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Question 1. [15 marks]

Mark whether the following statements are true or false by placing a tick in the corresponding
column for each row.

Statement True False
A Neural Network with no hidden layers and logistic activation function in the
output layer produces a linear decision boundary
A Gaussian Naive Bayes classifier assumes a diagonal covariance matrix for
the input features given the class labels
Gaussian Discriminant Analysis has a quadratic decision boundary when we
use a full covariance matrix
Boosting improves performance by reducing variance
Nearest neighbors scales well to high dimensions since it does not need to learn
any parameters
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Question 2. [30 marks]

Explain each of the following terms. Be concise. Mentioning irrelevant information will result in
losing marks. Try to use no more than 5 lines.

• Bagging

• Kernel trick

• Convolution layer
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• Exploration vs exploitation

• Naive Bayes

• One-VS-all classifier
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Question 3. [15 marks]

Part (a) [5 marks]

How can you tell if the model you are training is overfitting?

Part (b) [10 marks]

Describe two methods to reduce overfitting
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Question 4. [30 marks]

For the following you do not need to write vectorized code - for loops are fine. Your code should
be detailed enough to be implemented by somebody without machine learning expertise using a
package like numpy.

Part (a) [20 marks]

Write pseudo-code implementing K-means clustering given inputs x(1), . . . ,x(N) ∈ Rd and number
of clusters k. Your algorithm should use Euclidean distance. Clearly state your stopping condition.
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Part (b) [10 marks]

Consider a differentiable loss function ℓ(w,x, y) and a dataset D = (x(1), y(1)), ...(x(n), y(N)). We
aim to optimize the average loss 1

N

∑N
i=1 ℓ(w,x(i), y(i)) with respect to w.

Write pseudo-code implementing mini-batch SGD optimization with the following inputs:

1. Differentiable loss ℓ(w,x, y) with gradient ∇wℓ(w,x, y)

2. Dataset D

3. Batch size m

4. Initial point w0

5. Number of steps T and learning rate policy α1, ..., αT .
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Question 5. [35 marks]

In this question we will derive the EM algorithm for a mixture model with Bernoulli Naive Bayes
components.

Consider a dataset consisting of inputs x(1), ...,x(N) which are binary {0, 1} vectors of dimension d.
We will model these points as being distributed according to a mixture of K Bernoulli Naive Bayes
components.

Take p(z = k|π) = πk and the vector of parameters of the jth Bernoulli Naive Bayes component
as µj. We write Θ = {π,µ1, ...,µK} to represent the collection of all model parameters. Then we
have,

p(x|z = k,Θ) =
d∏

j=1

µ
xj

kj(1− µkj)
(1−xj)

Part (a) [5 marks]

Derive the explicit formula for the log-likelihood log(p(x(1), ...,x(N); Θ)).
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Part (b) [5 marks]

Define γik = P (z = k|x(i); Θold) where Θold are some fixed values of the parameters. Derive an
expression for γik in terms of these fixed parameter values and the data.

Part (c) [15 marks]

Derive the closed form solution for Θnew = argmaxΘ
∑N

i=1 EP (z(i)|x(i);Θold)[log(p(x
(i), z(i); Θ))] in

terms of γik and the data. You only need to optimize µ1, ...,µK .
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Part (d) [10 marks]

Write pseudo-code implementing the EM algorithm for optimizing a mixture of Bernoulli Naive
Bayes components. Fix πk = 1/K.
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Question 6. [20 marks]

To show that a function, k(x,y), is a kernel it is sufficient to show that its symmetric Gram matrix is
positive semi-definite. That is, the matrix Kij = k(xi,xj) satisfies xTKx ≥ 0 for all x. Equivalently
we could show that we can write k(x,y) = ⟨ϕ(x), ϕ(y)⟩ for some mapping ϕ.

Prove the following properties of kernels:

1. The function k(x,y) = α is a kernel for α > 0.

2. k(x,y) = f(x) · f(y) is a kernel for all f : Rd → R.

3. If k1(x,y) and k2(x,y) are kernels then k(x,y) = a · k1(x,y) + b · k2(x,y) for a, b > 0 is a
kernel.

4. If k1(x,y) is a kernel then k(x,y) = k1(x,y)√
k1(x,x)

√
k1(y,y)

is a kernel (hint: use the features ϕ such
that k1(x,y) = ⟨ϕ(x), ϕ(y)⟩).
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Question 7. [20 marks]

Consider a 2-layer neural network. The network has two input units, two hidden units and a single
output unit. For this question we do not include a bias term in any layer of the network.

x1

x2

o

Hidden
layer

Input
layer

Output
layer

The hidden layer uses a Sigmoid activation function: f(x) =
1

1 + e−x
.

Part (a) [2 marks]

How many total parameters does the network contain? Do not count hyperparameters.

Part (b) [5 marks]

Denote the network parameters in layer j by the matrix Wj (for j = 1, 2). Write an expression for
the neural network output, o, using the inputs x = (x1, x2) and the network parameters.
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Part (c) [13 marks]

Consider training this network to minimize the squared error: ℓ(o, t) = (o− t)2. Derive the gradient
of each layer’s parameters using the backpropagation algorithm.

Print your name in this box.
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