CS(C321 Lecture 8: Optimization J

Roger Grosse

€SC321 Lecture 8: Optimization WEE

Overview

@ We've talked a lot about how to compute gradients. What do we
actually do with them?

@ Today's lecture: various things that can go wrong in gradient descent,
and what to do about them.

@ Let's take a break from equations and think intuitively.

@ Let's group all the parameters (weights and biases) of our network
into a single vector 6.

€SC321 Lecture 8: Optimization VS

Optimization

Visualizing gradient descent in one dimension: w + w — 635

C (w>
Yed ‘Nha\xui
2 geor nibealization
1 Ocq
MUA(Mim
3\0 19‘&
M
W

—

@ The regions where gradient descent converges to a particular local
minimum are called basins of attraction.

€SC321 Lecture 8: Optimization VT

|
Optimization

Visualizing two-dimensional optimization problems is trickier. Surface plots
can be hard to interpret:

€SC321 Lecture 8: Optimization VS

Optimization

Recall:
@ Level sets (or contours): sets of points on which £(8) is constant

o Gradient: the vector of partial derivatives

o€ o0& o0&
Vol =59 = <ael aez)

e points in the direction of maximum increase
e orthogonal to the level set

@ The gradient descent updates are opposite the gradient direction.

€SC321 Lecture 8: Optimization 5

Optimization

/\\/\/7/ (ya,(l i @a“’

€SC321 Lecture 8: Optimization VS

Local Minima

@ Recall: convex functions don't have local minima. This includes linear
regression and logistic regression.

@ But neural net training is not convex!

e Reason: if a function f is convex, then for any set of points xy, ..., Xy
in its domain ,

f()\1X1+~ . '+)\NXN) < >\1f(X1)+‘ . ~+>\Nf(XN) for \; > 0, Z)\, =1.

o Neural nets have a weight space symmetry: we can permute all the
hidden units in a given layer and obtain an equivalent solution.

e Suppose we average the parameters for all K! permutations. Then we
get a degenerate network where all the hidden units are identical.

o If the cost function were convex, this solution would have to be better
than the original one, which is ridiculous!

@ Even though any multilayer neural net can have local optima, we usually
don’t worry too much about them.

€SC321 Lecture 8: Optimization e

|
Saddle points

At a saddle point % = 0, even though we are not at a minimum. Some
directions curve upwards, and others curve downwards.

When would saddle points be a problem?

€SC321 Lecture 8: Optimization VS

|
Saddle points

At a saddle point % = 0, even though we are not at a minimum. Some

directions curve upwards, and others curve downwards.

When would saddle points be a problem?
o If we're exactly on the saddle point, then we're stuck.

o If we're slightly to the side, then we can get unstuck.

€SC321 Lecture 8: Optimization VS

|
Saddle points

@ Suppose you have two hidden units with identical incoming and
outgoing weights.

o After a gradient descent update, they will still have identical weights.
By induction, they'll always remain identical.

@ But if you perturbed them slightly, they can start to move apart.
@ Important special case: don't initialize all your weights to zero!
o Instead, use small random values.

€SC321 Lecture 8: Optimization VS

Plateaux

A flat region is called a plateau. (Plural: plateaux)

RN T

Can you think of examples?

€SC321 Lecture 8: Optimization VB

Plateaux

A flat region is called a plateau. (Plural: plateaux)

SR 12

e
\

Can you think of examples?
@ 0-1 loss
@ hard threshold activations

@ logistic activations & least squares

€SC321 Lecture 8: Optimization Ve

N
Plateaux

@ An important example of a plateau is a saturated unit. This is when
it is in the flat region of its activation function. Recall the backprop
equation for the weight derivative:

o If ¢/(z) is always close to zero, then the weights will get stuck.

o If there is a ReLU unit whose input z; is always negative, the weight
derivatives will be exactly 0. We call this a dead unit.

€SC321 Lecture 8: Optimization B

Ravines

Long, narrow ravines:

Rosenbrock

g(E)

Lots of sloshing around the walls, only a small derivative along the slope of
the ravine's floor.

€SC321 Lecture 8: Optimization e

Ravines

@ Suppose we have the following dataset for linear regression.

/\\ Vg f;\ N
W,.,(

X1 X2 t

114.8 0.00323 | 5.1

338.1 0.00183 | 3.2
98.8 0.00279 | 4.1 Wi =y X

R

W,

@ Which weight, wy or wy, will receive a larger gradient descent update?
@ Which one do you want to receive a larger update?

o Note: the figure vastly understates the narrowness of the ravine!

€SC321 Lecture 8: Optimization B

Ravines

@ Or consider the following dataset:

X1 Xo ‘ t
1003.2 1005.1 | 3.3
1001.1 1008.2 | 4.8

998.3 1003.4 | 2.9

€SC321 Lecture 8: Optimization Y

Ravines

@ To avoid these problems, it's a good idea to center your inputs to
zero mean and unit variance, especially when they’re in arbitrary units
(feet, seconds, etc.).

13

X T H
gj

<

@ Hidden units may have non-centered activations, and this is harder to
deal with.
o One trick: replace logistic units (which range from 0 to 1) with tanh
units (which range from -1 to 1)
o A recent method called batch normalization explicitly centers each
hidden activation. It often speeds up training by 1.5-2x, and it’s
available in all the major neural net frameworks.

€SC321 Lecture 8: Optimization VB

Momentum

@ Unfortunately, even with these normalization tricks, narrow ravines
will be a fact of life. We need algorithms that are able to deal with
them.

@ Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

(_ o0&

— —

P < up 90
0+—0+p

@ « is the learning rate, just like in gradient descent.

@ 1 is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 17

€SC321 Lecture 8: Optimization TEYEs

Momentum

@ Unfortunately, even with these normalization tricks, narrow ravines
will be a fact of life. We need algorithms that are able to deal with
them.

@ Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

(_ o0&

— —

P < up 90
0+—0+p

@ « is the learning rate, just like in gradient descent.

@ 1 is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 17

o If 4 =1, conservation of energy implies it will never settle down.

€SC321 Lecture 8: Optimization TEYEs

Momentum

20
@ In the high curvature directions, the

gradients cancel each other out, so
momentum dampens the oscillations. 0

10

@ In the low curvature directions, the -10

gradients point in the same direction, —20
allowing the parameters to pick up speed.

—30
—30 —-20 —10 0 0 20

@ If the gradient is constant (i.e. the cost surface is a plane), the parameters
will reach a terminal velocity of

oo
1—p 006

This suggests if you increase p, you should lower a to compensate.

@ Momentum sometimes helps a lot, and almost never hurts.

€SC321 Lecture 8: Optimization B

Ravines

@ Even with momentum and normalization tricks, narrow ravines are
still one of the biggest obstacles in optimizing neural networks.

@ Empirically, the curvature can be many orders of magnitude larger in
some directions than others!

@ An area of research known as second-order optimization develops
algorithms which explicitly use curvature information (second
derivatives), but these are complicated and difficult to scale to large
neural nets and large datasets.

@ There is an optimization procedure called Adam which uses just a
little bit of curvature information and often works much better than
gradient descent. It's available in all the major neural net frameworks.

€SC321 Lecture 8: Optimization VB

Learning Rate

@ The learning rate « is a hyperparameter we need to tune. Here are
the things that can go wrong in batch mode:

« too small: « too large:
slow progress oscillations

« much too large:
instability

@ Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1,0.03,0.01,...).

€SC321 Lecture 8: Optimization YES

Training Curves

@ To diagnose optimization problems, it's useful to look at training
curves: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

@ Warning: it's very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but they
can't guarantee convergence.

€SC321 Lecture 8: Optimization BT

Stochastic Gradient Descent

@ So far, the cost function £ has been the average loss over the training
examples:

=

N N
1 i 1 i i
£0) =5 2 £ =5 D Li(",6),¢0).
i=1 i=1

@ By linearity,
08 _ 1¢~ocLl
00 N pt 00

o Computing the gradient requires summing over all of the training
examples. This is known as batch training.

e Batch training is impractical if you have a large dataset (e.g. millions
of training examples)!

€SC321 Lecture 8: Optimization BT

Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

oLt

60—
< 0160

@ SGD can make significant progress before it has even looked at all the data!

@ Mathematical justification: if you sample a training example at random, the
stochastic gradient is an unbiased estimate of the batch gradient:

oL 1 N oo 9
96 | " NZ 00 ~ 06

@ Problem: if we only look at one training example at a time, we can't exploit
efficient vectorized operations.

€SC321 Lecture 8: Optimization EYEE

Stochastic Gradient Descent

o Compromise approach: compute the gradients on a medium-sized set
of training examples, called a mini-batch.

@ Each entire pass over the dataset is called an epoch.

@ Stochastic gradients computed on larger mini-batches have smaller
variance:

Var

S &~ 96;

i=1

52

20, | — s ™| o6

85(’1

PV 0) P 0)
1 a£]:1Var[az]_l
i=1

@ The mini-batch size S is a hyperparameter that needs to be set.

e Too large: takes more memory to store the activations, and longer to
compute each gradient update

e Too small: can't exploit vectorization

o A reasonable value might be S = 100.

€SC321 Lecture 8: Optimization G

Stochastic Gradient Descent

@ Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downbhill on average.

S

batch gradient descent stochastic gradient descent

€SC321 Lecture 8: Optimization BT

-
SGD Learning Rate

@ In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate

o Typical strategy:

o Use a large learning rate early in training so you can get close to the
optimum
o Gradually decay the learning rate to reduce the fluctuations

€SC321 Lecture 8: Optimization o 2

-
SGD Learning Rate

@ Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.

reduce
learning rate

f\ﬁ

epoch

€SC321 Lecture 8: Optimization 5

