Overview

Machine learning is a powerful set of techniques that allow computers to learn from data rather than having a human expert program a behavior by hand. Neural networks are a class of machine learning algorithm originally inspired by the brain, but which have recently have seen a lot of success at practical applications. They’re at the heart of production systems at companies like Google and Facebook for face recognition, speech-to-text, and language understanding.

This course gives an overview of both the foundational ideas and the recent advances in neural net algorithms. Roughly the first 2/3 of the course focuses on supervised learning — training the network to produce a specified behavior when one has lots of labeled examples of that behavior. The last 1/3 focuses on unsupervised learning and reinforcement learning.

Schedule

There is both an afternoon section and a night section for the course. Both will cover the same material, and will have the same assignments and final exam. Since both sections are at full enrollment, please attend your assigned section.

- **Afternoon section**
 - Lectures: Tuesdays and Thursdays, 1:10–2:00pm, in Bahen, room 1170.
 - The first lecture is on January 4; the last lecture is on April 3. There are no lectures on February 20 and 22 (reading week).
 - Tutorials: Thursdays 2:10–3:00pm. There is no tutorial on January 4. Rooms are assigned based on last name:
 - A–J: Bahen 3008
 - K–R: Bahen 3012
 - S–Z: Bahen 2145

- **Night section**
 - Lectures: Tuesdays, 6:10–8:00 pm, in Bahen, room 1170.
 - The first lecture is on January 9; the last lecture is on April 3. There is no lecture on February 20 (reading week).
 - Tutorials: Tuesdays, 8:20–9:00pm, also in Bahen 1200. **Note the unusual start time.**
This is meant to give you a dinner break. There is no tutorial on April 4. Rooms are assigned based on last name:

- **A–J:** Lash Miller Chemical Labs (LM) 157
- **K–R:** Astronomy and Astrophysics (AB) 114
- **S–Z:** Bahen 1200

Detailed topics for each lecture and tutorial can be found on the course web page.

Teaching Team

Instructor: Roger Grosse
e-mail: rgrosse@cs.toronto.edu
Office hours: Mon 10am–noon in Pratt 290F (That’s the D. L. Pratt Building, not the E. J. Pratt Library!)

Teaching Assistants:
George-Alexandru (Alex) Adam
Tristan Aumentado-Armstrong
Harris Chan
Jing Yao (Jason) Li
Matthew MacKay
Shengyang (Chase) Sun
Bowen Xu
Guodong (Jelly) Zhang

Staff e-mail: csc321staff@cs.toronto.edu (goes to TAs and instructor)
TA office hours: TBA

Do NOT send course-related e-mails to the TAs’ personal e-mails. They will not answer. Use the staff e-mail instead.

Prerequisites

Because we make heavy use of calculus, probability, and linear algebra, this course has some substantial prerequisites.

- **Calculus:** (MAT136H1 with a minimum mark of 77)/(MAT137Y1 with a minimum mark of 73)/(MAT157Y1 with a minimum mark of 67)/MAT235Y1/MAT237Y1/MAT257Y1
- **Linear Algebra:** MAT221H1/MAT223H1/MAT240H1
• **Probability:** STA247H1/STA255H1/STA257H1
• **Multivariable calculus (recommended):** MAT235Y1/MAT237Y1/MAT257Y1
• **Programming experience (recommended)**

Load

There are 23 hours of lectures and 10 hours of tutorials.

Readings

There is no required textbook for the class. A few small readings may be assigned if the need arises. These required readings will all be available on the web, for free.

There are also some relevant resources which are freely available online. We will try to provide links on a lecture-by-lecture basis.

- Video lectures for UofT Professor Geoffrey Hinton’s Coursera course. Professor Hinton is one of the fathers of the field, so think of these as the Feynman Lectures of neural nets.
 https://www.youtube.com/playlist?list=PLoRl3Ht4J0cdU872GhiYwf6jwrk_SNhz9

- *Deep Learning*, a textbook by Yoshua Bengio, Ian Goodfellow, and Aaron Courville.

- Andrej Karpathy’s lecture notes on convolutional networks. These are very readable and cover the material in roughly the first half of the course.
 http://cs231n.github.io/

- Richard Socher’s lecture notes, focusing on RNNs.
 http://cs224d.stanford.edu/syllabus.html

- *Metacademy*, an online website (which one of the instructors is involved with) which helps you construct personalized learning plans and which has links to lots of resources relevant to particular concepts. We’ll post links to relevant Metacademy concepts as the course progresses.
 http://www.metacademy.org

- Video lectures for Hugo Larochelle’s neural networks course. These are similar to Professor Hinton’s lectures but a bit more mathematical.
 http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

- David MacKay’s excellent textbook, *Information Theory, Inference, and Learning Algorithms*. This isn’t focused on neural nets per se, but it has some overlap with this course, especially the lectures on Bayesian models.
 http://www.inference.phy.cam.ac.uk/mackay/itila/
• *Neural Networks and Deep Learning*, a book by physicist Michael Nielsen which covers the basics of neural nets and backpropagation.
http://neuralnetworksanddeeplearning.com/

Marking Scheme

• Midterm test: 15%.

• Final exam: 35%.

 – A minimum mark of 30% on the final is required in order to pass the course.

• Four programming assignments: 30%

 – Your two highest marks will count for 10% each, and your two lowest will count for 5% each.

• Written homeworks: 20%.

 – Total of 6–8, weighted equally.

 – Lowest mark will be dropped.

Academic Integrity

By the time you get to an advanced course like csc321 you’ve heard this lots of times, so we’ll keep it brief: avoid academic offenses (a.k.a. cheating). All graded work in this course is individual work.

Written Homeworks

In order to give you additional practice with the material, we assign written homeworks, which give you additional practice with the course content and encourage you to keep on top of the material. Roughly speaking, there will be one homework due each week that doesn’t have another assignment or test. Each one consists of 2-3 conceptual questions and is meant to take a few hours.

Dates. Weekly homeworks will typically be due at 11:59pm on Wednesdays. See the course web page for particular deadlines. Each homework covers material up through the Tuesday before it is due (i.e. 8 days in advance of the deadline).

Format. Weekly homeworks must be submitted in PDF format through MarkUs. We encourage typesetting using \LaTeX, but scans of handwritten solutions are also acceptable.

Lateness. Weekly homeworks will be accepted up to 4 days late, but 15% will be deducted for each day late, rounded up to the nearest day. Any exceptions require an official Student Medical Certificate.
Weighting. In aggregate, the homeworks count for 20% of the total mark for the course, so individually they count for roughly 3% each. The lowest homework grade for the term will be dropped.

Collaboration policy. You are expected to work on the homeworks by yourself. You should not discuss them with anyone except the tutors or the instructor. The report you hand in should be entirely your own work and you may be asked to demonstrate how you got any results that you report.

Programming Assignments

A typical assignment will require you to write (or modify) and use some Python code that implements a simple version of a learning procedure that has recently been covered in the course. You will have to submit a brief report (roughly one page plus figures) that describes the results you obtained.

Dates. Programming assignments will typically be due at 11:59pm on Wednesdays. See the course web page for particular deadlines. Each assignment uses lecture material up through the Tuesday the week before it is due (i.e. 8 days in advance of the deadline).

Format. All programming assignment reports must be handed in as PDFs through MarkUs. They must be formatted using \LaTeX.

Lateness. Programming assignments will be accepted up to 4 days late, but 15% will be deducted for each day late, rounded up to the nearest day. Any exceptions require an official Student Medical Certificate.

Weighting. Your two highest programming assignment marks will count for 10% each, and the lowest two will count for 5% each, for a total of 30%.

Collaboration policy. You are expected to work on the assignments by yourself. You should not discuss them with anyone except the tutors or the instructor. The report you hand in should be entirely your own work and you may be asked to demonstrate how you got any results that you report.

Tests

Midterm. The midterm test (worth 15% of the course grade) will be held during class time, in the same room as usual, on **Tuesday, 3/6**. It is closed book. It covers all material for the first 14 lectures, i.e. up through the material covered on Tuesday, 2/27. We will link to practice midterms.

1. The midterm for the afternoon section will be held during lecture time, **1:10-2pm on Tuesday, 3/6**. There will be a lecture as usual from 1:10–2pm on Thursday 3/8, but no tutorial this week.

2. The midterm for the night section will be held during lecture time, **6:10-7pm on Tuesday, 3/6**. Afterwards, there will be a 30 minute dinner break, followed by a lecture from 7:30–8:30pm. There will be no tutorial on 3/6.
Final exam. The final exam is worth 35% of the course grade. It is a closed book exam. About 25% of the questions will be based on material that came before the midterm and about 75% on material that came after the midterm.

Missed tests. Missed tests will get a score of 0 except in the case of an official Student Medical Certificate or a written (not email) request submitted at least one week before the test date and approved by the instructor.

Online forum

We’ll use Piazza for the course forum. The URL will be given out on the course web page.

Auditing

If you are not registered in the class, it is possible for you to audit it (sit in on the lectures). Here are the official university rules on auditors (taken from the Department of Computer Science instructor’s advice page):

 To audit a course is to sit and listen to the lectures, and perhaps to the tutorials, without formally enrolling. Auditing is acceptable if the auditor is a student at U of T, and no University resources are to be committed to the auditor. The “must be a student” condition means that students of other universities, employees of outside organizations (or even of U of T itself!), or any other non-students, are not permitted to be auditors. (If we did not have this rule, the University would require us to collect auditing fees, and we are not willing to do that.)

 The “no resources used” condition means that auditors do not get computing accounts, cannot have term work marked, and cannot write exams. In other words, they cannot use instructors time, TA time, or administrative resources of any kind.

 An auditor may not attend class unless there is an empty seat after the last regularly-enrolled student has sat down. That sounds frivolous, but in fact it is an aspect of an important point: if enrollment in a course has been closed because the room size has been reached, then there may well be physical seats for auditors, because it is rare for every student to appear for a lecture, but auditors will not be allowed to enroll later on in the course, even if some students drop it. Neither instructors nor the department can waive this rule.

 Often these conditions are perfectly acceptable to auditors; we don’t mean to ban the practice, but only to live within the University’s rules.