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Overview

Classification: predicting a discrete-valued target

Binary classification: predicting a binary-valued target

Examples

predict whether a patient has a disease, given the presence or absence
of various symptoms
classify e-mails as spam or non-spam
predict whether a financial transaction is fraudulent
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Overview

Binary linear classification

classification: predict a discrete-valued target

binary: predict a binary target t ∈ {0, 1}
Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.

linear: model is a linear function of x, followed by a threshold:

z = wTx + b

y =

{
1 if z ≥ r
0 if z < r

UofT CSC 411: 07-Linear Classification 3 / 23



Some simplifications

Eliminating the threshold

We can assume WLOG that the threshold r = 0:

wTx + b ≥ r ⇐⇒ wTx + b − r︸ ︷︷ ︸
,b′

≥ 0.

Eliminating the bias

Add a dummy feature x0 which always takes the value 1. The weight
w0 is equivalent to a bias.

Simplified model

z = wTx

y =

{
1 if z ≥ 0
0 if z < 0
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Examples

NOT

x0 x1 t

1 0 1
1 1 0

b > 0

b + w < 0

b = 1, w = −2
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Examples

AND

x0 x1 x2 t

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

b < 0

b + w2 < 0

b + w1 < 0

b + w1 + w2 > 0

b = −1.5, w1 = 1, w2 = 1
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The Geometric Picture

Input Space, or Data Space

Here we’re visualizing the NOT example

Training examples are points

Hypotheses are half-spaces whose boundaries pass through the origin

The boundary is the decision boundary

In 2-D, it’s a line, but think of it as a hyperplane

If the training examples can be separated by a linear decision rule,
they are linearly separable.
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The Geometric Picture

Weight Space

w0 > 0

w0 + w1 < 0

Hypotheses are points

Training examples are half-spaces whose boundaries pass through the
origin

The region satisfying all the constraints is the feasible region; if this
region is nonempty, the problem is feasible
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The Geometric Picture

The AND example requires three dimensions, including the dummy one.

To visualize data space and weight space for a 3-D example, we can look at
a 2-D slice:

The visualizations are similar, except that the decision boundaries and the
constraints need not pass through the origin.
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The Geometric Picture

Visualizations of the AND example

Data Space

Slice for x0 = 1

Weight Space

Slice for w0 = −1

What happened to the fourth constraint?
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The Geometric Picture

Some datasets are not linearly separable, e.g. XOR

Proof coming next lecture...
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Overview

Recall: binary linear classifiers. Targets t ∈ {0, 1}

z = wTx + b

y =

{
1 if z ≥ 0
0 if z < 0

What if we can’t classify all the training examples correctly?

Seemingly obvious loss function: 0-1 loss

L0−1(y , t) =

{
0 if y = t
1 if y 6= t

= 1y 6=t .
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Attempt 1: 0-1 loss

As always, the cost J is the average loss over training examples; for
0-1 loss, this is the error rate:

J =
1

N

N∑
i=1

1y (i) 6=t(i)
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Attempt 1: 0-1 loss

Problem: how to optimize?

Chain rule:
∂L0−1
∂wj

=
∂L0−1
∂z

∂z

∂wj

But ∂L0−1/∂z is zero everywhere it’s defined!

∂L0−1/∂wj = 0 means that changing the weights by a very small
amount probably has no effect on the loss.
The gradient descent update is a no-op.
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Attempt 2: Linear Regression

Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as a surrogate loss function.

We already know how to fit a linear regression model. Can we use
this instead?

y = w>x + b

LSE(y , t) =
1

2
(y − t)2

Doesn’t matter that the targets are actually binary.

Threshold predictions at y = 1/2.
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Attempt 2: Linear Regression

The problem:

The loss function hates when you make correct predictions with high
confidence!

If t = 1, it’s more unhappy about y = 10 than y = 0.
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Attempt 3: Logistic Activation Function

There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

The logistic function is a kind of sigmoidal, or
S-shaped, function:

σ(z) =
1

1 + e−z

A linear model with a logistic nonlinearity is known as log-linear:

z = w>x + b

y = σ(z)

LSE(y , t) =
1

2
(y − t)2.

Used in this way, σ is called an activation function, and z is called the
logit.
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Attempt 3: Logistic Activation Function

The problem:
(plot of LSE as a function of z)

∂L
∂wj

=
∂L
∂z

∂z

∂wj

wj ← wj − α
∂L
∂wj

In gradient descent, a small gradient (in magnitude) implies a small
step.

If the prediction is really wrong, shouldn’t you take a large step?
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Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probability
that t = 1.

The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

Cross-entropy loss captures this intuition:

LCE(y , t) =

{
− log y if t = 1
− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)
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Logistic Regression

Logistic Regression:

z = w>x + b

y = σ(z)

=
1

1 + e−z

LCE = −t log y − (1− t) log(1− y)

[[gradient derivation in the notes]]
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Logistic Regression

Problem: what if t = 1 but you’re really confident it’s a negative
example (z � 0)?

If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

y = σ(z) ⇒ y ≈ 0

LCE = −t log y − (1− t) log(1− y) ⇒ computes log 0

Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function.

LLCE(z , t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez)

Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)
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Logistic Regression

Comparison of loss functions:
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Logistic Regression

Comparison of gradient descent updates:

Linear regression:

w← w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Logistic regression:

w← w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Not a coincidence! These are both examples of matching loss
functions, but that’s beyond the scope of this course.
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