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Overview

Implementing backprop by hand is like programming in assembly
language.

You’ll probably never do it, but it’s important for having a mental
model of how everything works.

Lecture 6 covered the math of backprop, which you are using to code
it up for a particular network for Assignment 1

This lecture: how to build an automatic differentiation (autodiff)
library, so that you never have to write derivatives by hand

We’ll cover a simplified version of Autograd, a lightweight autodiff tool.
PyTorch’s autodiff feature is based on very similar principles.
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Confusing Terminology

Automatic differentiation (autodiff) refers to a general way of taking
a program which computes a value, and automatically constructing a
procedure for computing derivatives of that value.

In this lecture, we focus on reverse mode autodiff. There is also a
forward mode, which is for computing directional derivatives.

Backpropagation is the special case of autodiff applied to neural nets

But in machine learning, we often use backprop synonymously with
autodiff

Autograd is the name of a particular autodiff package.

But lots of people, including the PyTorch developers, got confused and
started using “autograd” to mean “autodiff”
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What Autodiff Is Not

Autodiff is not finite differences.

Finite differences are expensive, since you need to do a forward pass for
each derivative.
It also induces huge numerical error.
Normally, we only use it for testing.

Autodiff is both efficient (linear in the cost of computing the value)
and numerically stable.

Roger Grosse CSC321 Lecture 10: Automatic Differentiation 4 / 23



What Autodiff Is Not

Autodiff is not symbolic differentiation (e.g. Mathematica).

Symbolic differentiation can result in complex and redundant
expressions.
Mathematica’s derivatives for one layer of soft ReLU (univariate case):

Derivatives for two layers of soft ReLU:

There might not be a convenient formula for the derivatives.

The goal of autodiff is not a formula, but a procedure for computing
derivatives.
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What Autodiff Is

Recall how we computed the derivatives of logistic least squares regression.
An autodiff system should transform the left-hand side into the right-hand
side.

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

L = 1

y = y − t

z = y σ′(z)

w = z x

b = z
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What Autodiff Is

An autodiff system will convert the program into a sequence of primitive
operations which have specified routines for computing derivatives.

In this representation, backprop can be done in a completely mechanical way.

Original program:

z = wx + b

y =
1

1 + exp(−z)

L =
1

2
(y − t)2

Sequence of primitive operations:

t1 = wx

z = t1 + b

t3 = −z
t4 = exp(t3)

t5 = 1 + t4

y = 1/t5

t6 = y − t

t7 = t2
6

L = t7/2
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What Autodiff Is
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Autograd

The rest of this lecture covers how Autograd is implemented.

Source code for the original Autograd package:

https://github.com/HIPS/autograd

Autodidact, a pedagogical implementation of Autograd — you are
encouraged to read the code.

https://github.com/mattjj/autodidact

Thanks to Matt Johnson for providing this!
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Building the Computation Graph

Most autodiff systems, including Autograd, explicitly construct the
computation graph.

Some frameworks like TensorFlow provide mini-languages for building
computation graphs directly. Disadvantage: need to learn a totally new API.

Autograd instead builds them by tracing the forward pass computation,

allowing for an interface nearly indistinguishable from NumPy.

The Node class (defined in tracer.py) represents a node of the
computation graph. It has attributes:

value, the actual value computed on a particular set of inputs
fun, the primitive operation defining the node
args and kwargs, the arguments the op was called with

parents, the parent Nodes
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Building the Computation Graph

Autograd’s fake NumPy module provides primitive ops which look and
feel like NumPy functions, but secretly build the computation graph.

They wrap around NumPy functions:
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Building the Computation Graph

Example:
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Vector-Jacobian Products

Previously, I suggested deriving backprop equations in terms of sums
and indices, and then vectorizing them. But we’d like to implement
our primitive operations in vectorized form.
The Jacobian is the matrix of partial derivatives:

J =
∂y

∂x
=


∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xn


The backprop equation (single child node) can be written as a
vector-Jacobian product (VJP):

xj =
∑
i

yi
∂yi
∂xj

x = y>J

That gives a row vector. We can treat it as a column vector by taking

x = J>y
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Vector-Jacobian Products

Examples

Matrix-vector product

z = Wx J = W x = W>z

Elementwise operations

y = exp(z) J =

exp(z1) 0
. . .

0 exp(zD)

 z = exp(z) ◦ y

Note: we never explicitly construct the Jacobian. It’s usually simpler
and more efficient to compute the VJP directly.
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Vector-Jacobian Products

For each primitive operation, we must specify VJPs for each of its
arguments. Consider y = exp(x).
This is a function which takes in the output gradient (i.e. y), the
answer (y), and the arguments (x), and returns the input gradient (x)
defvjp (defined in core.py) is a convenience routine for registering
VJPs. It just adds them to a dict.
Examples from numpy/numpy vjps.py
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Backward Pass

Recall that the backprop computations are more modular if we view
them as message passing.

This procedure can be implemented directly using the data structures
we’ve introduced.
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Backward Pass

The backwards pass is defined in core.py.

The argument g is the error signal for the end node; for us this is always L = 1.
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Backward Pass

grad (in differential operators.py) is just a wrapper around make vjp (in
core.py) which builds the computation graph and feeds it to backward pass.

grad itself is viewed as a VJP, if we treat L as the 1× 1 matrix with entry 1.

∂L
∂w

=
∂L
∂w
L
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Recap

We saw three main parts to the code:

tracing the forward pass to build the computation graph
vector-Jacobian products for primitive ops
the backwards pass

Building the computation graph requires fancy NumPy gymnastics,
but other two items are basically what I showed you.

You’re encouraged to read the full code (< 200 lines!) at:

https://github.com/mattjj/autodidact/tree/master/autograd
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Differentiating through a Fluid Simulation
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Differentiating through a Fluid Simulation

https://github.com/HIPS/autograd#end-to-end-examples
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Gradient-Based Hyperparameter Optimization
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Gradient-Based Hyperparameter Optimization
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