
CSC321 Lecture 4: Learning a Classifier

Roger Grosse

Roger Grosse CSC321 Lecture 4: Learning a Classifier 1 / 31

Overview

Last time: binary classification, perceptron algorithm

Limitations of the perceptron

no guarantees if data aren’t linearly separable
how to generalize to multiple classes?
linear model — no obvious generalization to multilayer neural networks

This lecture: apply the strategy we used for linear regression

define a model and a cost function
optimize it using gradient descent

Roger Grosse CSC321 Lecture 4: Learning a Classifier 2 / 31

Overview

Design choices so far

Task: regression, binary classification, multiway classification

Model/Architecture: linear, log-linear

Loss function: squared error, 0–1 loss, cross-entropy, hinge loss

Optimization algorithm: direct solution, gradient descent,
perceptron

Roger Grosse CSC321 Lecture 4: Learning a Classifier 3 / 31

Overview

Recall: binary linear classifiers. Targets t ∈ {0, 1}

z = wTx + b

y =

{
1 if z ≥ 0
0 if z < 0

Goal from last lecture: classify all training examples correctly

But what if we can’t, or don’t want to?

Seemingly obvious loss function: 0-1 loss

L0−1(y , t) =

{
0 if y = t
1 if y 6= t

= 1y 6=t .

Roger Grosse CSC321 Lecture 4: Learning a Classifier 4 / 31

Attempt 1: 0-1 loss

As always, the cost E is the average loss over training examples; for
0-1 loss, this is the error rate:

E =
1

N

N∑
i=1

1y (i) 6=t(i)

Roger Grosse CSC321 Lecture 4: Learning a Classifier 5 / 31

Attempt 1: 0-1 loss

Problem: how to optimize?

Chain rule:
∂L0−1
∂wj

=
∂L0−1
∂z

∂z

∂wj

But ∂L0−1/∂z is zero everywhere it’s defined!

∂L0−1/∂wj = 0 means that changing the weights by a very small
amount probably has no effect on the loss.
The gradient descent update is a no-op.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 6 / 31

Attempt 1: 0-1 loss

Problem: how to optimize?

Chain rule:
∂L0−1
∂wj

=
∂L0−1
∂z

∂z

∂wj

But ∂L0−1/∂z is zero everywhere it’s defined!

∂L0−1/∂wj = 0 means that changing the weights by a very small
amount probably has no effect on the loss.
The gradient descent update is a no-op.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 6 / 31

Attempt 2: Linear Regression

Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as a surrogate loss function.

We already know how to fit a linear regression model. Can we use
this instead?

y = w>x + b

LSE(y , t) =
1

2
(y − t)2

Doesn’t matter that the targets are actually binary.

Threshold predictions at y = 1/2.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 7 / 31

Attempt 2: Linear Regression

The problem:

The loss function hates when you make correct predictions with high
confidence!

If t = 1, it’s more unhappy about y = 10 than y = 0.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 8 / 31

Attempt 3: Logistic Activation Function

There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

The logistic function is a kind of sigmoidal, or
S-shaped, function:

σ(z) =
1

1 + e−z

A linear model with a logistic nonlinearity is known as log-linear:

z = w>x + b

y = σ(z)

LSE(y , t) =
1

2
(y − t)2.

Used in this way, σ is called an activation function, and z is called the
logit.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 9 / 31

Attempt 3: Logistic Activation Function

The problem:
(plot of LSE as a function of z)

∂L
∂wj

=
∂L
∂z

∂z

∂wj

wj ← wj − α
∂L
∂wj

In gradient descent, a small gradient (in magnitude) implies a small
step.

If the prediction is really wrong, shouldn’t you take a large step?

Roger Grosse CSC321 Lecture 4: Learning a Classifier 10 / 31

Attempt 3: Logistic Activation Function

The problem:
(plot of LSE as a function of z)

∂L
∂wj

=
∂L
∂z

∂z

∂wj

wj ← wj − α
∂L
∂wj

In gradient descent, a small gradient (in magnitude) implies a small
step.

If the prediction is really wrong, shouldn’t you take a large step?

Roger Grosse CSC321 Lecture 4: Learning a Classifier 10 / 31

Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probability
that t = 1.

The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

Cross-entropy loss captures this intuition:

LCE(y , t) =

{
− log y if t = 1
− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)

Roger Grosse CSC321 Lecture 4: Learning a Classifier 11 / 31

Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probability
that t = 1.

The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

Cross-entropy loss captures this intuition:

LCE(y , t) =

{
− log y if t = 1
− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)

Roger Grosse CSC321 Lecture 4: Learning a Classifier 11 / 31

Logistic Regression

Logistic Regression:

z = w>x + b

y = σ(z)

=
1

1 + e−z

LCE = −t log y − (1− t) log(1− y)

[[gradient derivation in the notes]]

Roger Grosse CSC321 Lecture 4: Learning a Classifier 12 / 31

Logistic Regression

Problem: what if t = 1 but you’re really confident it’s a negative
example (z � 0)?

If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

y = σ(z) ⇒ y ≈ 0

LCE = −t log y − (1− t) log(1− y) ⇒ computes log 0

Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function.

LLCE(z , t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez)

Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)

Roger Grosse CSC321 Lecture 4: Learning a Classifier 13 / 31

Logistic Regression

Problem: what if t = 1 but you’re really confident it’s a negative
example (z � 0)?

If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

y = σ(z) ⇒ y ≈ 0

LCE = −t log y − (1− t) log(1− y) ⇒ computes log 0

Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function.

LLCE(z , t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez)

Numerically stable computation:

E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)

Roger Grosse CSC321 Lecture 4: Learning a Classifier 13 / 31

Logistic Regression

Comparison of loss functions:

Roger Grosse CSC321 Lecture 4: Learning a Classifier 14 / 31

Logistic Regression

Comparison of gradient descent updates:

Linear regression:

w← w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Logistic regression:

w← w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Not a coincidence! These are both examples of matching loss
functions, but that’s beyond the scope of this course.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 15 / 31

Logistic Regression

Comparison of gradient descent updates:

Linear regression:

w← w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Logistic regression:

w← w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Not a coincidence! These are both examples of matching loss
functions, but that’s beyond the scope of this course.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 15 / 31

Hinge Loss

Another loss function you might encounter is hinge loss. Here, we take
t ∈ {−1, 1} rather than {0, 1}.

LH(y , t) = max(0, 1− ty)

This is an upper bound on 0-1 loss (a
useful property for a surrogate loss
function).

A linear model with hinge loss is called
a support vector machine. You already
know enough to derive the gradient
descent update rules!

Very different motivations from logistic
regression, but similar behavior in
practice.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 16 / 31

Logistic Regression

Comparison of loss functions:

Roger Grosse CSC321 Lecture 4: Learning a Classifier 17 / 31

Multiclass Classification

What about classification tasks with more than two categories?
It is very hard to say what makes a 2 Some examples from an earlier version of the net

Roger Grosse CSC321 Lecture 4: Learning a Classifier 18 / 31

Multiclass Classification

Targets form a discrete set {1, . . . ,K}.
It’s often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1

Roger Grosse CSC321 Lecture 4: Learning a Classifier 19 / 31

Multiclass Classification

Now there are D input dimensions and K output dimensions, so we
need K × D weights, which we arrange as a weight matrix W.

Also, we have a K -dimensional vector b of biases.

Linear predictions:

zk =
∑
j

wkjxj + bk

Vectorized:
z = Wx + b

Roger Grosse CSC321 Lecture 4: Learning a Classifier 20 / 31

Multiclass Classification

A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

yk = softmax(z1, . . . , zK)k =
ezk∑
k ′ ezk′

The inputs zk are called the logits.

Properties:

Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)
If one of the zk ’s is much larger than the others, softmax(z) is
approximately the argmax. (So really it’s more like “soft-argmax”.)
Exercise: how does the case of K = 2 relate to the logistic function?

Note: sometimes σ(z) is used to denote the softmax function; in this
class, it will denote the logistic function applied elementwise.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 21 / 31

Multiclass Classification

If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

LCE(y, t) = −
K∑

k=1

tk log yk

= −t>(log y),

where the log is applied elementwise.

Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 22 / 31

Multiclass Classification

Multiclass logistic regression:

z = Wx + b

y = softmax(z)

LCE = −t>(log y)

Tutorial: deriving the gradient descent updates

∂LCE

∂z
= y − t

Roger Grosse CSC321 Lecture 4: Learning a Classifier 23 / 31

Convex Functions

Recall: a set S is convex if for any x0, x1 ∈ S,

(1− λ)x0 + λx1 ∈ S for 0 ≤ λ ≤ 1.

A function f is convex if for any x0, x1 in the domain of f ,

f ((1− λ)x0 + λx1) ≤ (1− λ)f (x0) + λf (x1)

Equivalently, the set of
points lying above the
graph of f is convex.

Intuitively: the function
is bowl-shaped.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 24 / 31

Convex Functions

We just saw that the
least-squares loss
function 1

2 (y − t)2 is
convex as a function of y

For a linear model,
z = w>x + b is a linear
function of w and b. If
the loss function is
convex as a function of
z , then it is convex as a
function of w and b.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 25 / 31

Convex Functions

Which loss functions are convex?

Roger Grosse CSC321 Lecture 4: Learning a Classifier 26 / 31

Convex Functions

Why we care about convexity

All critical points are minima

Gradient descent finds the optimal solution (more on this in a later
lecture)

Roger Grosse CSC321 Lecture 4: Learning a Classifier 27 / 31

Gradient Checking

We’ve derived a lot of gradients so far. How do we know if they’re
correct?

Recall the definition of the partial derivative:

∂

∂xi
f (x1, . . . , xN) = lim

h→0

f (x1, . . . , xi + h, . . . , xN)− f (x1, . . . , xi , . . . , xN)

h

Check your derivatives numerically by plugging in a small value of h,
e.g. 10−10. This is known as finite differences.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 28 / 31

Gradient Checking

Even better: the two-sided definition

∂

∂xi
f (x1, . . . , xN) = lim

h→0

f (x1, . . . , xi + h, . . . , xN)− f (x1, . . . , xi − h, . . . , xN)

2h

Roger Grosse CSC321 Lecture 4: Learning a Classifier 29 / 31

Gradient Checking

Run gradient checks on small, randomly chosen inputs

Use double precision floats (not the default for most deep learning
frameworks!)

Compute the relative error:

|a− b|
|a|+ |b|

The relative error should be very small, e.g. 10−6

Roger Grosse CSC321 Lecture 4: Learning a Classifier 30 / 31

Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is wrong.

But:
They might work much better if the derivatives are correct.
Wrong derivatives might lead you on a wild goose chase.

If you implement derivatives by hand, gradient checking is the single
most important thing you need to do to get your algorithm to work
well.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 31 / 31

