CSC 411 Lecture 9: SVMs and Boosting

Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla

University of Toronto
Overview

- Support Vector Machines
- Connection between Exponential Loss and AdaBoost
Classification: Predict a discrete-valued target

Binary classification: Targets $t \in \{-1, +1\}$

Linear model:

$$z = \mathbf{w}^\top \mathbf{x} + b$$

$$y = \text{sign}(z)$$

Question: How should we choose \mathbf{w} and b?
We can use the $0 - 1$ loss function, and find the weights that minimize it over data points:

$$L_{0-1}(y, t) = \begin{cases} 0 & \text{if } y = t \\ 1 & \text{if } y \neq t \end{cases} = \mathbb{1}\{y \neq t\}.$$

But minimizing this loss is computationally difficult, and it can’t distinguish different hypotheses that achieve the same accuracy.

We investigated some other loss functions that are easier to minimize, e.g., logistic regression with the cross-entropy loss L_{CE}.

Let’s consider a different approach, starting from the geometry of binary classifiers.
Separating Hyperplanes

Suppose we are given these data points from two different classes and want to find a linear classifier that separates them.
The decision boundary looks like a line because \(x \in \mathbb{R}^2 \), but think about it as a \(D - 1 \) dimensional hyperplane.

Recall that a hyperplane is described by points \(x \in \mathbb{R}^D \) such that \(f(x) = w^\top x + b = 0 \).
There are multiple separating hyperplanes, described by different parameters \((w, b)\).
Separating Hyperplanes
Optimal Separating Hyperplane: A hyperplane that separates two classes and maximizes the distance to the closest point from either class, i.e., maximize the margin of the classifier.

Intuitively, ensuring that a classifier is not too close to any data points leads to better generalization on the test data.
Recall that the decision hyperplane is orthogonal (perpendicular) to \mathbf{w}.

The vector $\mathbf{w}^* = \frac{\mathbf{w}}{\|\mathbf{w}\|_2}$ is a unit vector pointing in the same direction as \mathbf{w}.

The same hyperplane could equivalently be defined in terms of \mathbf{w}^*.
The (signed) distance of a point \(x' \) to the hyperplane is

\[
\frac{w^\top x' + b}{\|w\|_2}
\]
Maximizing Margin as an Optimization Problem

- Recall: the classification for the i-th data point is correct when
 \[\text{sign}(\mathbf{w}^\top \mathbf{x}^{(i)} + b) = t^{(i)} \]

- This can be rewritten as
 \[t^{(i)}(\mathbf{w}^\top \mathbf{x}^{(i)} + b) > 0 \]

- Enforcing a margin of C:
 \[t^{(i)} \frac{(\mathbf{w}^\top \mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|_2} \geq C \]
 \[\text{signed distance} \]
Maximizing Margin as an Optimization Problem

Max-margin objective:

\[
\max_{w,b} C \\
\text{s.t. } \frac{t(i)(w^\top x(i) + b)}{\|w\|_2} \geq C \\
i = 1, \ldots, N
\]

Plug in \(C = 1/\|w\|_2 \) and simplify:

\[
\frac{t(i)(w^\top x(i) + b)}{\|w\|_2} \geq \frac{1}{\|w\|_2} \iff t(i)(w^\top x(i) + b) \geq 1
\]

geometric margin constraint

algebraic margin constraint

Equivalent optimization objective:

\[
\min \|w\|_2^2 \\
\text{s.t. } t(i)(w^\top x(i) + b) \geq 1 \\
i = 1, \ldots, N
\]
Maximizing Margin as an Optimization Problem

\[C = \frac{1}{\|w\|_2} \]

\[f(x) = b + w^\top x = 0 \]
Algebraic max-margin objective:

\[
\min_{w, b} \|w\|_2^2 \\
\text{s.t. } t^{(i)}(w^\top x^{(i)} + b) \geq 1 \quad i = 1, \ldots, N
\]

- Observe: if the margin constraint is not tight for \(x^{(i)}\), we could remove it from the training set and the optimal \(w\) would be the same.

- The important training examples are the ones with algebraic margin 1, and are called support vectors.

- Hence, this algorithm is called the (hard) Support Vector Machine (SVM) (or Support Vector Classifier).

- SVM-like algorithms are often called max-margin or large-margin.
How can we apply the max-margin principle if the data are not linearly separable?
Main Idea:

- Allow some points to be within the margin or even be misclassified; we represent this with **slack variables** ξ_i.
- But constrain or penalize the total amount of slack.
Soft margin constraint:

\[
\frac{t^{(i)} (w^\top x^{(i)} + b)}{\|w\|_2} \geq C(1 - \xi_i),
\]

for \(\xi_i \geq 0 \).

Penalize \(\sum_i \xi_i \)
Maximizing Margin for Non-Separable Data Points

Soft-margin SVM objective:

\[
\min_{\mathbf{w}, b, \xi} \frac{1}{2} \|\mathbf{w}\|_2^2 + \gamma \sum_{i=1}^{N} \xi_i
\]

\[\text{s.t. } t^{(i)}(\mathbf{w}^\top \mathbf{x}^{(i)} + b) \geq 1 - \xi_i \quad i = 1, \ldots, N\]

\[\xi_i \geq 0 \quad i = 1, \ldots, N\]

\(\gamma\) is a hyperparameter that trades off the margin with the amount of slack.

- For \(\gamma = 0\), we’ll get \(\mathbf{w} = 0\). (Why?)
- As \(\gamma \to \infty\) we get the hard-margin objective.

Note: it is also possible to constrain \(\sum_i \xi_i\) instead of penalizing it.
From Margin Violation to Hinge Loss

Let’s simplify the soft margin constraint by eliminating ξ_i. Recall:

\[t^{(i)}(w^T x^{(i)} + b) \geq 1 - \xi_i \quad i = 1, \ldots, N \]
\[\xi_i \geq 0 \quad i = 1, \ldots, N \]

- Rewrite as $\xi_i \geq 1 - t^{(i)}(w^T x^{(i)} + b)$.
- **Case 1:** $1 - t^{(i)}(w^T x^{(i)} + b) \leq 0$
 - The smallest non-negative ξ_i that satisfies the constraint is $\xi_i = 0$.
- **Case 2:** $1 - t^{(i)}(w^T x^{(i)} + b) > 0$
 - The smallest ξ_i that satisfies the constraint is $\xi_i = 1 - t^{(i)}(w^T x^{(i)} + b)$.

 Hence, $\xi_i = \max\{0, 1 - t^{(i)}(w^T x^{(i)} + b)\}$.

 Therefore, the slack penalty can be written as

$$\sum_{i=1}^{N} \xi_i = \sum_{i=1}^{N} \max\{0, 1 - t^{(i)}(w^T x^{(i)} + b)\}.$$

- We sometimes write $\max\{0, y\} = (y)_+$
If we write \(y^{(i)}(w, b) = w^\top x + b \), then the optimization problem can be written as

\[
\min_{w, b, \xi} \sum_{i=1}^{N} \left(1 - t^{(i)} y^{(i)}(w, b) \right)_+ + \frac{1}{2\gamma} \|w\|^2
\]

- The loss function \(\mathcal{L}_H(y, t) = (1 - ty)_+ \) is called the hinge loss.
- The second term is the \(L_2 \)-norm of the weights.
- Hence, the soft-margin SVM can be seen as a linear classifier with hinge loss and an \(L_2 \) regularizer.
Hinge loss compared with other loss functions
What we left out:

- How to fit \(\mathbf{w} \):
 - One option: gradient descent
 - Can reformulate with the Lagrange dual
- The “kernel trick” converts it into a powerful nonlinear classifier. We’ll cover this later in the course.
- Classic results from learning theory show that a large margin implies good generalization.
Part 2: reinterpreting AdaBoost in terms of what we’ve learned about loss functions.

\[H_{\text{final}} = \text{sign}(0.42 + 0.65 + 0.92) \]
AdaBoost Revisited

\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \]

\[w_i \leftarrow w_i \exp \left(2\alpha_t \mathbb{I}\{h_t(x^{(i)}) \neq t^{(i)}\} \right) \]

\[\alpha_t = \frac{1}{2} \log \left(\frac{1 - \text{err}_t}{\text{err}_t} \right) \]

\[\text{err}_t = \frac{\sum_{i=1}^{N} w_i \mathbb{I}\{h_t(x^{(i)}) \neq t^{(i)}\}}{\sum_{i=1}^{N} w_i} \]
Additive Models

- Consider a hypothesis class \mathcal{H} with each $h_i : x \mapsto \{-1, +1\}$ within \mathcal{H}, i.e., $h_i \in \mathcal{H}$. These are the “weak learners”, and in this context they’re also called bases.

- An additive model with m terms is given by

$$H_m(x) = \sum_{i=1}^{m} \alpha_i h_i(x),$$

where $(\alpha_1, \cdots, \alpha_m) \in \mathbb{R}^m$.

- Observe that we’re taking a linear combination of base classifiers, just like in boosting.

- We’ll now interpret AdaBoost as a way of fitting an additive model.
Stagewise Training of Additive Models

A greedy approach to fitting additive models, known as *stagewise training*:

1. Initialize $H_0(x) = 0$

2. For $m = 1$ to T:

 ▶ Compute the m-th hypothesis and its coefficient

 $$
 (h_m, \alpha_m) \leftarrow \arg\min_{h \in \mathcal{H}, \alpha} \sum_{i=1}^{N} \mathcal{L}\left(H_{m-1}(x^{(i)}) + \alpha h(x^{(i)}), t^{(i)}\right)
 $$

 ▶ Add it to the additive model

 $$
 H_m = H_{m-1} + \alpha_m h_m
 $$
Additive Models with Exponential Loss

Consider the exponential loss

\[L_E(y, t) = \exp(-ty). \]

We want to see how the stagewise training of additive models can be done.

\[
(h_m, \alpha_m) \leftarrow \arg\min_{h \in H, \alpha} \sum_{i=1}^{N} \exp \left(- \left[H_{m-1}(x^{(i)}) + \alpha h(x^{(i)}) \right] t^{(i)} \right)
\]

\[
= \sum_{i=1}^{N} \exp \left(-H_{m-1}(x^{(i)}) t^{(i)} - \alpha h(x^{(i)}) t^{(i)} \right)
\]

\[
= \sum_{i=1}^{N} \exp \left(-H_{m-1}(x^{(i)}) t^{(i)} \right) \exp \left(-\alpha h(x^{(i)}) t^{(i)} \right)
\]

\[
= \sum_{i=1}^{N} w_i^{(m)} \exp \left(-\alpha h(x^{(i)}) t^{(i)} \right).
\]

Here we defined \(w_i^{(m)} \triangleq \exp \left(-H_{m-1}(x^{(i)}) t^{(i)} \right). \)
Additive Models with Exponential Loss

We want to solve the following minimization problem:

\[(h_m, \alpha_m) \leftarrow \argmin_{h \in \mathcal{H}, \alpha} \sum_{i=1}^{N} w_i^{(m)} \exp \left(-\alpha h(x^{(i)}) t^{(i)} \right). \]

- If \(h(x^{(i)}) = t^{(i)} \), we have \(\exp \left(-\alpha h(x^{(i)}) t^{(i)} \right) = \exp(-\alpha) \).
- If \(h(x^{(i)}) \neq t^{(i)} \), we have \(\exp \left(-\alpha h(x^{(i)}) t^{(i)} \right) = \exp(+\alpha) \).

(recall that we are in the binary classification case with \(\{-1, +1\} \) output values). We can divide the summation to two parts:

\[
\sum_{i=1}^{N} w_i^{(m)} \exp \left(-\alpha h(x^{(i)}) t^{(i)} \right) = e^{-\alpha} \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h(x^{(i)}) = t_i\} + e^{\alpha} \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h(x^{(i)}) \neq t_i\} \\
= (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h(x^{(i)}) \neq t_i\} + e^{-\alpha} \sum_{i=1}^{N} w_i^{(m)} \left[\mathbb{I}\{h(x^{(i)}) \neq t_i\} + \mathbb{I}\{h(x^{(i)}) = t_i\} \right]
\]
Additive Models with Exponential Loss

\[\sum_{i=1}^{N} w_i^{(m)} \exp \left(-\alpha h(x^{(i)}) t^{(i)} \right) = \left(e^\alpha - e^{-\alpha} \right) \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{ h(x^{(i)} \neq t_i \} + e^{-\alpha} \sum_{i=1}^{N} w_i^{(m)} \left[\mathbb{I}\{ h(x^{(i)} \neq t_i \} + \mathbb{I}\{ h(x^{(i)} = t_i \} \right] \]

\[= \left(e^\alpha - e^{-\alpha} \right) \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{ h(x^{(i)} \neq t_i \} + e^{-\alpha} \sum_{i=1}^{N} w_i^{(m)}. \]

Let us first optimize \(h \):
The second term on the RHS does not depend on \(h \). So we get

\[h_m \leftarrow \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{N} w_i^{(m)} \exp \left(-\alpha h(x^{(i)}) t^{(i)} \right) = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{ h(x^{(i)} \neq t_i \}. \]

This means that \(h_m \) is the minimizer of the weighted 0/1-loss.
Additive Models with Exponential Loss

Now that obtained h_m, we want to find α: Define the weighted classification error:

$$\text{err}_m = \frac{\sum_{i=1}^N w_i^{(m)} \mathbb{I}\{h_m(x^{(i)}) \neq t^{(i)}\}}{\sum_{i=1}^N w_i^{(m)}}$$

With this definition and

$$\min_{h \in \mathcal{H}} \sum_{i=1}^N w_i^{(m)} \exp \left(-\alpha h(x^{(i)}) t^{(i)}\right) = \sum_{i=1}^N w_i^{(m)} \mathbb{I}\{h_m(x^{(i)}) \neq t_i\},$$

we have

$$\min_{\alpha} \min_{h \in \mathcal{H}} \sum_{i=1}^N w_i^{(m)} \exp \left(-\alpha h(x^{(i)}) t^{(i)}\right) =$$

$$\min_{\alpha} \left\{ (e^\alpha - e^{-\alpha}) \sum_{i=1}^N w_i^{(m)} \mathbb{I}\{h_m(x^{(i)}) \neq t_i\} + e^{-\alpha} \sum_{i=1}^N w_i^{(m)} \right\}$$

$$= \min_{\alpha} \left\{ (e^\alpha - e^{-\alpha}) \text{err}_m \left(\sum_{i=1}^N w_i^{(m)}\right) + e^{-\alpha} \left(\sum_{i=1}^N w_i^{(m)}\right) \right\}$$

Take derivative w.r.t. α and set it to zero. We get that

$$e^{2\alpha} = \frac{1 - \text{err}_m}{\text{err}_m} \Rightarrow \alpha = \frac{1}{2} \log \left(\frac{1 - \text{err}_m}{\text{err}_m}\right).$$
Additive Models with Exponential Loss

The updated weights for the next iteration is

\[w_i^{(m+1)} = \exp \left(-H_m(x^{(i)})t^{(i)} \right) \]

\[= \exp \left(- \left[H_{m-1}(x^{(i)}) + \alpha_m h_m(x^{(i)}) \right] t^{(i)} \right) \]

\[= \exp \left(-H_{m-1}(x^{(i)}) t^{(i)} \right) \exp \left(-\alpha_m h_m(x^{(i)}) t^{(i)} \right) \]

\[= w_i^{(m)} \exp \left(-\alpha_m h_m(x^{(i)}) t^{(i)} \right) \]

\[= w_i^{(m)} \exp \left(-\alpha_m \left(2\{ h_m(x^{(i)}) = t^{(i)} \} - 1 \right) \right) \]

\[= \exp(\alpha_m)w_i^{(m)} \exp \left(-2\alpha_m \{ h_m(x^{(i)}) = t^{(i)} \} \right) . \]

The term \(\exp(\alpha_m) \) multiplies the weight corresponding to all samples, so it does not affect the minimization of \(h_{m+1} \) or \(\alpha_{m+1} \).
To summarize, we obtain the additive model $H_m(x) = \sum_{i=1}^{m} \alpha_i h_i(x)$ with

$$h_m \leftarrow \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h(x^{(i)}) \neq t_i\},$$

$$\alpha = \frac{1}{2} \log \left(\frac{1 - \text{err}_m}{\text{err}_m} \right), \quad \text{where} \quad \text{err}_m = \frac{\sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h_m(x^{(i)}) \neq t^{(i)}\}}{\sum_{i=1}^{N} w_i^{(m)}},$$

$$w_i^{(m+1)} = w_i^{(m)} \exp \left(-\alpha_m h_m(x^{(i)}) t^{(i)} \right).$$

We derived the AdaBoost algorithm!
Revisiting Loss Functions for Classification

If AdaBoost is minimizing exponential loss, what does that say about its behavior (compared to, say, logistic regression)?

This interpretation allows boosting to be generalized to lots of other loss functions!