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Overview

Recall the simple neuron-like unit:
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These units are much more powerful if we connect many of them into
a neural network.
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Overview

Design choices so far

Task: regression, binary classification, multiway classification

Model/Architecture: linear, log-linear, feed-forward neural network

Loss function: squared error, 0–1 loss, cross-entropy, hinge loss

Optimization algorithm: direct solution, gradient descent,
perceptron
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Multilayer Perceptrons

We can connect lots of
units together into a
directed acyclic graph.

This gives a feed-forward
neural network. That’s
in contrast to recurrent
neural networks, which
can have cycles. (We’ll
talk about those later.)

Typically, units are
grouped together into
layers.
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Multilayer Perceptrons

Each layer connects N input units to M output units.

In the simplest case, all input units are connected to all output units. We call this
a fully connected layer. We’ll consider other layer types later.

Note: the inputs and outputs for a layer are distinct from the inputs and outputs
to the network.

Recall from multiway logistic regression: this
means we need an M × N weight matrix.

The output units are a function of the input
units:

y = f (x) = φ (Wx + b)

A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has nothing
to do with perceptrons!
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Multilayer Perceptrons

Some activation functions:

Linear

y = z

Rectified Linear Unit
(ReLU)

y = max(0, z)

Soft ReLU

y = log 1 + ez
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Multilayer Perceptrons

Some activation functions:

Hard Threshold

y =

{
1 if z > 0
0 if z ≤ 0

Logistic

y =
1

1 + e−z

Hyperbolic Tangent
(tanh)

y =
ez − e−z

ez + e−z
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Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function
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Multilayer Perceptrons
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Multilayer Perceptrons

Each layer computes a function, so the network
computes a composition of functions:

h(1) = f (1)(x)

h(2) = f (2)(h(1))

...

y = f (L)(h(L−1))

Or more simply:

y = f (L) ◦ · · · ◦ f (1)(x).

Neural nets provide modularity: we can implement
each layer’s computations as a black box.

Roger Grosse CSC321 Lecture 5: Multilayer Perceptrons 10 / 21



Feature Learning

Neural nets can be viewed as a way of learning features:

The goal:
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Feature Learning

Input representation of a digit : 784 dimensional vector.
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Feature Learning

Each first-layer hidden unit computes σ(wT
i x)

Here is one of the weight vectors (also called a feature).

It’s reshaped into an image, with gray = 0, white = +, black = -.

To compute wT
i x, multiply the corresponding pixels, and sum the result.
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Feature Learning

There are 256 first-level features total. Here are some of them.
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Levels of Abstraction

The psychological profiling [of a programmer] is mostly the ability to shift
levels of abstraction, from low level to high level. To see something in the

small and to see something in the large.

– Don Knuth
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Levels of Abstraction

When you design neural networks and machine learning algorithms, you’ll
need to think at multiple levels of abstraction.
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Expressive Power

We’ve seen that there are some functions that linear classifiers can’t
represent. Are deep networks any better?

Any sequence of linear layers can be equivalently represented with a
single linear layer.

y = W(3)W(2)W(1)
︸ ︷︷ ︸

,W′

x

Deep linear networks are no more expressive than linear regression!
Linear layers do have their uses — stay tuned!
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Expressive Power

Multilayer feed-forward neural nets with nonlinear activation functions
are universal approximators: they can approximate any function
arbitrarily well.

This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

Even though ReLU is “almost” linear, it’s nonlinear enough!
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Expressive Power

Universality for binary inputs and targets:

Hard threshold hidden units, linear output

Strategy: 2D hidden units, each of which responds to one particular
input configuration

Only requires one hidden layer, though it needs to be extremely wide!
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Expressive Power

What about the logistic activation function?

You can approximate a hard threshold by scaling up the weights and
biases:

y = σ(x) y = σ(5x)

This is good: logistic units are differentiable, so we can tune them
with gradient descent. (Stay tuned!)
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Expressive Power

Limits of universality

You may need to represent an exponentially large network.
If you can learn any function, you’ll just overfit.
Really, we desire a compact representation!

We’ve derived units which compute the functions AND, OR, and
NOT. Therefore, any Boolean circuit can be translated into a
feed-forward neural net.

This suggests you might be able to learn compact representations of
some complicated functions
The view of neural nets as “differentiable computers” is starting to
take hold. More about this when we talk about recurrent neural nets.
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