
CSC321 Lecture 8: Optimization

Roger Grosse

Roger Grosse CSC321 Lecture 8: Optimization 1 / 26



Overview

We’ve talked a lot about how to compute gradients. What do we
actually do with them?

Today’s lecture: various things that can go wrong in gradient descent,
and what to do about them.

Let’s take a break from equations and think intuitively.

Let’s group all the parameters (weights and biases) of our network
into a single vector θ.

Roger Grosse CSC321 Lecture 8: Optimization 2 / 26



Optimization

Visualizing gradient descent in one dimension: w ← w − ε dEdw

The regions where gradient descent converges to a particular local
minimum are called basins of attraction.

Roger Grosse CSC321 Lecture 8: Optimization 3 / 26



Optimization

Visualizing two-dimensional optimization problems is trickier. Surface plots
can be hard to interpret:

Roger Grosse CSC321 Lecture 8: Optimization 4 / 26



Optimization

Recall:

Level sets (or contours): sets of points on which E(θ) is constant

Gradient: the vector of partial derivatives

∇θE =
∂E
∂θ

=

(
∂E
∂θ1

,
∂E
∂θ2

)
points in the direction of maximum increase
orthogonal to the level set

The gradient descent updates are opposite the gradient direction.

Roger Grosse CSC321 Lecture 8: Optimization 5 / 26



Optimization

Roger Grosse CSC321 Lecture 8: Optimization 6 / 26



Local Minima

Recall: convex functions don’t have local minima. This includes linear
regression and logistic regression.

But neural net training is not convex!

Reason: if a function f is convex, then for any set of points x1, . . . , xN
in its domain ,

f (λ1x1+· · ·+λNxN) ≤ λ1f (x1)+· · ·+λN f (xN) for λi ≥ 0,
∑
i

λi = 1.

Neural nets have a weight space symmetry: we can permute all the
hidden units in a given layer and obtain an equivalent solution.
Suppose we average the parameters for all K ! permutations. Then we
get a degenerate network where all the hidden units are identical.
If the cost function were convex, this solution would have to be better
than the original one, which is ridiculous!

Even though any multilayer neural net can have local optima, we usually
don’t worry too much about them.

Roger Grosse CSC321 Lecture 8: Optimization 7 / 26



Saddle points

At a saddle point ∂E
∂θ = 0, even though we are not at a minimum. Some

directions curve upwards, and others curve downwards.

When would saddle points be a problem?

If we’re exactly on the saddle point, then we’re stuck.

If we’re slightly to the side, then we can get unstuck.

Roger Grosse CSC321 Lecture 8: Optimization 8 / 26



Saddle points

At a saddle point ∂E
∂θ = 0, even though we are not at a minimum. Some

directions curve upwards, and others curve downwards.

When would saddle points be a problem?

If we’re exactly on the saddle point, then we’re stuck.

If we’re slightly to the side, then we can get unstuck.

Roger Grosse CSC321 Lecture 8: Optimization 8 / 26



Saddle points

Suppose you have two hidden units with identical incoming and
outgoing weights.

After a gradient descent update, they will still have identical weights.
By induction, they’ll always remain identical.

But if you perturbed them slightly, they can start to move apart.

Important special case: don’t initialize all your weights to zero!

Instead, use small random values.

Roger Grosse CSC321 Lecture 8: Optimization 9 / 26



Plateaux

A flat region is called a plateau. (Plural: plateaux)

Can you think of examples?

0–1 loss

hard threshold activations

logistic activations & least squares

Roger Grosse CSC321 Lecture 8: Optimization 10 / 26



Plateaux

A flat region is called a plateau. (Plural: plateaux)

Can you think of examples?

0–1 loss

hard threshold activations

logistic activations & least squares

Roger Grosse CSC321 Lecture 8: Optimization 10 / 26



Plateaux

An important example of a plateau is a saturated unit. This is when
it is in the flat region of its activation function. Recall the backprop
equation for the weight derivative:

zi = hi φ
′(z)

wij = zi xj

If φ′(zi ) is always close to zero, then the weights will get stuck.

If there is a ReLU unit whose input zi is always negative, the weight
derivatives will be exactly 0. We call this a dead unit.

Roger Grosse CSC321 Lecture 8: Optimization 11 / 26



Ravines

Long, narrow ravines:

Lots of sloshing around the walls, only a small derivative along the slope of
the ravine’s floor.

Roger Grosse CSC321 Lecture 8: Optimization 12 / 26



Ravines

Suppose we have the following dataset for linear regression.

x1 x2 t
114.8 0.00323 5.1
338.1 0.00183 3.2

98.8 0.00279 4.1
...

...
...

wi = y xi

Which weight, w1 or w2, will receive a larger gradient descent update?

Which one do you want to receive a larger update?

Note: the figure vastly understates the narrowness of the ravine!

Roger Grosse CSC321 Lecture 8: Optimization 13 / 26



Ravines

Or consider the following dataset:

x1 x2 t
1003.2 1005.1 3.3
1001.1 1008.2 4.8

998.3 1003.4 2.9
...

...
...

Roger Grosse CSC321 Lecture 8: Optimization 14 / 26



Ravines

To avoid these problems, it’s a good idea to center your inputs to
zero mean and unit variance, especially when they’re in arbitrary units
(feet, seconds, etc.).

x̃j =
xj − µj
σj

Hidden units may have non-centered activations, and this is harder to
deal with.

One trick: replace logistic units (which range from 0 to 1) with tanh
units (which range from -1 to 1)
A recent method called batch normalization explicitly centers each
hidden activation. It often speeds up training by 1.5-2x, and it’s
available in all the major neural net frameworks.

Roger Grosse CSC321 Lecture 8: Optimization 15 / 26



Momentum

Unfortunately, even with these normalization tricks, narrow ravines
will be a fact of life. We need algorithms that are able to deal with
them.

Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

p← µp− α∂E
∂θ

θ ← θ + p

α is the learning rate, just like in gradient descent.

µ is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 1?

If µ = 1, conservation of energy implies it will never settle down.

Roger Grosse CSC321 Lecture 8: Optimization 16 / 26



Momentum

Unfortunately, even with these normalization tricks, narrow ravines
will be a fact of life. We need algorithms that are able to deal with
them.

Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

p← µp− α∂E
∂θ

θ ← θ + p

α is the learning rate, just like in gradient descent.

µ is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 1?

If µ = 1, conservation of energy implies it will never settle down.

Roger Grosse CSC321 Lecture 8: Optimization 16 / 26



Momentum

In the high curvature directions, the
gradients cancel each other out, so
momentum dampens the oscillations.

In the low curvature directions, the
gradients point in the same direction,
allowing the parameters to pick up speed.

If the gradient is constant (i.e. the cost surface is a plane), the parameters
will reach a terminal velocity of

− α

1− µ
· ∂E
∂θ

This suggests if you increase µ, you should lower α to compensate.

Momentum sometimes helps a lot, and almost never hurts.

Roger Grosse CSC321 Lecture 8: Optimization 17 / 26



Ravines

Even with momentum and normalization tricks, narrow ravines are
still one of the biggest obstacles in optimizing neural networks.

Empirically, the curvature can be many orders of magnitude larger in
some directions than others!

An area of research known as second-order optimization develops
algorithms which explicitly use curvature information (second
derivatives), but these are complicated and difficult to scale to large
neural nets and large datasets.

There is an optimization procedure called Adam which uses just a
little bit of curvature information and often works much better than
gradient descent. It’s available in all the major neural net frameworks.

Roger Grosse CSC321 Lecture 8: Optimization 18 / 26



Learning Rate

The learning rate α is a hyperparameter we need to tune. Here are
the things that can go wrong in batch mode:

α too small:
slow progress

α too large:
oscillations

α much too large:
instability

Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1, 0.03, 0.01, . . .).

Roger Grosse CSC321 Lecture 8: Optimization 19 / 26



Training Curves

To diagnose optimization problems, it’s useful to look at training
curves: plot the training cost as a function of iteration.

Warning: it’s very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but they
can’t guarantee convergence.

Roger Grosse CSC321 Lecture 8: Optimization 20 / 26



Stochastic Gradient Descent

So far, the cost function E has been the average loss over the training
examples:

E(θ) =
1

N

N∑
i=1

L(i) =
1

N

N∑
i=1

L(y(x(i),θ), t(i)).

By linearity,

∂E
∂θ

=
1

N

N∑
i=1

∂L(i)

∂θ
.

Computing the gradient requires summing over all of the training
examples. This is known as batch training.

Batch training is impractical if you have a large dataset (e.g. millions
of training examples)!

Roger Grosse CSC321 Lecture 8: Optimization 21 / 26



Stochastic Gradient Descent

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

θ ← θ − α∂L
(i)

∂θ

SGD can make significant progress before it has even looked at all the data!

Mathematical justification: if you sample a training example at random, the
stochastic gradient is an unbiased estimate of the batch gradient:

E
[
∂L(i)

∂θ

]
=

1

N

N∑
i=1

∂L(i)

∂θ
=
∂E
∂θ

.

Problem: if we only look at one training example at a time, we can’t exploit
efficient vectorized operations.

Roger Grosse CSC321 Lecture 8: Optimization 22 / 26



Stochastic Gradient Descent

Compromise approach: compute the gradients on a medium-sized set
of training examples, called a mini-batch.

Each entire pass over the dataset is called an epoch.

Stochastic gradients computed on larger mini-batches have smaller
variance:

Var

[
1

S

S∑
i=1

∂L(i)

∂θj

]
=

1

S2
Var

[
S∑

i=1

∂L(i)

∂θj

]
=

1

S
Var

[
∂L(i)

∂θj

]

The mini-batch size S is a hyperparameter that needs to be set.

Too large: takes more memory to store the activations, and longer to
compute each gradient update
Too small: can’t exploit vectorization
A reasonable value might be S = 100.

Roger Grosse CSC321 Lecture 8: Optimization 23 / 26



Stochastic Gradient Descent

Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent

Roger Grosse CSC321 Lecture 8: Optimization 24 / 26



SGD Learning Rate

In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

Typical strategy:

Use a large learning rate early in training so you can get close to the
optimum
Gradually decay the learning rate to reduce the fluctuations

Roger Grosse CSC321 Lecture 8: Optimization 25 / 26



SGD Learning Rate

Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.

Roger Grosse CSC321 Lecture 8: Optimization 26 / 26


