more interpretations of PCA, which have interesting generalizations.

- Autoencoders
- Matrix factorization (next lecture)

- An autoencoder is a feed-forward neural net whose job it is to take an input **x** and predict **x**.
- To make this non-trivial, we need to add a bottleneck layer whose dimension is much smaller than the input.

Why autoencoders?

- Map high-dimensional data to two dimensions for visualization
- Learn abstract features in an unsupervised way so you can apply them to a supervised task
 - Unlabled data can be much more plentiful than labeled data

Linear Autoencoders

 The simplest kind of autoencoder has one hidden layer, linear activations, and squared error loss.

$$\mathcal{L}(\mathbf{x}, \widetilde{\mathbf{x}}) = \|\mathbf{x} - \widetilde{\mathbf{x}}\|^2$$

- This network computes $\tilde{\mathbf{x}} = \mathbf{W}_2 \mathbf{W}_1 \mathbf{x}$, which is a linear function.
- If K ≥ D, we can choose W₂ and W₁ such that W₂W₁ is the identity matrix. This isn't very interesting.
 - But suppose K < D:
 - **W**₁ maps **x** to a *K*-dimensional space, so it's doing dimensionality reduction.

Linear Autoencoders

- Observe that the output of the autoencoder must lie in a K-dimensional subspace spanned by the columns of W₂.
- We saw that the best possible *K*-dimensional subspace in terms of reconstruction error is the PCA subspace.
- The autoencoder can achieve this by setting $\mathbf{W}_1 = \mathbf{U}^{\top}$ and $\mathbf{W}_2 = \mathbf{U}$.
- Therefore, the optimal weights for a linear autoencoder are just the principal components!

Nonlinear Autoencoders

- Deep nonlinear autoencoders learn to project the data, not onto a subspace, but onto a nonlinear manifold
- This manifold is the image of the decoder.
- This is a kind of nonlinear dimensionality reduction.

• Nonlinear autoencoders can learn more powerful codes for a given dimensionality, compared with linear autoencoders (PCA)

Nonlinear Autoencoders

Here's a 2-dimensional autoencoder representation of newsgroup articles. They're color-coded by topic, but the algorithm wasn't given the labels.

