CSC 411 Lecture 8: Linear Classification II

Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla

University of Toronto

Today's Agenda

Today's agenda:

- Gradient checking with finite differences
- Learning rates
- Stochastic gradient descent
- Convexity
- Multiclass classification and softmax regression
- Limits of linear classification

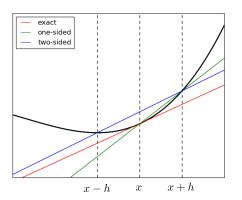
- We've derived a lot of gradients so far. How do we know if they're correct?
- Recall the definition of the partial derivative:

$$\frac{\partial}{\partial x_i} f(x_1, \dots, x_N) = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_N) - f(x_1, \dots, x_i, \dots, x_N)}{h}$$

• Check your derivatives numerically by plugging in a small value of h, e.g. 10^{-10} . This is known as finite differences.

• Even better: the two-sided definition

$$\frac{\partial}{\partial x_i} f(x_1, \dots, x_N) = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_N) - f(x_1, \dots, x_i - h, \dots, x_N)}{2h}$$



- Run gradient checks on small, randomly chosen inputs
- Use double precision floats (not the default for TensorFlow, PyTorch, etc.!)
- Compute the relative error:

$$\frac{|a-b|}{|a|+|b|}$$

• The relative error should be very small, e.g. 10^{-6}

- Gradient checking is really important!
- Learning algorithms often appear to work even if the math is wrong.
- But:
 - They might work much better if the derivatives are correct.
 - Wrong derivatives might lead you on a wild goose chase.
- If you implement derivatives by hand, gradient checking is the single most important thing you need to do to get your algorithm to work well.

Today's Agenda

Today's agenda:

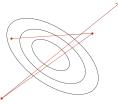
- Gradient checking with finite differences
- Learning rates
- Stochastic gradient descent
- Convexity
- Multiclass classification and softmax regression
- Limits of linear classification

Learning Rate

• In gradient descent, the learning rate α is a hyperparameter we need to tune. Here are some things that can go wrong:

 α too small: slow progress

 α too large: oscillations

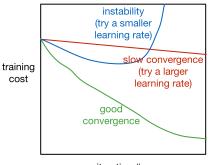


 α much too large: instability

• Good values are typically between 0.001 and 0.1. You should do a grid search if you want good performance (i.e. try 0.1, 0.03, 0.01, ...).

Training Curves

 To diagnose optimization problems, it's useful to look at training curves: plot the training cost as a function of iteration.



iteration #

 Warning: it's very hard to tell from the training curves whether an optimizer has converged. They can reveal major problems, but they can't guarantee convergence.

Today's Agenda

Today's agenda:

- Gradient checking with finite differences
- Learning rates
- Stochastic gradient descent
- Convexity
- Multiclass classification and softmax regression
- Limits of linear classification

ullet So far, the cost function ${\mathcal J}$ has been the average loss over the training examples:

$$\mathcal{J}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}^{(i)} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y(\mathbf{x}^{(i)}, \boldsymbol{\theta}), t^{(i)}).$$

By linearity,

$$\frac{\partial \mathcal{J}}{\partial \boldsymbol{\theta}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \mathcal{L}^{(i)}}{\partial \boldsymbol{\theta}}.$$

- Computing the gradient requires summing over *all* of the training examples. This is known as batch training.
- Batch training is impractical if you have a large dataset (e.g. millions of training examples)!

 Stochastic gradient descent (SGD): update the parameters based on the gradient for a single training example:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{\partial \mathcal{L}^{(i)}}{\partial \boldsymbol{\theta}}$$

- SGD can make significant progress before it has even looked at all the data!
- Mathematical justification: if you sample a training example at random, the stochastic gradient is an unbiased estimate of the batch gradient:

$$\mathbb{E}\left[\frac{\partial \mathcal{L}^{(i)}}{\partial \boldsymbol{\theta}}\right] = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \mathcal{L}^{(i)}}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{J}}{\partial \boldsymbol{\theta}}.$$

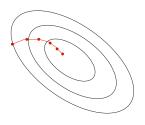
• Problem: if we only look at one training example at a time, we can't exploit efficient vectorized operations.

- Compromise approach: compute the gradients on a medium-sized set of training examples, called a mini-batch.
- Each entire pass over the dataset is called an epoch.
- Stochastic gradients computed on larger mini-batches have smaller variance:

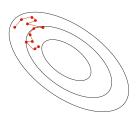
$$\operatorname{Var}\left[\frac{1}{S}\sum_{i=1}^{S}\frac{\partial\mathcal{L}^{(i)}}{\partial\theta_{j}}\right] = \frac{1}{S^{2}}\operatorname{Var}\left[\sum_{i=1}^{S}\frac{\partial\mathcal{L}^{(i)}}{\partial\theta_{j}}\right] = \frac{1}{S}\operatorname{Var}\left[\frac{\partial\mathcal{L}^{(i)}}{\partial\theta_{j}}\right]$$

- The mini-batch size S is a hyperparameter that needs to be set.
 - Too large: takes more memory to store the activations, and longer to compute each gradient update
 - Too small: can't exploit vectorization
 - A reasonable value might be S = 100.

• Batch gradient descent moves directly downhill. SGD takes steps in a noisy direction, but moves downhill on average.



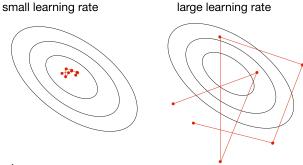
batch gradient descent



stochastic gradient descent

SGD Learning Rate

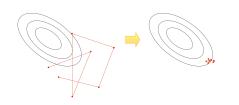
 In stochastic training, the learning rate also influences the fluctuations due to the stochasticity of the gradients.



- Typical strategy:
 - Use a large learning rate early in training so you can get close to the optimum
 - Gradually decay the learning rate to reduce the fluctuations

SGD Learning Rate

 Warning: by reducing the learning rate, you reduce the fluctuations, which can appear to make the loss drop suddenly. But this can come at the expense of long-run performance.



Today's Agenda

Today's agenda:

- Gradient checking with finite differences
- Learning rates
- Stochastic gradient descent
- Convexity
- Multiclass classification and softmax regression
- Limits of linear classification

Convex Sets

Convex Sets

• A set S is convex if any line segment connecting points in S lies entirely within S. Mathematically,

$$\textbf{x}_1,\textbf{x}_2\in\mathcal{S}\quad\Longrightarrow\quad \lambda\textbf{x}_1+(1-\lambda)\textbf{x}_2\in\mathcal{S}\quad \mathrm{for}\ 0\leq\lambda\leq1.$$

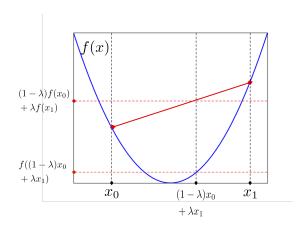
• A simple inductive argument shows that for $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{S}$, weighted averages, or convex combinations, lie within the set:

$$\lambda_1 \mathbf{x}_1 + \cdots + \lambda_N \mathbf{x}_N \in \mathcal{S}$$
 for $\lambda_i > 0$, $\lambda_1 + \cdots + \lambda_N = 1$.

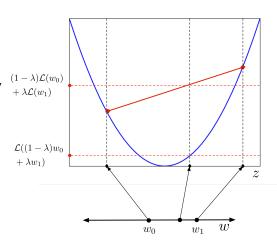
• A function f is convex if for any x_0, x_1 in the domain of f,

$$f((1-\lambda)\mathbf{x}_0 + \lambda\mathbf{x}_1) \leq (1-\lambda)f(\mathbf{x}_0) + \lambda f(\mathbf{x}_1)$$

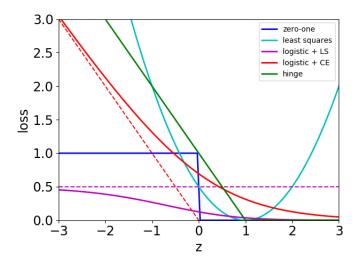
- Equivalently, the set of points lying above the graph of f is convex.
- Intuitively: the function is bowl-shaped.



- We just saw that the least-squares loss function $\frac{1}{2}(y-t)^2$ is convex as a function of y
- For a linear model, z = w^Tx + b is a linear function of w and b. If the loss function is convex as a function of z, then it is convex as a function of w and b.



Which loss functions are convex?



Why we care about convexity

- All critical points are minima
- Gradient descent finds the optimal solution (more on this in a later lecture)

Today's Agenda

Today's agenda:

- Gradient checking with finite differences
- Learning rates
- Stochastic gradient descent
- Convexity
- Multiclass classification and softmax regression
- Limits of linear classification

• What about classification tasks with more than two categories?



- Targets form a discrete set $\{1, \ldots, K\}$.
- It's often more convenient to represent them as one-hot vectors, or a one-of-K encoding:

$$\mathbf{t} = \underbrace{(0, \dots, 0, 1, 0, \dots, 0)}_{\text{entry } k \text{ is } 1}$$

- Now there are D input dimensions and K output dimensions, so we need $K \times D$ weights, which we arrange as a weight matrix \mathbf{W} .
- Also, we have a K-dimensional vector **b** of biases.
- Linear predictions:

$$z_k = \sum_j w_{kj} x_j + b_k$$

Vectorized:

$$z = Wx + b$$

 A natural activation function to use is the softmax function, a multivariable generalization of the logistic function:

$$y_k = \operatorname{softmax}(z_1, \dots, z_K)_k = \frac{e^{z_k}}{\sum_{k'} e^{z_{k'}}}$$

- The inputs z_k are called the logits.
- Properties:
 - Outputs are positive and sum to 1 (so they can be interpreted as probabilities)
 - If one of the z_k 's is much larger than the others, $\operatorname{softmax}(\mathbf{z})$ is approximately the argmax. (So really it's more like "soft-argmax".)
 - **Exercise:** how does the case of K = 2 relate to the logistic function?
- Note: sometimes $\sigma(\mathbf{z})$ is used to denote the softmax function; in this class, it will denote the logistic function applied elementwise.

 If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function:

$$egin{aligned} \mathcal{L}_{ ext{CE}}(\mathbf{y},\mathbf{t}) &= -\sum_{k=1}^{\mathcal{K}} t_k \log y_k \ &= -\mathbf{t}^{ op}(\log \mathbf{y}), \end{aligned}$$

where the log is applied elementwise.

• Just like with logistic regression, we typically combine the softmax and cross-entropy into a softmax-cross-entropy function.

Softmax regression:

$$\begin{aligned} \textbf{z} &= \textbf{W} \textbf{x} + \textbf{b} \\ \textbf{y} &= \operatorname{softmax}(\textbf{z}) \\ \mathcal{L}_{\mathrm{CE}} &= -\textbf{t}^{\top}(\log \textbf{y}) \end{aligned}$$

• Gradient descent updates are derived in the readings:

$$\frac{\partial \mathcal{L}_{\mathrm{CE}}}{\partial z} = y - t$$

Today's Agenda

Today's agenda:

- Gradient checking with finite differences
- Learning rates
- Stochastic gradient descent
- Convexity
- Multiclass classification and softmax regression
- Limits of linear classification

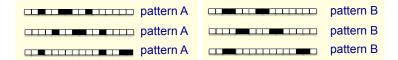
• Visually, it's obvious that **XOR** is not linearly separable. But how to show this?

Showing that XOR is not linearly separable

- Half-spaces are obviously convex.
- Suppose there were some feasible hypothesis. If the positive examples are in the positive half-space, then the green line segment must be as well.
- Similarly, the red line segment must line within the negative half-space.

• But the intersection can't lie in both half-spaces. Contradiction!

A more troubling example



- These images represent 16-dimensional vectors. White = 0, black = 1.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
- Translation invariance is commonly desired in vision!
- Suppose there's a feasible solution. The average of all translations of A is the vector (0.25, 0.25, ..., 0.25). Therefore, this point must be classified as A.
- Similarly, the average of all translations of B is also $(0.25, 0.25, \dots, 0.25)$. Therefore, it must be classified as B. Contradiction!

Credit: Geoffrey Hinton

 Sometimes we can overcome this limitation using feature maps, just like for linear regression. E.g., for XOR:

$$\psi(\mathbf{x}) = \begin{pmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{pmatrix}$$

x_1	<i>x</i> ₂	$\psi_1(\mathbf{x})$	$\psi_2(\mathbf{x})$	$\psi_{3}(x)$	t
0	0	0	0	0	0
0	1	0	1	0	1
1	0	1	0	0	1
1	1	1	1	1	0

- This is linearly separable. (Try it!)
- Not a general solution: it can be hard to pick good basis functions. Instead, we'll use neural nets to learn nonlinear hypotheses directly.