CSC 411 Lecture 11: Neural Networks Il

Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla

University of Toronto

CSC411 Lecll 1/43

Neural Nets for Visual Object Recognition

@ People are very good at recognizing shapes

> Intrinsically difficult, computers are bad at it

@ Why is it difficult?

CSC411 Lecll 2/43

Why is it a Problem?

@ Difficult scene conditions

L

‘
occlusion

[From: Grauman & Leibe]
CSC411 Lecll 3/43

Why is it a Problem?

@ Huge within-class variations. Recognition is mainly about modeling variation.

[Pic from: S. Lazebnik]

CSC411 Lecll 4/43

o~
£
2
o)
©)
=
o
T
=
ok
>
=

@ Tons of classes

NLaNL TOICS VK-
MWTLQ - 'go |\ |@ |/
0 S dmd @)
Y ole-[iJ]d]l
®E oClha i @]
lI*ﬂ1'!&T~
R AL Vel
=L~ S Wi 8-
2~) o =t m=
41 <o V=g ([
JACY VN
e e ASCIE D
e CIE T A)
b A @ e R o

[Biederman]

/43

11

CSC411 Lec

Neural Nets for Object Recognition

@ People are very good at recognizing object
> Intrinsically difficult, computers are bad at it
@ Some reasons why it is difficult:

» Segmentation: Real scenes are cluttered

> Invariances: We are very good at ignoring all sorts of variations that do
not affect class

» Deformations: Natural object classes allow variations (faces, letters,
chairs)

» A huge amount of computation is required

CSC411 Lecll 6/43

How to Deal with Large Input Spaces

@ How can we apply neural nets to images?

@ Images can have millions of pixels, i.e., x is very high dimensional
@ How many parameters do | have?

@ Prohibitive to have fully-connected layers

@ What can we do?

@ We can use a locally connected layer

CSC411 Lecll 7/43

Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., “
face recognition). ranzatolld

CSC411 Lecll 8/43

§

When Will this Work?

When Will this Work?

@ This is good when the input is (roughly) registered

CSC411 Lecll 9/43

General Images

@ The object can be anywhere

[Slide: Y. Zhu]

CSC411 Lecll 10 /43

General Images

@ The object can be anywhere

[Slide: Y. Zhu]

CSC411 Lecll 11/43

General Images

@ The object can be anywhere

[Slide: Y. Zhu]

CSC411 Lecll 12 /43

The Invariance Problem

@ Our perceptual systems are very good at dealing with invariances

> translation, rotation, scaling
» deformation, contrast, lighting

@ We are so good at this that its hard to appreciate how difficult it is

> Its one of the main difficulties in making computers perceive
» We still don't have generally accepted solutions

CSC411 Lecll 13 /43

Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., .
face recognition). Ranzatolld

CSC411 Lecll 14 /43

The replicated feature approach

@ Adopt approach apparently used in
monkey visual systems
The red connections all

have the same weight. @ Use many different copies of the same

feature detector.

O O » Copies have slightly different

positions.
» Could also replicate across scale and

\ O orientation.
| t\

l — > Tricky and expensive

—_—

» Replication reduces the number of
free parameters to be learned.

@ Use several different feature types, each
5 with its own replicated pool of detectors.

» Allows each patch of image to be
represented in several ways.

CSC411 Lecll 15 /43

Convolutional Neural Net

© Idea: statistics are similar at different locations (Lecun 1998)

@ Connect each hidden unit to a small input patch and share the weight across
space

@ This is called a convolution layer and the network is a convolutional network

Share the same parameters across
different locations (assuming input is
stationary):

Convolutions with learned kernels

36
Ranzaton

CSC411 Lecll 16 /43

Convolution

@ Convolution layers are named after the convolution operation.

o If a and b are two arrays,

(a * b)t = Z aTbt_T.

CSC411 Lecll 17 /43

c
.0
)
=

(@)

>

c

(@)
O

“Flip and Filter" interpretation:

43

=
18/

CSC411 Lecll

2-D Convolution

2-D convolution is analogous:

(AxB)j =Y AxBi_sj+
s t

131 T3
0f-1]1| 5k
0 |-1
221
10
511] = 2 1 1]5]7]2
11 6—2»-4
2 11 2164 |-3
o2 |-2 |1

CSC411 Lecll 19 /43

2-D Convolution

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

0/1]0
>l< 4
0|10

CSC411 Lecll 20 /43

2-D Convolution

What does this convolution kernel do?

0|-1]0
 [-1]8]-1
0|-1]0

CSC411 Lecll 21 /43

2-D Convolution

What does this convolution kernel do?

0|-1]0
 [-1]4]
0|-1]0

CSC411 Lecll 22 /43

2-D Convolution

What does this convolution kernel do?

0 -1
%k 2|02
1101

CSC411 Lecll 23 /43

Convolutional Layer

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzaton
CSC411 Lecll 24 /43

Convolutional Layer

32

32

>E§OOO(

]

o wo
synapse
WoZo

—e
axon from a neuron

cell body

szzi +b b I(Z""””b)

output axon
activation
function

Figure: Left: CNN, right: Each neuron computes a linear and activation function

Hyperparameters of a convolutional layer:

@ The number of filters (controls the depth of the output volume)

@ The stride: how many units apart do we apply a filter spatially (this
controls the spatial size of the output volume)

@ The size w x h of the filters

[http://cs231n.github.io/convolutional-networks /]

CSC411 Lecll 25 /43

Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

61
Ranzaton

CSC411 Lecll 26 /43

Pooling Options

@ Max Pooling: return the maximal argument
@ Average Pooling: return the average of the arguments

@ Other types of pooling exist.

CSC411 Lecll 27 /43

224x224x64
112x112x64 Single depth slice
pool
e W 11124
max pool with 2x2 filters
5|/6|7)|8 and stride 2 6 |8
| T 3| 2 3|4
J—— 1| 2 ESHIE4
224 downsampling 112
112
224 y

Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

@ The spatial extent F
@ The stride

[http://cs231n.github.io/convolutional-networks/]
CSC411 Lecll 28 /43

Backpropagation with Weight Constraints

@ The backprop procedure from last lecture can be applied directly to conv
nets.

@ This is covered in csc421.

@ As a user, you don't need to worry about the details, since they're handled
by automatic differentiation packages.

CSC411 Lecll 29 /43

LeNet

Here's the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998:

C3: f. maps 16@10x10

C1: feature maps S4: {. maps 16@5x5

INPUT 6@28x28

32x32

| 1 | Full conﬁection Gaussian
Convolutions Subsampling Convolutions ~ Subsampling Full connection

CSC411 Lecll 30/43

@ Imagenet, biggest dataset for object classification: nttp://image-net.org/

@ 1000 classes, 1.2M training images, 150K for test
~Eu@»Evtiilllﬂﬂmanu;i%§“$ 2§.605l00l$0n
L

SPGB - -
Eﬁ)ﬁcﬂtﬂfﬂlﬂtﬂﬂﬂ'l;
eiflecBazINFEN & 4" 7
Y=o T £ 7-'-,,

CSC411 Lecll 31/43

http://image-net.org/

@ AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to

guess the right category).

204 2048 \dense

dense dense|

1000

192 128

Max 128 Max
pooling pooling

Max
pooling

204 2048

(Krizhevsky et al., 2012)

@ The two processing pathways correspond to 2 GPUs. (At the time, the network

couldn’t fit on one GPU.)

@ AlexNet's stunning performance on the ILSVRC is what set off the deep learning

boom of the last 6 years.

CSC411 Lecll

32/43

150 Layers!

34dayerplain 34-layer residual

@ Networks are now at 150 layers

They use a skip connections with special form

In fact, they don't fit on this screen

af [x] 1% 2| |z [z

Amazing performance!

&

il

A lot of “mistakes’ are due to wrong ground-truth

ililehlild

o

o
—
[
=
=,
[

Skl

weight layer
weight layer

Hx)=F(x)+x @

F(x) identity

X o een

[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

CSC411 Lecll

Results: Object Classification

Revolution of Depth

\ 152 layers
A
\
\
\
\ 16.4
\
22 Iayers 19 Iayers
\ 6.7
8 layers 8 layers shallow

357 I

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lecll

Results: Object Detection

. 101 layers
Revolution of Depth "
/86
Engines of Al
/
visual recognition i v
//
34 2
- 16 layers
‘ shallow | ==
-
HOG, DPM AlexNet VGG ResNet
(RCNN) (RCNN) (Faster RCNN)*

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lecll 35/43

Results: Object Detection

peron 3 .99 A\
W

R péfson :0.987

o9)

dining table : 0.879

cak(_raﬁ

e

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lecll 36 /43

Results: Object Detection

person : 0.989 \
refrigerator : 0.979

ol = o1E Do oo Docid o oo fo oo Do ool o
CSC411 Lecll 37/43

Results: Object Detection

" person :0.910 ‘ person : 0.998

0.998 brella : 0.910 3
person qmbigya handbag : 0.667

{ B maotofevcle s
chairct0757).972 chair 70639
1"

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSCA411 Lecll 38/43

What do CNNs Learn?

Figure: Filters in the first convolutional layer of Krizhevsky et al

CSC411 Lecll 39/43

What do CNNs Learn?

Figure: Filters in the second layer

[http://arxiv.org/pdf/1311.2901v3.pdf]
CSC411 Lecll 40/43

What do CNNs Learn?

Figure: Filters in the third layer

[http://arxiv.org/pdf/1311.2901v3.pdf]

CSC411 Lecll 41/43

What do CNNs Learn?

[http://arxiv.org/pdf/1311.2901v3.pdf]

CSC411 Lecll 42/43

@ Great course dedicated to NN: http://cs231n.stanford.edu
@ Over source frameworks:

» Pytorch http://pytorch.org/
» Tensorflow https://wuw.tensorflow.org/
» Caffe http://caffe.berkeleyvision.org/

@ Most cited NN papers:
https://github.com/terryum/awesome-deep-learning-papers

CSC411 Lecll 43/43

http://cs231n.stanford.edu
http://pytorch.org/
https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
https://github.com/terryum/awesome-deep-learning-papers

	Introduction

