
CSC411/2515 Fall 2018 Midterm Solutions

Version A

1. [1pt] Give one reason why an algorithm implemented in terms of matrix and vector
operations can be faster than the same algorithm implemented in terms of for-loops.

Possible answers include:

• The operations can be implemented in a low-level language like C or Fortran,
thereby eliminating the Python interpreter overhead of for-loops.

• The linear algebra libraries are carefully engineered (e.g. for cache efficiency).

• Matrix operations can be parallelized on a GPU architecture.

Mean: 0.84/1

2. [2pts] Briefly explain two advantages of decision trees over K-nearest-neighbors.

Possible answers include:

• good when there are lots of attributes, but only a few are important

• good with discrete attributes

• easily deal with missing values (just treat as another value)

• robust to scale of inputs

• fast at test time

• more interpretable

Mean: 1.62/2

3. [1pt] TRUE or FALSE: AdaBoost will eventually choose a weak classifier that achieves
a weighted error rate of 0. Briefly justify your answer.

FALSE. If the weak classifier achieves a weighted error rate of 0, that means it classifies
all the training examples correctly. This only happens if we’re very lucky, since then
it means this weak classifier would be chosen in the first iteration, and the algorithm
would immediately achieve perfect training accuracy.

Mean: 0.40/1

4. [1pt] In class, we considered using the squared Euclidean norm of the weights, ‖w‖2,
as a regularizer. Suppose we instead used the Euclidean norm ‖w‖ as a regularizer
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(i.e. without squaring it). Briefly explain one way in which this would lead to different
behavior.

Possible answers include:

• it’s more willing to allow the weights to get very large

• it tries harder to set w to exactly 0

Mean: 0.46/1

5. [2pts] Recall that hyperparameters are often tuned using a validation set.

(a) [1pt] Give an example of a hyperparameter which it is OK to tune on the training
set (rather than a validation set). Briefly explain your answer.

Hyperparameters relating to optimization can be tuned on the training set, since
they determine the rate of convergence rather than the amount of overfitting.
Possible answers include the learning rate, momentum decay factor, or batch size.

Marking: Half credit for saying that no hyperparameters can be tuned on the
training set, and giving a reasonable justification. No credit for giving an incorrect
example (e.g. a regularization hyperparameter).

(b) [1pt] Give an example of a hyperparameter which should be tuned on a validation
set, rather than the training set. Briefly explain your answer.

Hyperparameters that control overfitting should be tuned on the validation set,
since tuning them on the training set would always choose the most complex
model, the weakest regularizer, etc. Examples include K in KNN, the number of
steps of boosting, the depth of a decision tree, the L2 regularization weight, the
slack penalty for a soft-margin SVM, the number of units or layers in a neural
net, etc.

Marking: Most answers were either right or wrong for this one.

Mean: 1.39/2

6. [2pts] In this question, you will write NumPy code to implement a 1-nearest-neighbour
classifier. Assume you are given an N ×D data matrix X, where each row corresponds
to one of the input vectors, and an integer array y with the corresponding labels. (You
may assume the labels are integers from 1 to K.) You are given a query vector x query.
Your job is to return the predicted class (as an integer). Do not use a for-loop.

If you don’t remember the API for a NumPy operation, then for partial credit, explain
what you are trying to do.
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dist = np.sum((X - x_query)**2, axis=1)

return y[np.argmin(dist)]

Marking: 1.5 points for the distance computation, 0.5 for the rest. We were very
generous about the APIs, e.g. we gave full credit for things like dist.smallest() as
long as it was obvious what you were trying to do.

Mean: 1.11/2

7. [2pts] Consider the classification problem with the following dataset:

x1 x2 x3 t
0 0 0 1
0 1 0 0
0 1 1 1
1 1 1 0

Your job is to find a linear classifier with weights w1, w2, w3, and b which correctly
classifies all of these training examples. None of the examples should lie on the decision
boundary.

(a) [1pt] Give the set of linear inequalities the weights and bias must satisfy.

b > 0

w2 + b < 0

w2 + w3 + b > 0

w1 + w2 + w3 + b < 0

(b) [1pt] Give a setting of the weights and bias that correctly classifies all the training
examples. You don’t need to show your work, but it might help you get partial
credit.

Marking: Half a point off for the inequalities not being strict (we asked for the
examples not to lie on the decision boundary).

Many answers are possible. Here’s one:

b = 1

w1 = −2

w2 = −2

w3 = 2
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Marking: You should have received full credit if your answer is consistent with part
(a). Half credit can be given if the work is shown.

Mean: 1.41/2

8. [2pts] Recall that in bagging, we compute an average of the predictions yavg = 1
m

∑m
i=1 yi,

where yi denotes the prediction made by the model trained on the ith bootstrapped
dataset. Recall that these predictions are not fully independent, i.e. they are cor-
related because their training sets come from the same underlying dataset. Suppose
Var[yi] = σ2 and the correlation between yi and yj is ρ for i 6= j. Give the formula for
the variance Var[yavg]. (If you don’t remember the formula from lecture, you should be
able to figure it out from the properties of covariance. In either case, you should justify
where the formula comes from.)

Var(yavg) = Var

(
1

m

m∑
i=1

yi

)

=
1

m2
Var

(
m∑
i=1

yi

)

=
1

m2

m∑
i=1

m∑
j=1

Cov(yi, yj)

=
1

m2

[
mσ2 +m(m− 1)ρσ2

]
=

1

m
σ2 +

m− 1

m
ρσ2

Marking: Half a point for each of the following:

(a) making the substitution given for yavg

(b) moving 1/m outside the variance to 1/m2

(c) applying a correct covariance formula

(d) arriving at the final correct expression

In the case of a correct answer with an incorrect or incomplete derivation, 1 point was
given for the answer, plus half a point for each of the above.

Mean: 0.89/2
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9. [2pts] Consider a regression problem where the input is a scalar x. Suppose we know
that the dataset is generated by the following process. First, the target t is chosen from
{0, 1} with equal probability. If t = 0, then x is sampled from a uniform distribution
over the interval [1, 2]. If t = 1, then x is sampled from a uniform distribution over
the interval [0, 2]. Give a function f(x), defined for x ∈ [0, 2], such that y∗ = f(x) is
the Bayes optimal predictor for t given x. (Note that even though t is binary valued,
this is a regression problem, with squared error loss.)

Our job is to compute f(x) = E[t|x], the formula for the Bayes optimal predictor.

Note that p(x|t = 1) = 1/2 on [0, 2] and 0 elsewhere, and p(x|t = 0) = 1 on [1, 2] and
0 elsewhere. By Bayes’ Rule, for x ∈ [0, 1],

p(t = 1|x) =
p(t = 1)p(x|t = 1)

p(t = 0)p(x|t = 0) + p(t = 1)p(x|t = 1)

=
1
2
· 1
2

1
2
· 0 + 1

2
· 1
2

= 1

And for x ∈ [1, 2],

p(t = 1|x) =
p(t = 1)p(x|t = 1)

p(t = 0)p(x|t = 0) + p(t = 1)p(x|t = 1)

=
1
2
· 1
2

1
2
· 1 + 1

2
· 1
2

=
1

3

Hence,

f(x) =

{
1 if 0 ≤ x ≤ 1
1
3

if 1 < x ≤ 2
.

Marking: One point for writing down y∗ = E[t|x] or showing understanding that this
is the right thing to compute. Half a point for the correct expectation in each of the two
intervals.

Mean: 0.45/2
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Version B

1. As discussed in lecture, when applying K-nearest-neighbors, it is common to normalize
each input dimension to unit variance.

(a) [1pt] Why might it be advantageous to do this?

If one feature has higher variance than the others, it will be treated as more
important. This is problematic if the features have arbitrary scales, since the
importance of a feature would depend on the unit used. Normalizing to unit
variance fixes this problem.

(b) [1pt] When might this normalization step not be a good idea? (Hint: You may
want to consider the task of classifying images of handwritten digits, where the
digit is centered within the image.)

The fact that a feature has higher variance might indicate it is actually more
important. For instance, in MNIST classification, pixels near the boundary are
almost always off, and hence not very informative for the decision. Scaling them
up to unit variance would just add noise to the classifications.

Mean: 0.96/2

2. [1pt] In random forests, what is the motivation for randomizing the set of attributes
considered for each split?

The aim is to reduce the correlation between the predictions of different classifiers in
the ensemble, thereby reducing the variance of the average prediction.

Mean: 0.65/1

3. [1pt] Suppose you want to evaluate the test error rate of a 1-nearest-neighbors classifier.
Assume you implement the algorithm the näıve way, i.e. by explicitly computing all the
distances and taking the min, rather than by using a fancy data structure. What is
the running time of evaluating the test error? Give your answer in big-O notation, in
terms of the number of training examples Ntrain, the number of test examples Ntest, and
the input dimension D. Briefly explain your answer.

For each test example, we need to compute the distances to each of the Ntrain training
examples. Each distance computation is O(D). This needs to be done for all Ntest

examples, so the overall cost is O(NtrainNtestD).

Mean: 0.78/2
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4. (a) [1pt] Give one advantage of K-nearest-neighbors over linear regression.

Possible answers include:

• able to fit nonlinear functions

• no cost at training time

• able to interpret by identifying which training examples led to the prediction

• able to approximate any function arbitrarily well given enough data

(b) [1pt] Give one advantage of linear regression over K-nearest-neighbors.

Possible answers include:

• faster at test time

• don’t need to store the whole training set to make predictions

• able to interpret by inspecting the weights for different features

• less likely to overfit (compared to 1-NN)

Mean: 1.65/2

5. [1pt] Suppose linear regression (with squared error loss) is used as a classification
algorithm. TRUE or FALSE: if it correctly classifies every training example, then its
cost is zero. (By “cost”, we mean the function minimized during training.) Briefly
justify your answer.

FALSE. In order to have a loss of zero, it must predict z(i) ∈ {−1, 1} for every training
example. The fact that every example is correct only implies that z(i) is on the correct
side of the threshold.

Mean: 0.55/1

6. [2pts] Let Z be a random variable and t be a real number. Show that

E[(Z − t)2] = (E[Z]− t)2 + Var[Z].

(This is a simplified verison of the bias-variance decomposition.)

E[(Z − t)2] = E[Z2 − 2Zt+ t2]

= E[Z2]− 2E[Z]t+ t2

= Var(Z) + E[Z]2 − 2E[Z]t+ t2

= Var(Z) + (E[Z]− t)2.

Mean: 1.97/2
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7. [2pts] Suppose binary-valued random variables X and Y have the following joint dis-
tribution:

Y = 0 Y = 1
X = 0 1/8 3/8
X = 1 2/8 2/8

Determine the information gain IG(Y |X). You may write your answer as a sum of
logarithms.

H(Y ) = −3
8

log 3
8
− 5

8
log 5

8

H(Y |X) = 1
2

(
−1

4
log 1

4
− 3

4
log 3

4

)
+ 1

2

(
−1

2
log 1

2
− 1

2
log 1

2

)
= 1

2

(
1
2
− 3

4
log 3

4

)
+ 1

2

= 3
4
− 3

8
log 3

4

IG(Y |X) = H(Y )−H(Y |X)

= −3
8

log 3
8
− 5

8
log 5

8
− 3

4
+ 3

8
log 3

4

Marking: Half a point off if the sign of the solution is wrong. One point assigned
to each of the two parts of the information gain formula. Full credit if the answer is
correct; half credit if it’s wrong but reasonable work is shown. We didn’t expect much
in terms of simplifying the expressions.

Mean: 1.31/2

8. [2pts] Recall that combining the logistic activation function with squared error loss
suffers from saturation, whereby the gradient signal is very small when the prediction for
a training example is very wrong. Logistic regression (i.e. logistic activation function
with cross-entropy loss) doesn’t have this problem. Recall that the logistic function is
defined as σ(z) = 1/(1+e−z). Now suppose we modify the activation function to squash
the prediction y to be in the interval [0.1, 0.9], and then apply cross-entropy loss. I.e.,

z = w>x + b

y = 0.8σ(z) + 0.1

L(y, t) = −t log y − (1− t) log(1− y),

where σ is the logistic activation function. Does this model have a problem with satu-
ration? You don’t need to give a formal proof, but you should informally justify your
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answer. Hint: it is possible to answer this question without calculating derivatives.
Think qualitatively.

Yes, it does suffer from saturation. For a positive training example (t = 1), as z → −∞,
y → 0.1, so the loss approaches − log 0.1. Since the loss asymptotes to a particular
value, this means dL/dz → 0.

Mean: 0.65/2

9. [2pts] Recall that the soft-margin SVM can be viewed as minimizing the hinge loss with
an L2 regularization term. I.e.,

z = w>x + b

L(z, t) = max(0, 1− tz)

J (w, b) = λ
2
‖w‖2 +

1

N

N∑
i=1

L(z(i), t(i)).

Here, t ∈ {−1,+1}. Complete the formulas for the gradient calculations. You don’t
need to show your work.

∂J
∂w

= λw +
1

N

N∑
i=1

∂L(i)

∂w

dL
dz

=

{
−t if 1− tz > 0

0 otherwise

∂L
∂w

=
dL
dz

x

Marking: The three parts were worth 0.5, 1, and 0.5, respectively.

Mean: 1.19/2
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