CSC321 Lecture 20: Reversible and
Autoregressive Models

Roger Grosse

CSC321 Lecture 20: Reversible and Autoregr 1/23

Overview

Four modern approaches to generative modeling:
o Generative adversarial networks (last lecture)
@ Reversible architectures (today)
@ Autoregressive models (today)
e Variational autoencoders (CSC412)

All four approaches have different pros and cons.

CSC321 Lecture 20: Reversible and Autoregr 2/23

Overview

@ Remember that the GAN generator network represents a distribution
by sampling from a simple distribution pz(z) over code vectors z.

o I'll use pz here to emphasize that it's a distribution on z.

generated distribution true data distribution
A

p(x)

unit gaussian

generative
model
(neural net)

*._ |loss| .

image space image space

@ A GAN was an implicit generative model, since we could only
generate samples, not evaluate the log-likelihood.

e Can't tell if it's missing modes, memorizing the training data, etc.

@ Reversible architectures are an elegant kind of generator network with
tractable log-likelihood.

CSC321 Lecture 20: Reversible and Autoregr 3/23

Change of Variables Formula

@ Let f denote a differentiable, bijective mapping from space Z to
space X. (l.e., it must be 1-to-1 and cover all of X.)

@ Since f defines a one-to-one correspondence between values z € Z
and x € X, we can think of it as a change-of-variables transformation.

o Change-of-Variables Formula from probability theory: if x = f(z),

then
Oox
det | —
) (8z)
@ Intuition for the Jacobian term:

/740N

small B:E/Bz large dx/0z,
high density p(z low density p(z)

CSC321 Lecture 20: Reversible and Autoregr 4 /23

-1

px(x) = pz(z)

Change of Variables Formula

Suppose we have a generator network which computes the function f.
It's tempting to apply the change-of-variables formula in order to
compute the density px(x).

e le., compute z = f1(x)
ax\ |
X) = z)|det | —
pe(x) = pz(z) et (5)

@ Problems?

e The mapping f needs to be invertible, with an easy-to-compute inverse.

o It needs to be differentiable, so that the Jaobian 0x/0z is defined.

e We need to be able to compute the (log) determinant.
@ The GAN generator may be differentiable, but it doesn't satisfy the

other two properties.

CSC321 Lecture 20: Reversible and Autoregr 5/23

Reversible Blocks

@ Now let's define a reversible block which is invertible and has a
tractable determinant.

@ Such blocks can be composed.

o Inversion: f~1 = 7‘_10---07‘,:1 f=

Ir
fa
fko“'0f1 X
o Determinants: axk| _} Ox ‘ 3Xz‘|3x1|
fi

axk,1 8x1

CSC321 Lecture 20: Reversible and Autoregr 6 /23

Reversible Blocks

@ Recall the residual blocks:

y =x+F(x)

@ Reversible blocks are a variant of F(x) d:I

residual blocks. Divide the units into
two groups, X1 and X». X

y1 = x1 + F(x2)

Y2 = X2
@ Inverting a reversible block:

X2 =Y¥2
x1 =y1 — F(x2)

CSC321 Lecture 20: Reversible and Autoregr 7/23

Reversible Blocks

Composition of two reversible blocks, but with x; and x swapped:

Y1 Yo
o Forward: i i
%
y1 = x1 + F(x2) 4
y2 = x2 + G(y1)
o Backward:
¢
x2 =y2 — G(y1)
x1 =y1 — F(x2)

CSC321 Lecture 20: Reversible and Autoregr 8 /23

Volume Preservation

@ It remains to compute the log determinant of the Jacobian.

@ The Jacobian of the reversible block:

y1 = X1 + F(x2) 63’_<| gf;)
0 1

Y2 = X2 Ox
@ This is an upper triangular matrix. The determinant of an upper

triangular matrix is the product of the diagonal entries, or in this
case, 1.

@ Since the determinant is 1, the mapping is said to be volume
preserving.

CSC321 Lecture 20: Reversible and Autoregr 9 /23

Nonlinear Independent Components Estimation

@ We've just defined the reversible block.
e Easy to invert by subtracting rather than adding the residual function.
e The determinant of the Jacobian is 1.

@ Nonlinear Independent Components Estimation (NICE) trains a
generator network which is a composition of lots of reversible blocks.

@ We can compute the likelihood function using the change-of-variables

formula:
ox
det <8z>

@ We can train this model using maximum likelihood. l.e., given a
dataset {x(M, ... x(M} we maximize the likelihood

-1

px(x) = pz(z) = pz(2)

N . N .
[T px () =TT pz(F~1(x))
i=1 i=1

CSC321 Lecture 20: Reversible and Autoregr 10 / 23

Nonlinear Independent Components Estimation

@ Likelihood:
px(x) = pz(2z) = pz(f*(x))
@ Remember, py is a simple, fixed distribution (e.g. independent
Gaussians)

e Intuition: train the network such that f~! maps each data point to a
high-density region of the code vector space Z.
e Without constraints on f, it could map everything to 0, and this
likelihood objective would make no sense.
e But it can't do this because it's volume preserving.

CSC321 Lecture 20: Reversible and Autoregr 11 /23

Nonlinear Independent Components Estimation

Data space & Latent space Z

Dinh et al.,:2016. Density estimation using RealNVP.

CSC321 Lecture 20: Reversible and Autoregr 12 /23

Nonlinear Independent Components Estimation

Samples produced by RealNVP, a model based on NICE.

ImageNet celebrities bedrooms

Dinh et al., 2016. Density estimation using RealNVP.

Roger Grosse (CSC321 Lecture 20: Reversible and Autoregr 13 /23

|
RevNets (optional)

@ A side benefit of reversible blocks: you don't need to store the
activations in memory to do backprop, since you can reverse the
computation.

o l.e., compute the activations as you need them, moving backwards
through the computation graph.

@ Notice that reversible blocks look a lot like residual blocks.

@ We recently designed a reversible residual network (RevNet)
architecture which is like a ResNet, but with reversible blocks instead
of residual blocks.

e Matches state-of-the-art performance on ImageNet, but without the
memory cost of activations!

o Gomez et al., NIPS 2017. “The revesible residual network: backrpop
without storing activations” .

CSC321 Lecture 20: Reversible and Autoregr 14 /23

Overview

Four modern approaches to generative modeling:
o Generative adversarial networks (last lecture)
@ Reversible architectures (today)
@ Autoregressive models (today)
e Variational autoencoders (CSC412)

All four approaches have different pros and cons.

CSC321 Lecture 20: Reversible and Autoregr 15 / 23

Autoregressive Models

@ We've already looked at autoregressive models in this course:

o Neural language models
o RNN language models (and decoders)

@ We can push this further, and generate very long sequences.

B e oo

T2

Treat an image as a A speech signal can be
very long sequence represented as a waveform, with at least
using raster scan order 16,000 samples per second.

@ Problem: training an RNN to generate these sequences requires a for
loop over > 10,000 time steps.

CSC321 Lecture 20: Reversible and Autoregr 16 / 23

Causal Convolution

Idea 1: causal convolution

@ For RNN language models, we used the training sequence as both the
inputs and the outputs to the RNN.

o We made sure the model was causal: each prediction depended only on
inputs earlier in the sequence.

@ We can do the same thing using a convolutional architecture.
O 0 0 90 © 0 0 0 0 0 0 0 0 O 0O Output

O 0O 0O 0 0 0 O 0 0O 0) Hidden Layer

~
O

Q@ O Q

O
0
O
O

0 O 0O 0

Hidden Layer

Q Q QO 0 0

O
)

Q0 Q0O 0

9 Hidden Layer

l Input

@ No for loops! Processing each input sequence just requires a series of
convolution operations.

CSC321 Lecture 20: Reversible and Autoregr 17 / 23

Causal Convolution

Causal convolution for images:

T

n?

The image is treated as a very long
sequence of pixels using raster
scan order.

Roger Grosse (CSC321 Lecture 20:

(ONONONONG)
ONONONONO)
(ONON NONC)
(ON@) @)

® Q0 O
O /@ e
O®@®0O0
O0O00O0

We can restrict the connectivity pattern
in each layer to make it causal. This can
be implemented by clamping some
weights to zero.

Reversible and Autoregr 18 / 23

|
CNN vs. RNN

Vol i
VL A0
YW Y

@ We can turn a causal CNN into an RNN by adding recurrent
connections. Is this a good idea?

e The RNN has a memory, so it can use information from all past time
steps. The CNN has a limited context.

e But training the RNN is very expensive since it requires a for loop over
time steps. The CNN only requires a series of convolutions.

o Generating from both models is very expensive, since it requires a for
loop. (Whereas generating from a GAN or a reversible model is very
fast.)

CSC321 Lecture 20: Reversible and Autoregr 19 /23

N
PixelCNN and PixelRNN

@ Van den Oord et al., ICML 2016, “Pixel recurrent neural networks”

@ This paper introduced two autoregressive models of images: the
PixelRNN and the Pixel CNN. Both generated amazingly good
high-resolution images.

@ The output is a softmax over 256 possible pixel intensities.
o Completing an image using an Pixel CNN:

occluded completions original

-
b -
) 4 : A '} 4) 4
. % SR
:)& = . .

MRS ER

CSC321 Lecture 20: Reversible and Autoregr 20 / 23

PixelCNN and PixelRNN

Samples from a PixelRNN trained on ImageNet:

CSC321 Lecture 20: Reversible and Autoregr 21 /23

Dilated Convolution

Idea 2: dilated convolution

@ The advantage of RNNs over CNNs is that their memory lets them

learn arbitrary long-distance dependencies.

@ But we can dramatically increase a CNN'’s receptive field using dilated

convolution.
@ You did this in Programming Assignment 2.

© 06 0 0 O

CSC321 Lecture 20: Reversible and Autoregr

Output
Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input

22 /23

N
WaveNet

WaveNet is an autoregressive model for raw audio based on causal
dilated convolutions.

e van den Oord et al., 2016. “WaveNet: a generative model for raw
audio”.
@ Audio needs to be sampled at at least 16k frames per second for good
quality. So the sequences are very long.

@ WaveNet uses dilations of 1,2,...,512, so each unit at the end of
this block as a receptive field of length 1024, or 64 milliseconds.

@ It stacks several of these blocks, so the total context length is about
300 milliseconds.

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

CSC321 Lecture 20: Reversible and Autoregr 23 /23

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

