Homework 3

Deadline: Friday, Oct. 12, at 11:59pm.

Submission: You need to submit three files through MarkUs¹:

- Your answers to Questions 1 and 2 as a PDF file titled hw3_writeup.pdf. You can produce the file however you like (e.g. LATEX, Microsoft Word, scanner), as long as it is readable.
- Your completed code files q1.py and q2.py

Neatness Point: One of the 10 points will be given for neatness. You will receive this point as long as we don't have a hard time reading your solutions or understanding the structure of your code.

Late Submission: 10% of the marks will be deducted for each day late, up to a maximum of 3 days. After that, no submissions will be accepted.

Collaboration. Weekly homeworks are individual work. See the Course Information handout² for detailed policies.

Data. In this assignment we will be working with the Boston Housing dataset³. This dataset contains 506 entries. Each entry consists of a house price and 13 features for houses within the Boston area. We suggest working in python and using the scikit-learn package⁴ to load the data.

Starter Code. Starter code written in Python is provided for Question 2.

1. [3pts] Robust Regression. One problem with linear regression using squared error loss is that it can be sensitive to outliers. Another loss function we could use is the *Huber loss*, parameterized by a hyperparameter δ :

$$\begin{split} L_{\delta}(y,t) &= H_{\delta}(y-t) \\ H_{\delta}(a) &= \begin{cases} \frac{1}{2}a^2 & \text{if } |a| \leq \delta \\ \delta(|a| - \frac{1}{2}\delta) & \text{if } |a| > \delta \end{cases} \end{split}$$

- (a) [1pt] Sketch the Huber loss $L_{\delta}(y,t)$ and squared error loss $L_{SE}(y,t) = \frac{1}{2}(y-t)^2$ for t = 0, either by hand or using a plotting library. Based on your sketch, why would you expect the Huber loss to be more robust to outliers?
- (b) [1pt] Just as with linear regression, assume a linear model:

$$y = \mathbf{w}^\top \mathbf{x} + b.$$

Give formulas for the partial derivatives $\partial L_{\delta}/\partial \mathbf{w}$ and $\partial L_{\delta}/\partial b$. (We recommend you find a formula for the derivative $H'_{\delta}(a)$, and then give your answers in terms of $H'_{\delta}(y-t)$.)

¹https://markus.teach.cs.toronto.edu/csc411-2018-09

²http://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/syllabus.pdf

³http://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

⁴http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html

(c) [1pt] Write Python code to perform (full batch mode) gradient descent on this model. Assume the training dataset is given as a design matrix X and target vector y. Initialize \mathbf{w} and b to all zeros. Your code should be vectorized, i.e. you should not have a for loop over training examples or input dimensions. You may find the function np.where helpful.

Submit your code as q1.py.

2. [6pts] Locally Weighted Regression.

(a) [2pts] Given $\{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(N)}, y^{(N)})\}$ and positive weights $a^{(1)}, ..., a^{(N)}$ show that the solution to the *weighted* least squares problem

$$\mathbf{w}^* = \arg\min\frac{1}{2}\sum_{i=1}^N a^{(i)}(y^{(i)} - \mathbf{w}^T \mathbf{x}^{(i)})^2 + \frac{\lambda}{2}||\mathbf{w}||^2$$
(1)

is given by the formula

$$\mathbf{w}^* = \left(\mathbf{X}^T \mathbf{A} \mathbf{X} + \lambda \mathbf{I}\right)^{-1} \mathbf{X}^T \mathbf{A} \mathbf{y}$$
(2)

where **X** is the design matrix (defined in class) and **A** is a diagonal matrix where \mathbf{A}_{ii} = $a^{(i)}$

It may help you to review Section 3.1 of the csc321 notes⁵.

(b) [2pts] Locally reweighted least squares combines ideas from k-NN and linear regression. For each new test example \mathbf{x} we compute distance-based weights for each training example $a^{(i)} = \frac{\exp(-||\mathbf{x}-\mathbf{x}^{(i)}||^2/2\tau^2)}{\sum_j \exp(-||\mathbf{x}-\mathbf{x}^{(j)}||^2/2\tau^2)}$, computes $\mathbf{w}^* = \arg\min\frac{1}{2}\sum_{i=1}^N a^{(i)}(y^{(i)} - \mathbf{w}^T\mathbf{x}^{(i)})^2 + \frac{1}{2}\sum_{i=1}^N a^{(i)}(y^{(i)} - \mathbf{w}^T\mathbf{x}^{(i)})^2$ $\frac{\lambda}{2} ||\mathbf{w}||^2$ and predicts $\hat{y} = \mathbf{x}^T \mathbf{w}^*$. Complete the implementation of locally reweighted least squares by providing the missing parts for q2.py.

Important things to notice while implementing: First, do not invert any matrix, use a linear solver (numpy.linalg.solve is one example). Second, notice that $\frac{\exp(A_i)}{\sum_j \exp(A_j)}$ $\frac{\exp(A_i - B)}{\sum_j \exp(A_j - B)}$ but if we use $B = \max_j A_j$ it is much more numerically stable as $\frac{\exp(A_i)}{\sum_j \exp(A_j)}$ overflows/underflows easily. This is handled automatically in the scipy package with the scipy.misc.logsumexp function⁶.

- (c) [1pt] Randomly hold out 30% of the dataset as a validation set. Compute the average loss for different values of τ in the range [10,1000] on both the training set and the validation set. Plot the training and validation losses as a function of τ (using a log scale for τ).
- (d) [1pt] How would you expect this algorithm to behave as $\tau \to \infty$? When $\tau \to 0$? Is this what actually happened?

⁵http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/readings/L02%20Linear%20Regression.pdf ⁶https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.misc.logsumexp.html