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Overview

Last time: binary classification, perceptron algorithm

Limitations of the perceptron

no guarantees if data aren’t linearly separable
how to generalize to multiple classes?
linear model — no obvious generalization to multilayer neural networks

This lecture: apply the strategy we used for linear regression

define a model and a cost function
optimize it using gradient descent
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Overview

Design choices so far

Task: regression, binary classification, multiway classification

Model/Architecture: linear, log-linear

Loss function: squared error, 0–1 loss, cross-entropy, hinge loss

Optimization algorithm: direct solution, gradient descent,
perceptron
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Overview

Recall: binary linear classifiers. Targets t ∈ {0, 1}

z = wTx + b

y =

{
1 if z ≥ 0
0 if z < 0

Goal from last lecture: classify all training examples correctly

But what if we can’t, or don’t want to?

Seemingly obvious loss function: 0-1 loss

L0−1(y , t) =

{
0 if y = t
1 if y 6= t

= 1y 6=t .
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Attempt 1: 0-1 loss

As always, the cost E is the average loss over training examples; for
0-1 loss, this is the error rate:

E =
1

N

N∑
i=1

1y (i) 6=t(i)
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Attempt 1: 0-1 loss

Problem: how to optimize?

Chain rule:
∂L0−1
∂wj

=
∂L0−1
∂z

∂z

∂wj

But ∂L0−1/∂z is zero everywhere it’s defined!

∂L0−1/∂wj = 0 means that changing the weights by a very small
amount probably has no effect on the loss.
The gradient descent update is a no-op.
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Attempt 2: Linear Regression

Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as a surrogate loss function.

We already know how to fit a linear regression model. Can we use
this instead?

y = w>x + b

LSE(y , t) =
1

2
(y − t)2

Doesn’t matter that the targets are actually binary.

Threshold predictions at y = 1/2.
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Attempt 2: Linear Regression

The problem:

The loss function hates when you make correct predictions with high
confidence!

If t = 1, it’s more unhappy about y = 10 than y = 0.
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Attempt 3: Logistic Activation Function

There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

The logistic function is a kind of sigmoidal, or
S-shaped, function:

σ(z) =
1

1 + e−z

A linear model with a logistic nonlinearity is known as log-linear:

z = w>x + b

y = σ(z)

LSE(y , t) =
1

2
(y − t)2.

Used in this way, σ is called an activation function, and z is called the
logit.
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Attempt 3: Logistic Activation Function

The problem:
(plot of LSE as a function of z)

∂L
∂wj

=
∂L
∂z

∂z

∂wj

wj ← wj − α
∂L
∂wj

In gradient descent, a small gradient (in magnitude) implies a small
step.

If the prediction is really wrong, shouldn’t you take a large step?
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Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probability
that t = 1.

The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

Cross-entropy loss captures this intuition:

LCE(y , t) =

{
− log y if t = 1
− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)
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Logistic Regression

Logistic Regression:

z = w>x + b

y = σ(z)

=
1

1 + e−z

LCE = −t log y − (1− t) log(1− y)

[[gradient derivation in the notes]]
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Logistic Regression

Problem: what if t = 1 but you’re really confident it’s a negative
example (z � 0)?

If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

y = σ(z) ⇒ y ≈ 0

LCE = −t log y − (1− t) log(1− y) ⇒ computes log 0

Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function.

LLCE(z , t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez)

Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)
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Logistic Regression

Comparison of loss functions:
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Logistic Regression

Comparison of gradient descent updates:

Linear regression:

w← w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Logistic regression:

w← w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Not a coincidence! These are both examples of matching loss
functions, but that’s beyond the scope of this course.
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Hinge Loss

Another loss function you might encounter is hinge loss. Here, we take
t ∈ {−1, 1} rather than {0, 1}.

LH(y , t) = max(0, 1− ty)

This is an upper bound on 0-1 loss (a
useful property for a surrogate loss
function).

A linear model with hinge loss is called
a support vector machine. You already
know enough to derive the gradient
descent update rules!

Very different motivations from logistic
regression, but similar behavior in
practice.
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Logistic Regression

Comparison of loss functions:
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Multiclass Classification

What about classification tasks with more than two categories?
It is very hard to say what makes a 2         Some examples from an earlier version of the net 
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Multiclass Classification

Targets form a discrete set {1, . . . ,K}.
It’s often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1
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Multiclass Classification

Now there are D input dimensions and K output dimensions, so we
need K × D weights, which we arrange as a weight matrix W.

Also, we have a K -dimensional vector b of biases.

Linear predictions:

zk =
∑
j

wkjxj + bk

Vectorized:
z = Wx + b
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Multiclass Classification

A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

yk = softmax(z1, . . . , zK )k =
ezk∑
k ′ ezk′

The inputs zk are called the logits.

Properties:

Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)
If one of the zk ’s is much larger than the others, softmax(z) is
approximately the argmax. (So really it’s more like “soft-argmax”.)
Exercise: how does the case of K = 2 relate to the logistic function?

Note: sometimes σ(z) is used to denote the softmax function; in this
class, it will denote the logistic function applied elementwise.
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Multiclass Classification

If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

LCE(y, t) = −
K∑

k=1

tk log yk

= −t>(log y),

where the log is applied elementwise.

Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.
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Multiclass Classification

Multiclass logistic regression:

z = Wx + b

y = softmax(z)

LCE = −t>(log y)

Tutorial: deriving the gradient descent updates

∂LCE

∂z
= y − t
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Convex Functions

Recall: a set S is convex if for any x0, x1 ∈ S,

(1− λ)x0 + λx1 ∈ S for 0 ≤ λ ≤ 1.

A function f is convex if for any x0, x1 in the domain of f ,

f ((1− λ)x0 + λx1) ≤ (1− λ)f (x0) + λf (x1)

Equivalently, the set of
points lying above the
graph of f is convex.

Intuitively: the function
is bowl-shaped.
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Convex Functions

We just saw that the
least-squares loss
function 1

2 (y − t)2 is
convex as a function of y

For a linear model,
z = w>x + b is a linear
function of w and b. If
the loss function is
convex as a function of
z , then it is convex as a
function of w and b.
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Convex Functions

Which loss functions are convex?
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Convex Functions

Why we care about convexity

All critical points are minima

Gradient descent finds the optimal solution (more on this in a later
lecture)
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Gradient Checking

We’ve derived a lot of gradients so far. How do we know if they’re
correct?

Recall the definition of the partial derivative:

∂

∂xi
f (x1, . . . , xN) = lim

h→0

f (x1, . . . , xi + h, . . . , xN)− f (x1, . . . , xi , . . . , xN)

h

Check your derivatives numerically by plugging in a small value of h,
e.g. 10−10. This is known as finite differences.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 28 / 31



Gradient Checking

Even better: the two-sided definition

∂

∂xi
f (x1, . . . , xN) = lim

h→0

f (x1, . . . , xi + h, . . . , xN)− f (x1, . . . , xi − h, . . . , xN)

2h

Roger Grosse CSC321 Lecture 4: Learning a Classifier 29 / 31



Gradient Checking

Run gradient checks on small, randomly chosen inputs

Use double precision floats (not the default for most deep learning
frameworks!)

Compute the relative error:

|a− b|
|a|+ |b|

The relative error should be very small, e.g. 10−6

Roger Grosse CSC321 Lecture 4: Learning a Classifier 30 / 31



Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is wrong.

But:
They might work much better if the derivatives are correct.
Wrong derivatives might lead you on a wild goose chase.

If you implement derivatives by hand, gradient checking is the single
most important thing you need to do to get your algorithm to work
well.
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